Chapter
Licensed
Unlicensed
Requires Authentication
CHAPTER 8. Complements on Convolution
-
Nicholas M. Katz
You are currently not able to access this content.
You are currently not able to access this content.
Chapters in this book
- Frontmatter i
- Contents v
- Introduction 1
- CHAPTER 1. Breaks and Swan Conductors 12
- CHAPTER 2. Curves and Their Cohomology 26
- CHAPTER 3. Equidistribution in Equal Characteristic 36
- CHAPTER 4. Gauss Sums and Kloosterman Sums: Kloosterman Sheaves 46
- CHAPTER 5. Convolution of Sheaves on Gm 62
- CHAPTER 6. Local Convolution 87
- CHAPTER 7. Local Monodromy at Zero of a Convolution: Detailed Study 96
- CHAPTER 8. Complements on Convolution 120
- CHAPTER 9. Equidistribution in (S1)r of r-tuples of Angles of Gauss Sums 155
- CHAPTER 10. Local Monodromy at ∞ of Kloosterman Sheaves 168
- CHAPTER 11. Global Monodromy of Kloosterman Sheaves 176
- CHAPTER 12. Integral Monodromy of Kloosterman Sheaves (d’après O. Gabber) 210
- CHAPTER 13. Equidistribution of “Angles” of Kloosterman Sums 234
- References 243
Chapters in this book
- Frontmatter i
- Contents v
- Introduction 1
- CHAPTER 1. Breaks and Swan Conductors 12
- CHAPTER 2. Curves and Their Cohomology 26
- CHAPTER 3. Equidistribution in Equal Characteristic 36
- CHAPTER 4. Gauss Sums and Kloosterman Sums: Kloosterman Sheaves 46
- CHAPTER 5. Convolution of Sheaves on Gm 62
- CHAPTER 6. Local Convolution 87
- CHAPTER 7. Local Monodromy at Zero of a Convolution: Detailed Study 96
- CHAPTER 8. Complements on Convolution 120
- CHAPTER 9. Equidistribution in (S1)r of r-tuples of Angles of Gauss Sums 155
- CHAPTER 10. Local Monodromy at ∞ of Kloosterman Sheaves 168
- CHAPTER 11. Global Monodromy of Kloosterman Sheaves 176
- CHAPTER 12. Integral Monodromy of Kloosterman Sheaves (d’après O. Gabber) 210
- CHAPTER 13. Equidistribution of “Angles” of Kloosterman Sums 234
- References 243