Chapter
Licensed
Unlicensed
Requires Authentication
VI.46 Arthur Cayley
-
Tony Crilly
You are currently not able to access this content.
You are currently not able to access this content.
Chapters in this book
- Frontmatter i
- Contents v
- Preface ix
- Contributors xvii
-
Part I. Introduction
- I.1 What Is Mathematics About? 1
- I.2 The Language and Grammar of Mathematics 8
- I.3 Some Fundamental Mathematical Definitions 16
- I.4 The General Goals of Mathematical Research 47
-
Part II. The Origins of Modern Mathematics
- II.1 From Numbers to Number Systems 77
- II.2 Geometry 83
- II.3 The Development of Abstract Algebra 95
- II.4 Algorithms 106
- II.5 The Development of Rigor in Mathematical Analysis 117
- II.6 The Development of the Idea of Proof 129
- II.7 The Crisis in the Foundations of Mathematics 142
-
Part III. Mathematical Concepts
- III.1 The Axiom of Choice 157
- III.2 The Axiom of Determinacy 159
- III.3 Bayesian Analysis 159
- III.4 Braid Groups 160
- III.5 Buildings 161
- III.6 Calabi–Yau Manifolds 163
- III.7 Cardinals 165
- III.8 Categories 165
- III.9 Compactness and Compactification 167
- III.10 Computational Complexity Classes 169
- III.11 Countable and Uncountable Sets 170
- III.12 C*-Algebras 172
- III.13 Curvature 172
- III.14 Designs 172
- III.15 Determinants 174
- III.16 Differential Forms and Integration 175
- III.17 Dimension 180
- III.18 Distributions 184
- III.19 Duality 187
- III.20 Dynamical Systems and Chaos 190
- III.21 Elliptic Curves 190
- III.22 The Euclidean Algorithm and Continued Fractions 191
- III.23 The Euler and Navier–Stokes Equations 193
- III.24 Expanders 196
- III.25 The Exponential and Logarithmic Functions 199
- III.26 The Fast Fourier Transform 202
- III.27 The Fourier Transform 204
- III.28 Fuchsian Groups 208
- III.29 Function Spaces 210
- III.30 Galois Groups 213
- III.31 The Gamma Function 213
- III.32 Generating Functions 214
- III.33 Genus 215
- III.34 Graphs 215
- III.35 Hamiltonians 215
- III.36 The Heat Equation 216
- III.37 Hilbert Spaces 219
- III.38 Homology and Cohomology 221
- III.39 Homotopy Groups 221
- III.40 The Ideal Class Group 221
- III.41 Irrational and Transcendental Numbers 222
- III.42 The Ising Model 223
- III.43 Jordan Normal Form 223
- III.44 Knot Polynomials 225
- III.45 K-Theory 227
- III.46 The Leech Lattice 227
- III.47 L-Functions 228
- III.48 Lie Theory 229
- III.49 Linear and Nonlinear Waves and Solitons 234
- III.50 Linear Operators and Their Properties 239
- III.51 Local and Global in Number Theory 241
- III.52 The Mandelbrot Set 244
- III.53 Manifolds 244
- III.54 Matroids 244
- III.55 Measures 246
- III.56 Metric Spaces 247
- III.57 Models of Set Theory 248
- III.58 Modular Arithmetic 249
- III.59 Modular Forms 250
- III.60 Moduli Spaces 252
- III.61 The Monster Group 252
- III.62 Normed Spaces and Banach Spaces 252
- III.63 Number Fields 254
- III.64 Optimization and Lagrange Multipliers 255
- III.65 Orbifolds 257
- III.66 Ordinals 258
- III.67 The Peano Axioms 258
- III.68 Permutation Groups 259
- III.69 Phase Transitions 261
- III.70 π 261
- III.71 Probability Distributions 263
- III.72 Projective Space 267
- III.73 Quadratic Forms 267
- III.74 Quantum Computation 269
- III.75 Quantum Groups 272
- III.76 Quaternions, Octonions, and Normed Division Algebras 275
- III.77 Representations 279
- III.78 Ricci Flow 279
- III.79 Riemann Surfaces 282
- III.80 The Riemann Zeta Function 283
- III.81 Rings, Ideals, and Modules 284
- III.82 Schemes 285
- III.83 The Schrödinger Equation 285
- III.84 The Simplex Algorithm 288
- III.85 Special Functions 290
- III.86 The Spectrum 294
- III.87 Spherical Harmonics 295
- III.88 Symplectic Manifolds 297
- III.89 Tensor Products 301
- III.90 Topological Spaces 301
- III.91 Transforms 303
- III.92 Trigonometric Functions 307
- III.93 Universal Covers 309
- III.94 Variational Methods 310
- III.95 Varieties 313
- III.96 Vector Bundles 313
- III.97 Von Neumann Algebras 313
- III.98 Wavelets 313
- III.99 The Zermelo–Fraenkel Axioms 314
-
Part IV. Branches of Mathematics
- IV.1 Algebraic Numbers 315
- IV.2 Analytic Number Theory 332
- IV.3 Computational Number Theory 348
- IV.4 Algebraic Geometry 363
- IV.5 Arithmetic Geometry 372
- IV.6 Algebraic Topology 383
- IV.7 Differential Topology 396
- IV.8 Moduli Spaces 408
- IV.9 Representation Theory 419
- IV.10 Geometric and Combinatorial Group Theory 431
- IV.11 Harmonic Analysis 448
- IV.12 Partial Differential Equations 455
- IV.13 General Relativity and the Einstein Equations 483
- IV.14 Dynamics 493
- IV.15 Operator Algebras 510
- IV.16 Mirror Symmetry 523
- IV.17 Vertex Operator Algebras 539
- IV.18 Enumerative and Algebraic Combinatorics 550
- IV.19 Extremal and Probabilistic Combinatorics 562
- IV.20 Computational Complexity 575
- IV.21 Numerical Analysis 604
- IV.22 Set Theory 615
- IV.23 Logic and Model Theory 635
- IV.24 Stochastic Processes 647
- IV.25 Probabilistic Models of Critical Phenomena 657
- IV.26 High-Dimensional Geometry and Its Probabilistic Analogues 670
-
Part V. Theorems and Problems
- V.1 The ABC Conjecture 681
- V.2 The Atiyah–Singer Index Theorem 681
- V.3 The Banach–Tarski Paradox 684
- V.4 The Birch–Swinnerton-Dyer Conjecture 685
- V.5 Carleson’s Theorem 686
- V.6 The Central Limit Theorem 687
- V.7 The Classification of Finite Simple Groups 687
- V.8 Dirichlet’s Theorem 689
- V.9 Ergodic Theorems 689
- V.10 Fermat’s Last Theorem 691
- V.11 Fixed Point Theorems 693
- V.12 The Four-Color Theorem 696
- V.13 The Fundamental Theorem of Algebra 698
- V.14 The Fundamental Theorem of Arithmetic 699
- V.15 Gödel’s Theorem 700
- V.16 Gromov’s Polynomial-Growth Theorem 702
- V.17 Hilbert’s Nullstellensatz 703
- V.18 The Independence of the Continuum Hypothesis 703
- V.19 Inequalities 703
- V.20 The Insolubility of the Halting Problem 706
- V.21 The Insolubility of the Quintic 708
- V.22 Liouville’s Theorem and Roth’s Theorem 710
- V.23 Mostow’s Strong Rigidity Theorem 711
- V.24 The P versus NP Problem 713
- V.25 The Poincaré Conjecture 714
- V.26 The Prime Number Theorem and the Riemann Hypothesis 714
- V.27 Problems and Results in Additive Number Theory 715
- V.28 From Quadratic Reciprocity to Class Field Theory 718
- V.29 Rational Points on Curves and the Mordell Conjecture 720
- V.30 The Resolution of Singularities 722
- V.31 The Riemann–Roch Theorem 723
- V.32 The Robertson–Seymour Theorem 725
- V.33 The Three-Body Problem 726
- V.34 The Uniformization Theorem 728
- V.35 The Weil Conjectures 729
-
Part VI. Mathematicians
- VI.1 Pythagoras 733
- VI.2 Euclid 734
- VI.3 Archimedes 734
- VI.4 Apollonius 735
- VI.5 Abu Ja’far Muhammad ibn Mūsā al-Khwārizmī 736
- VI.6 Leonardo of Pisa (known as Fibonacci) 737
- VI.7 Girolamo Cardano 737
- VI.8 Rafael Bombelli 737
- VI.9 François Viète 737
- VI.10 Simon Stevin 738
- VI.11 René Descartes 739
- VI.12 Pierre Fermat 740
- VI.13 Blaise Pascal 741
- VI.14 Isaac Newton 742
- VI.15 Gottfried Wilhelm Leibniz 743
- VI.16 Brook Taylor 745
- VI.17 Christian Goldbach 745
- VI.18 The Bernoullis 745
- VI.19 Leonhard Euler 747
- VI.20 Jean Le Rond d’Alembert 749
- VI.21 Edward Waring 750
- VI.22 Joseph Louis Lagrange 751
- VI.23 Pierre-Simon Laplace 752
- VI.24 Adrien-Marie Legendre 754
- VI.25 Jean-Baptiste Joseph Fourier 755
- VI.26 Carl Friedrich Gauss 755
- VI.27 Siméon-Denis Poisson 757
- VI.28 Bernard Bolzano 757
- VI.29 Augustin-Louis Cauchy 758
- VI.30 August Ferdinand Möbius 759
- VI.31 Nicolai Ivanovich Lobachevskii 759
- VI.32 George Green 760
- VI.33 Niels Henrik Abel 760
- VI.34 János Bolyai 762
- VI.35 Carl Gustav Jacob Jacobi 762
- VI.36 Peter Gustav Lejeune Dirichlet 764
- VI.37 William Rowan Hamilton 765
- VI.38 Augustus De Morgan 765
- VI.39 Joseph Liouville 766
- VI.40 Ernst Eduard Kummer 767
- VI.41 Évariste Galois 767
- VI.42 James Joseph Sylvester 768
- VI.43 George Boole 769
- VI.44 Karl Weierstrass 770
- VI.45 Pafnuty Chebyshev 771
- VI.46 Arthur Cayley 772
- VI.47 Charles Hermite 773
- VI.48 Leopold Kronecker 773
- VI.49 Georg Friedrich Bernhard Riemann 774
- VI.50 Julius Wilhelm Richard Dedekind 776
- VI.51 Émile Léonard Mathieu 776
- VI.52 Camille Jordan 777
- VI.53 Sophus Lie 777
- VI.54 Georg Cantor 778
- VI.55 William Kingdon Clifford 780
- VI.56 Gottlob Frege 780
- VI.57 Christian Felix Klein 782
- VI.58 Ferdinand Georg Frobenius 783
- VI.59 Sofya (Sonya) Kovalevskaya 784
- VI.60 William Burnside 785
- VI.61 Jules Henri Poincaré 785
- VI.62 Giuseppe Peano 787
- VI.63 David Hilbert 788
- VI.64 Hermann Minkowski 789
- VI.65 Jacques Hadamard 790
- VI.66 Ivar Fredholm 791
- VI.67 Charles-Jean de la Vallée Poussin 792
- VI.68 Felix Hausdorff 792
- VI.69 Élie Joseph Cartan 794
- VI.70 Emile Borel 795
- VI.71 Bertrand Arthur William Russell 795
- VI.72 Henri Lebesgue 796
- VI.73 Godfrey Harold Hardy 797
- VI.74 Frigyes (Frédéric) Riesz 798
- VI.75 Luitzen Egbertus Jan Brouwer 799
- VI.76 Emmy Noether 800
- VI.77 Wacław Sierpiński 801
- VI.78 George Birkhoff 802
- VI.79 John Edensor Littlewood 803
- VI.80 Hermann Weyl 805
- VI.81 Thoralf Skolem 806
- VI.82 Srinivasa Ramanujan 807
- VI.83 Richard Courant 808
- VI.84 Stefan Banach 809
- VI.85 Norbert Wiener 811
- VI.86 Emil Artin 812
- VI.87 Alfred Tarski 813
- VI.88 Andrei Nikolaevich Kolmogorov 814
- VI.89 Alonzo Church 816
- VI.90 William Vallance Douglas Hodge 816
- VI.91 John von Neumann 817
- VI.92 Kurt Gödel 819
- VI.93 André Weil 819
- VI.94 Alan Turing 821
- VI.95 Abraham Robinson 822
- VI.96 Nicolas Bourbaki 823
-
Part VII. The Influence of Mathematics
- VII.1 Mathematics and Chemistry 827
- VII.2 Mathematical Biology 837
- VII.3 Wavelets and Applications 848
- VII.4 The Mathematics of Traffic in Networks 862
- VII.5 The Mathematics of Algorithm Design 871
- VII.6 Reliable Transmission of Information 878
- VII.7 Mathematics and Cryptography 887
- VII.8 Mathematics and Economic Reasoning 895
- VII.9 The Mathematics of Money 910
- VII.10 Mathematical Statistics 916
- VII.11 Mathematics and Medical Statistics 921
- VII.12 Analysis, Mathematical and Philosophical 928
- VII.13 Mathematics and Music 935
- VII.14 Mathematics and Art 944
-
Part VIII. Final Perspectives
- VIII.1 The Art of Problem Solving 955
- VIII.2 “Why Mathematics?” You Might Ask 966
- VIII.3 The Ubiquity of Mathematics 977
- VIII.4 Numeracy 983
- VIII.5 Mathematics: An Experimental Science 991
- VIII.6 Advice to a Young Mathematician 1000
- VIII.7 A Chronology of Mathematical Events 1010
- Index 1015
Chapters in this book
- Frontmatter i
- Contents v
- Preface ix
- Contributors xvii
-
Part I. Introduction
- I.1 What Is Mathematics About? 1
- I.2 The Language and Grammar of Mathematics 8
- I.3 Some Fundamental Mathematical Definitions 16
- I.4 The General Goals of Mathematical Research 47
-
Part II. The Origins of Modern Mathematics
- II.1 From Numbers to Number Systems 77
- II.2 Geometry 83
- II.3 The Development of Abstract Algebra 95
- II.4 Algorithms 106
- II.5 The Development of Rigor in Mathematical Analysis 117
- II.6 The Development of the Idea of Proof 129
- II.7 The Crisis in the Foundations of Mathematics 142
-
Part III. Mathematical Concepts
- III.1 The Axiom of Choice 157
- III.2 The Axiom of Determinacy 159
- III.3 Bayesian Analysis 159
- III.4 Braid Groups 160
- III.5 Buildings 161
- III.6 Calabi–Yau Manifolds 163
- III.7 Cardinals 165
- III.8 Categories 165
- III.9 Compactness and Compactification 167
- III.10 Computational Complexity Classes 169
- III.11 Countable and Uncountable Sets 170
- III.12 C*-Algebras 172
- III.13 Curvature 172
- III.14 Designs 172
- III.15 Determinants 174
- III.16 Differential Forms and Integration 175
- III.17 Dimension 180
- III.18 Distributions 184
- III.19 Duality 187
- III.20 Dynamical Systems and Chaos 190
- III.21 Elliptic Curves 190
- III.22 The Euclidean Algorithm and Continued Fractions 191
- III.23 The Euler and Navier–Stokes Equations 193
- III.24 Expanders 196
- III.25 The Exponential and Logarithmic Functions 199
- III.26 The Fast Fourier Transform 202
- III.27 The Fourier Transform 204
- III.28 Fuchsian Groups 208
- III.29 Function Spaces 210
- III.30 Galois Groups 213
- III.31 The Gamma Function 213
- III.32 Generating Functions 214
- III.33 Genus 215
- III.34 Graphs 215
- III.35 Hamiltonians 215
- III.36 The Heat Equation 216
- III.37 Hilbert Spaces 219
- III.38 Homology and Cohomology 221
- III.39 Homotopy Groups 221
- III.40 The Ideal Class Group 221
- III.41 Irrational and Transcendental Numbers 222
- III.42 The Ising Model 223
- III.43 Jordan Normal Form 223
- III.44 Knot Polynomials 225
- III.45 K-Theory 227
- III.46 The Leech Lattice 227
- III.47 L-Functions 228
- III.48 Lie Theory 229
- III.49 Linear and Nonlinear Waves and Solitons 234
- III.50 Linear Operators and Their Properties 239
- III.51 Local and Global in Number Theory 241
- III.52 The Mandelbrot Set 244
- III.53 Manifolds 244
- III.54 Matroids 244
- III.55 Measures 246
- III.56 Metric Spaces 247
- III.57 Models of Set Theory 248
- III.58 Modular Arithmetic 249
- III.59 Modular Forms 250
- III.60 Moduli Spaces 252
- III.61 The Monster Group 252
- III.62 Normed Spaces and Banach Spaces 252
- III.63 Number Fields 254
- III.64 Optimization and Lagrange Multipliers 255
- III.65 Orbifolds 257
- III.66 Ordinals 258
- III.67 The Peano Axioms 258
- III.68 Permutation Groups 259
- III.69 Phase Transitions 261
- III.70 π 261
- III.71 Probability Distributions 263
- III.72 Projective Space 267
- III.73 Quadratic Forms 267
- III.74 Quantum Computation 269
- III.75 Quantum Groups 272
- III.76 Quaternions, Octonions, and Normed Division Algebras 275
- III.77 Representations 279
- III.78 Ricci Flow 279
- III.79 Riemann Surfaces 282
- III.80 The Riemann Zeta Function 283
- III.81 Rings, Ideals, and Modules 284
- III.82 Schemes 285
- III.83 The Schrödinger Equation 285
- III.84 The Simplex Algorithm 288
- III.85 Special Functions 290
- III.86 The Spectrum 294
- III.87 Spherical Harmonics 295
- III.88 Symplectic Manifolds 297
- III.89 Tensor Products 301
- III.90 Topological Spaces 301
- III.91 Transforms 303
- III.92 Trigonometric Functions 307
- III.93 Universal Covers 309
- III.94 Variational Methods 310
- III.95 Varieties 313
- III.96 Vector Bundles 313
- III.97 Von Neumann Algebras 313
- III.98 Wavelets 313
- III.99 The Zermelo–Fraenkel Axioms 314
-
Part IV. Branches of Mathematics
- IV.1 Algebraic Numbers 315
- IV.2 Analytic Number Theory 332
- IV.3 Computational Number Theory 348
- IV.4 Algebraic Geometry 363
- IV.5 Arithmetic Geometry 372
- IV.6 Algebraic Topology 383
- IV.7 Differential Topology 396
- IV.8 Moduli Spaces 408
- IV.9 Representation Theory 419
- IV.10 Geometric and Combinatorial Group Theory 431
- IV.11 Harmonic Analysis 448
- IV.12 Partial Differential Equations 455
- IV.13 General Relativity and the Einstein Equations 483
- IV.14 Dynamics 493
- IV.15 Operator Algebras 510
- IV.16 Mirror Symmetry 523
- IV.17 Vertex Operator Algebras 539
- IV.18 Enumerative and Algebraic Combinatorics 550
- IV.19 Extremal and Probabilistic Combinatorics 562
- IV.20 Computational Complexity 575
- IV.21 Numerical Analysis 604
- IV.22 Set Theory 615
- IV.23 Logic and Model Theory 635
- IV.24 Stochastic Processes 647
- IV.25 Probabilistic Models of Critical Phenomena 657
- IV.26 High-Dimensional Geometry and Its Probabilistic Analogues 670
-
Part V. Theorems and Problems
- V.1 The ABC Conjecture 681
- V.2 The Atiyah–Singer Index Theorem 681
- V.3 The Banach–Tarski Paradox 684
- V.4 The Birch–Swinnerton-Dyer Conjecture 685
- V.5 Carleson’s Theorem 686
- V.6 The Central Limit Theorem 687
- V.7 The Classification of Finite Simple Groups 687
- V.8 Dirichlet’s Theorem 689
- V.9 Ergodic Theorems 689
- V.10 Fermat’s Last Theorem 691
- V.11 Fixed Point Theorems 693
- V.12 The Four-Color Theorem 696
- V.13 The Fundamental Theorem of Algebra 698
- V.14 The Fundamental Theorem of Arithmetic 699
- V.15 Gödel’s Theorem 700
- V.16 Gromov’s Polynomial-Growth Theorem 702
- V.17 Hilbert’s Nullstellensatz 703
- V.18 The Independence of the Continuum Hypothesis 703
- V.19 Inequalities 703
- V.20 The Insolubility of the Halting Problem 706
- V.21 The Insolubility of the Quintic 708
- V.22 Liouville’s Theorem and Roth’s Theorem 710
- V.23 Mostow’s Strong Rigidity Theorem 711
- V.24 The P versus NP Problem 713
- V.25 The Poincaré Conjecture 714
- V.26 The Prime Number Theorem and the Riemann Hypothesis 714
- V.27 Problems and Results in Additive Number Theory 715
- V.28 From Quadratic Reciprocity to Class Field Theory 718
- V.29 Rational Points on Curves and the Mordell Conjecture 720
- V.30 The Resolution of Singularities 722
- V.31 The Riemann–Roch Theorem 723
- V.32 The Robertson–Seymour Theorem 725
- V.33 The Three-Body Problem 726
- V.34 The Uniformization Theorem 728
- V.35 The Weil Conjectures 729
-
Part VI. Mathematicians
- VI.1 Pythagoras 733
- VI.2 Euclid 734
- VI.3 Archimedes 734
- VI.4 Apollonius 735
- VI.5 Abu Ja’far Muhammad ibn Mūsā al-Khwārizmī 736
- VI.6 Leonardo of Pisa (known as Fibonacci) 737
- VI.7 Girolamo Cardano 737
- VI.8 Rafael Bombelli 737
- VI.9 François Viète 737
- VI.10 Simon Stevin 738
- VI.11 René Descartes 739
- VI.12 Pierre Fermat 740
- VI.13 Blaise Pascal 741
- VI.14 Isaac Newton 742
- VI.15 Gottfried Wilhelm Leibniz 743
- VI.16 Brook Taylor 745
- VI.17 Christian Goldbach 745
- VI.18 The Bernoullis 745
- VI.19 Leonhard Euler 747
- VI.20 Jean Le Rond d’Alembert 749
- VI.21 Edward Waring 750
- VI.22 Joseph Louis Lagrange 751
- VI.23 Pierre-Simon Laplace 752
- VI.24 Adrien-Marie Legendre 754
- VI.25 Jean-Baptiste Joseph Fourier 755
- VI.26 Carl Friedrich Gauss 755
- VI.27 Siméon-Denis Poisson 757
- VI.28 Bernard Bolzano 757
- VI.29 Augustin-Louis Cauchy 758
- VI.30 August Ferdinand Möbius 759
- VI.31 Nicolai Ivanovich Lobachevskii 759
- VI.32 George Green 760
- VI.33 Niels Henrik Abel 760
- VI.34 János Bolyai 762
- VI.35 Carl Gustav Jacob Jacobi 762
- VI.36 Peter Gustav Lejeune Dirichlet 764
- VI.37 William Rowan Hamilton 765
- VI.38 Augustus De Morgan 765
- VI.39 Joseph Liouville 766
- VI.40 Ernst Eduard Kummer 767
- VI.41 Évariste Galois 767
- VI.42 James Joseph Sylvester 768
- VI.43 George Boole 769
- VI.44 Karl Weierstrass 770
- VI.45 Pafnuty Chebyshev 771
- VI.46 Arthur Cayley 772
- VI.47 Charles Hermite 773
- VI.48 Leopold Kronecker 773
- VI.49 Georg Friedrich Bernhard Riemann 774
- VI.50 Julius Wilhelm Richard Dedekind 776
- VI.51 Émile Léonard Mathieu 776
- VI.52 Camille Jordan 777
- VI.53 Sophus Lie 777
- VI.54 Georg Cantor 778
- VI.55 William Kingdon Clifford 780
- VI.56 Gottlob Frege 780
- VI.57 Christian Felix Klein 782
- VI.58 Ferdinand Georg Frobenius 783
- VI.59 Sofya (Sonya) Kovalevskaya 784
- VI.60 William Burnside 785
- VI.61 Jules Henri Poincaré 785
- VI.62 Giuseppe Peano 787
- VI.63 David Hilbert 788
- VI.64 Hermann Minkowski 789
- VI.65 Jacques Hadamard 790
- VI.66 Ivar Fredholm 791
- VI.67 Charles-Jean de la Vallée Poussin 792
- VI.68 Felix Hausdorff 792
- VI.69 Élie Joseph Cartan 794
- VI.70 Emile Borel 795
- VI.71 Bertrand Arthur William Russell 795
- VI.72 Henri Lebesgue 796
- VI.73 Godfrey Harold Hardy 797
- VI.74 Frigyes (Frédéric) Riesz 798
- VI.75 Luitzen Egbertus Jan Brouwer 799
- VI.76 Emmy Noether 800
- VI.77 Wacław Sierpiński 801
- VI.78 George Birkhoff 802
- VI.79 John Edensor Littlewood 803
- VI.80 Hermann Weyl 805
- VI.81 Thoralf Skolem 806
- VI.82 Srinivasa Ramanujan 807
- VI.83 Richard Courant 808
- VI.84 Stefan Banach 809
- VI.85 Norbert Wiener 811
- VI.86 Emil Artin 812
- VI.87 Alfred Tarski 813
- VI.88 Andrei Nikolaevich Kolmogorov 814
- VI.89 Alonzo Church 816
- VI.90 William Vallance Douglas Hodge 816
- VI.91 John von Neumann 817
- VI.92 Kurt Gödel 819
- VI.93 André Weil 819
- VI.94 Alan Turing 821
- VI.95 Abraham Robinson 822
- VI.96 Nicolas Bourbaki 823
-
Part VII. The Influence of Mathematics
- VII.1 Mathematics and Chemistry 827
- VII.2 Mathematical Biology 837
- VII.3 Wavelets and Applications 848
- VII.4 The Mathematics of Traffic in Networks 862
- VII.5 The Mathematics of Algorithm Design 871
- VII.6 Reliable Transmission of Information 878
- VII.7 Mathematics and Cryptography 887
- VII.8 Mathematics and Economic Reasoning 895
- VII.9 The Mathematics of Money 910
- VII.10 Mathematical Statistics 916
- VII.11 Mathematics and Medical Statistics 921
- VII.12 Analysis, Mathematical and Philosophical 928
- VII.13 Mathematics and Music 935
- VII.14 Mathematics and Art 944
-
Part VIII. Final Perspectives
- VIII.1 The Art of Problem Solving 955
- VIII.2 “Why Mathematics?” You Might Ask 966
- VIII.3 The Ubiquity of Mathematics 977
- VIII.4 Numeracy 983
- VIII.5 Mathematics: An Experimental Science 991
- VIII.6 Advice to a Young Mathematician 1000
- VIII.7 A Chronology of Mathematical Events 1010
- Index 1015