Home Mathematics VI.46 Arthur Cayley
Chapter
Licensed
Unlicensed Requires Authentication

VI.46 Arthur Cayley

  • Tony Crilly
View more publications by Princeton University Press
The Princeton Companion to Mathematics
This chapter is in the book The Princeton Companion to Mathematics
© 2014 Princeton University Press, Princeton

© 2014 Princeton University Press, Princeton

Chapters in this book

  1. Frontmatter i
  2. Contents v
  3. Preface ix
  4. Contributors xvii
  5. Part I. Introduction
  6. I.1 What Is Mathematics About? 1
  7. I.2 The Language and Grammar of Mathematics 8
  8. I.3 Some Fundamental Mathematical Definitions 16
  9. I.4 The General Goals of Mathematical Research 47
  10. Part II. The Origins of Modern Mathematics
  11. II.1 From Numbers to Number Systems 77
  12. II.2 Geometry 83
  13. II.3 The Development of Abstract Algebra 95
  14. II.4 Algorithms 106
  15. II.5 The Development of Rigor in Mathematical Analysis 117
  16. II.6 The Development of the Idea of Proof 129
  17. II.7 The Crisis in the Foundations of Mathematics 142
  18. Part III. Mathematical Concepts
  19. III.1 The Axiom of Choice 157
  20. III.2 The Axiom of Determinacy 159
  21. III.3 Bayesian Analysis 159
  22. III.4 Braid Groups 160
  23. III.5 Buildings 161
  24. III.6 Calabi–Yau Manifolds 163
  25. III.7 Cardinals 165
  26. III.8 Categories 165
  27. III.9 Compactness and Compactification 167
  28. III.10 Computational Complexity Classes 169
  29. III.11 Countable and Uncountable Sets 170
  30. III.12 C*-Algebras 172
  31. III.13 Curvature 172
  32. III.14 Designs 172
  33. III.15 Determinants 174
  34. III.16 Differential Forms and Integration 175
  35. III.17 Dimension 180
  36. III.18 Distributions 184
  37. III.19 Duality 187
  38. III.20 Dynamical Systems and Chaos 190
  39. III.21 Elliptic Curves 190
  40. III.22 The Euclidean Algorithm and Continued Fractions 191
  41. III.23 The Euler and Navier–Stokes Equations 193
  42. III.24 Expanders 196
  43. III.25 The Exponential and Logarithmic Functions 199
  44. III.26 The Fast Fourier Transform 202
  45. III.27 The Fourier Transform 204
  46. III.28 Fuchsian Groups 208
  47. III.29 Function Spaces 210
  48. III.30 Galois Groups 213
  49. III.31 The Gamma Function 213
  50. III.32 Generating Functions 214
  51. III.33 Genus 215
  52. III.34 Graphs 215
  53. III.35 Hamiltonians 215
  54. III.36 The Heat Equation 216
  55. III.37 Hilbert Spaces 219
  56. III.38 Homology and Cohomology 221
  57. III.39 Homotopy Groups 221
  58. III.40 The Ideal Class Group 221
  59. III.41 Irrational and Transcendental Numbers 222
  60. III.42 The Ising Model 223
  61. III.43 Jordan Normal Form 223
  62. III.44 Knot Polynomials 225
  63. III.45 K-Theory 227
  64. III.46 The Leech Lattice 227
  65. III.47 L-Functions 228
  66. III.48 Lie Theory 229
  67. III.49 Linear and Nonlinear Waves and Solitons 234
  68. III.50 Linear Operators and Their Properties 239
  69. III.51 Local and Global in Number Theory 241
  70. III.52 The Mandelbrot Set 244
  71. III.53 Manifolds 244
  72. III.54 Matroids 244
  73. III.55 Measures 246
  74. III.56 Metric Spaces 247
  75. III.57 Models of Set Theory 248
  76. III.58 Modular Arithmetic 249
  77. III.59 Modular Forms 250
  78. III.60 Moduli Spaces 252
  79. III.61 The Monster Group 252
  80. III.62 Normed Spaces and Banach Spaces 252
  81. III.63 Number Fields 254
  82. III.64 Optimization and Lagrange Multipliers 255
  83. III.65 Orbifolds 257
  84. III.66 Ordinals 258
  85. III.67 The Peano Axioms 258
  86. III.68 Permutation Groups 259
  87. III.69 Phase Transitions 261
  88. III.70 π 261
  89. III.71 Probability Distributions 263
  90. III.72 Projective Space 267
  91. III.73 Quadratic Forms 267
  92. III.74 Quantum Computation 269
  93. III.75 Quantum Groups 272
  94. III.76 Quaternions, Octonions, and Normed Division Algebras 275
  95. III.77 Representations 279
  96. III.78 Ricci Flow 279
  97. III.79 Riemann Surfaces 282
  98. III.80 The Riemann Zeta Function 283
  99. III.81 Rings, Ideals, and Modules 284
  100. III.82 Schemes 285
  101. III.83 The Schrödinger Equation 285
  102. III.84 The Simplex Algorithm 288
  103. III.85 Special Functions 290
  104. III.86 The Spectrum 294
  105. III.87 Spherical Harmonics 295
  106. III.88 Symplectic Manifolds 297
  107. III.89 Tensor Products 301
  108. III.90 Topological Spaces 301
  109. III.91 Transforms 303
  110. III.92 Trigonometric Functions 307
  111. III.93 Universal Covers 309
  112. III.94 Variational Methods 310
  113. III.95 Varieties 313
  114. III.96 Vector Bundles 313
  115. III.97 Von Neumann Algebras 313
  116. III.98 Wavelets 313
  117. III.99 The Zermelo–Fraenkel Axioms 314
  118. Part IV. Branches of Mathematics
  119. IV.1 Algebraic Numbers 315
  120. IV.2 Analytic Number Theory 332
  121. IV.3 Computational Number Theory 348
  122. IV.4 Algebraic Geometry 363
  123. IV.5 Arithmetic Geometry 372
  124. IV.6 Algebraic Topology 383
  125. IV.7 Differential Topology 396
  126. IV.8 Moduli Spaces 408
  127. IV.9 Representation Theory 419
  128. IV.10 Geometric and Combinatorial Group Theory 431
  129. IV.11 Harmonic Analysis 448
  130. IV.12 Partial Differential Equations 455
  131. IV.13 General Relativity and the Einstein Equations 483
  132. IV.14 Dynamics 493
  133. IV.15 Operator Algebras 510
  134. IV.16 Mirror Symmetry 523
  135. IV.17 Vertex Operator Algebras 539
  136. IV.18 Enumerative and Algebraic Combinatorics 550
  137. IV.19 Extremal and Probabilistic Combinatorics 562
  138. IV.20 Computational Complexity 575
  139. IV.21 Numerical Analysis 604
  140. IV.22 Set Theory 615
  141. IV.23 Logic and Model Theory 635
  142. IV.24 Stochastic Processes 647
  143. IV.25 Probabilistic Models of Critical Phenomena 657
  144. IV.26 High-Dimensional Geometry and Its Probabilistic Analogues 670
  145. Part V. Theorems and Problems
  146. V.1 The ABC Conjecture 681
  147. V.2 The Atiyah–Singer Index Theorem 681
  148. V.3 The Banach–Tarski Paradox 684
  149. V.4 The Birch–Swinnerton-Dyer Conjecture 685
  150. V.5 Carleson’s Theorem 686
  151. V.6 The Central Limit Theorem 687
  152. V.7 The Classification of Finite Simple Groups 687
  153. V.8 Dirichlet’s Theorem 689
  154. V.9 Ergodic Theorems 689
  155. V.10 Fermat’s Last Theorem 691
  156. V.11 Fixed Point Theorems 693
  157. V.12 The Four-Color Theorem 696
  158. V.13 The Fundamental Theorem of Algebra 698
  159. V.14 The Fundamental Theorem of Arithmetic 699
  160. V.15 Gödel’s Theorem 700
  161. V.16 Gromov’s Polynomial-Growth Theorem 702
  162. V.17 Hilbert’s Nullstellensatz 703
  163. V.18 The Independence of the Continuum Hypothesis 703
  164. V.19 Inequalities 703
  165. V.20 The Insolubility of the Halting Problem 706
  166. V.21 The Insolubility of the Quintic 708
  167. V.22 Liouville’s Theorem and Roth’s Theorem 710
  168. V.23 Mostow’s Strong Rigidity Theorem 711
  169. V.24 The P versus NP Problem 713
  170. V.25 The Poincaré Conjecture 714
  171. V.26 The Prime Number Theorem and the Riemann Hypothesis 714
  172. V.27 Problems and Results in Additive Number Theory 715
  173. V.28 From Quadratic Reciprocity to Class Field Theory 718
  174. V.29 Rational Points on Curves and the Mordell Conjecture 720
  175. V.30 The Resolution of Singularities 722
  176. V.31 The Riemann–Roch Theorem 723
  177. V.32 The Robertson–Seymour Theorem 725
  178. V.33 The Three-Body Problem 726
  179. V.34 The Uniformization Theorem 728
  180. V.35 The Weil Conjectures 729
  181. Part VI. Mathematicians
  182. VI.1 Pythagoras 733
  183. VI.2 Euclid 734
  184. VI.3 Archimedes 734
  185. VI.4 Apollonius 735
  186. VI.5 Abu Ja’far Muhammad ibn Mūsā al-Khwārizmī 736
  187. VI.6 Leonardo of Pisa (known as Fibonacci) 737
  188. VI.7 Girolamo Cardano 737
  189. VI.8 Rafael Bombelli 737
  190. VI.9 François Viète 737
  191. VI.10 Simon Stevin 738
  192. VI.11 René Descartes 739
  193. VI.12 Pierre Fermat 740
  194. VI.13 Blaise Pascal 741
  195. VI.14 Isaac Newton 742
  196. VI.15 Gottfried Wilhelm Leibniz 743
  197. VI.16 Brook Taylor 745
  198. VI.17 Christian Goldbach 745
  199. VI.18 The Bernoullis 745
  200. VI.19 Leonhard Euler 747
  201. VI.20 Jean Le Rond d’Alembert 749
  202. VI.21 Edward Waring 750
  203. VI.22 Joseph Louis Lagrange 751
  204. VI.23 Pierre-Simon Laplace 752
  205. VI.24 Adrien-Marie Legendre 754
  206. VI.25 Jean-Baptiste Joseph Fourier 755
  207. VI.26 Carl Friedrich Gauss 755
  208. VI.27 Siméon-Denis Poisson 757
  209. VI.28 Bernard Bolzano 757
  210. VI.29 Augustin-Louis Cauchy 758
  211. VI.30 August Ferdinand Möbius 759
  212. VI.31 Nicolai Ivanovich Lobachevskii 759
  213. VI.32 George Green 760
  214. VI.33 Niels Henrik Abel 760
  215. VI.34 János Bolyai 762
  216. VI.35 Carl Gustav Jacob Jacobi 762
  217. VI.36 Peter Gustav Lejeune Dirichlet 764
  218. VI.37 William Rowan Hamilton 765
  219. VI.38 Augustus De Morgan 765
  220. VI.39 Joseph Liouville 766
  221. VI.40 Ernst Eduard Kummer 767
  222. VI.41 Évariste Galois 767
  223. VI.42 James Joseph Sylvester 768
  224. VI.43 George Boole 769
  225. VI.44 Karl Weierstrass 770
  226. VI.45 Pafnuty Chebyshev 771
  227. VI.46 Arthur Cayley 772
  228. VI.47 Charles Hermite 773
  229. VI.48 Leopold Kronecker 773
  230. VI.49 Georg Friedrich Bernhard Riemann 774
  231. VI.50 Julius Wilhelm Richard Dedekind 776
  232. VI.51 Émile Léonard Mathieu 776
  233. VI.52 Camille Jordan 777
  234. VI.53 Sophus Lie 777
  235. VI.54 Georg Cantor 778
  236. VI.55 William Kingdon Clifford 780
  237. VI.56 Gottlob Frege 780
  238. VI.57 Christian Felix Klein 782
  239. VI.58 Ferdinand Georg Frobenius 783
  240. VI.59 Sofya (Sonya) Kovalevskaya 784
  241. VI.60 William Burnside 785
  242. VI.61 Jules Henri Poincaré 785
  243. VI.62 Giuseppe Peano 787
  244. VI.63 David Hilbert 788
  245. VI.64 Hermann Minkowski 789
  246. VI.65 Jacques Hadamard 790
  247. VI.66 Ivar Fredholm 791
  248. VI.67 Charles-Jean de la Vallée Poussin 792
  249. VI.68 Felix Hausdorff 792
  250. VI.69 Élie Joseph Cartan 794
  251. VI.70 Emile Borel 795
  252. VI.71 Bertrand Arthur William Russell 795
  253. VI.72 Henri Lebesgue 796
  254. VI.73 Godfrey Harold Hardy 797
  255. VI.74 Frigyes (Frédéric) Riesz 798
  256. VI.75 Luitzen Egbertus Jan Brouwer 799
  257. VI.76 Emmy Noether 800
  258. VI.77 Wacław Sierpiński 801
  259. VI.78 George Birkhoff 802
  260. VI.79 John Edensor Littlewood 803
  261. VI.80 Hermann Weyl 805
  262. VI.81 Thoralf Skolem 806
  263. VI.82 Srinivasa Ramanujan 807
  264. VI.83 Richard Courant 808
  265. VI.84 Stefan Banach 809
  266. VI.85 Norbert Wiener 811
  267. VI.86 Emil Artin 812
  268. VI.87 Alfred Tarski 813
  269. VI.88 Andrei Nikolaevich Kolmogorov 814
  270. VI.89 Alonzo Church 816
  271. VI.90 William Vallance Douglas Hodge 816
  272. VI.91 John von Neumann 817
  273. VI.92 Kurt Gödel 819
  274. VI.93 André Weil 819
  275. VI.94 Alan Turing 821
  276. VI.95 Abraham Robinson 822
  277. VI.96 Nicolas Bourbaki 823
  278. Part VII. The Influence of Mathematics
  279. VII.1 Mathematics and Chemistry 827
  280. VII.2 Mathematical Biology 837
  281. VII.3 Wavelets and Applications 848
  282. VII.4 The Mathematics of Traffic in Networks 862
  283. VII.5 The Mathematics of Algorithm Design 871
  284. VII.6 Reliable Transmission of Information 878
  285. VII.7 Mathematics and Cryptography 887
  286. VII.8 Mathematics and Economic Reasoning 895
  287. VII.9 The Mathematics of Money 910
  288. VII.10 Mathematical Statistics 916
  289. VII.11 Mathematics and Medical Statistics 921
  290. VII.12 Analysis, Mathematical and Philosophical 928
  291. VII.13 Mathematics and Music 935
  292. VII.14 Mathematics and Art 944
  293. Part VIII. Final Perspectives
  294. VIII.1 The Art of Problem Solving 955
  295. VIII.2 “Why Mathematics?” You Might Ask 966
  296. VIII.3 The Ubiquity of Mathematics 977
  297. VIII.4 Numeracy 983
  298. VIII.5 Mathematics: An Experimental Science 991
  299. VIII.6 Advice to a Young Mathematician 1000
  300. VIII.7 A Chronology of Mathematical Events 1010
  301. Index 1015
Downloaded on 6.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/9781400830398.772/html?lang=en&srsltid=AfmBOoq-SNcUKsyq5AA6EuSf9ACl4vL8F1Y3eDPqauNbtGmj8YsaKaDQ
Scroll to top button