Chapter
Licensed
Unlicensed
Requires Authentication
V.1 The ABC Conjecture
You are currently not able to access this content.
You are currently not able to access this content.
Chapters in this book
- Frontmatter i
- Contents v
- Preface ix
- Contributors xvii
-
Part I. Introduction
- I.1 What Is Mathematics About? 1
- I.2 The Language and Grammar of Mathematics 8
- I.3 Some Fundamental Mathematical Definitions 16
- I.4 The General Goals of Mathematical Research 47
-
Part II. The Origins of Modern Mathematics
- II.1 From Numbers to Number Systems 77
- II.2 Geometry 83
- II.3 The Development of Abstract Algebra 95
- II.4 Algorithms 106
- II.5 The Development of Rigor in Mathematical Analysis 117
- II.6 The Development of the Idea of Proof 129
- II.7 The Crisis in the Foundations of Mathematics 142
-
Part III. Mathematical Concepts
- III.1 The Axiom of Choice 157
- III.2 The Axiom of Determinacy 159
- III.3 Bayesian Analysis 159
- III.4 Braid Groups 160
- III.5 Buildings 161
- III.6 Calabi–Yau Manifolds 163
- III.7 Cardinals 165
- III.8 Categories 165
- III.9 Compactness and Compactification 167
- III.10 Computational Complexity Classes 169
- III.11 Countable and Uncountable Sets 170
- III.12 C*-Algebras 172
- III.13 Curvature 172
- III.14 Designs 172
- III.15 Determinants 174
- III.16 Differential Forms and Integration 175
- III.17 Dimension 180
- III.18 Distributions 184
- III.19 Duality 187
- III.20 Dynamical Systems and Chaos 190
- III.21 Elliptic Curves 190
- III.22 The Euclidean Algorithm and Continued Fractions 191
- III.23 The Euler and Navier–Stokes Equations 193
- III.24 Expanders 196
- III.25 The Exponential and Logarithmic Functions 199
- III.26 The Fast Fourier Transform 202
- III.27 The Fourier Transform 204
- III.28 Fuchsian Groups 208
- III.29 Function Spaces 210
- III.30 Galois Groups 213
- III.31 The Gamma Function 213
- III.32 Generating Functions 214
- III.33 Genus 215
- III.34 Graphs 215
- III.35 Hamiltonians 215
- III.36 The Heat Equation 216
- III.37 Hilbert Spaces 219
- III.38 Homology and Cohomology 221
- III.39 Homotopy Groups 221
- III.40 The Ideal Class Group 221
- III.41 Irrational and Transcendental Numbers 222
- III.42 The Ising Model 223
- III.43 Jordan Normal Form 223
- III.44 Knot Polynomials 225
- III.45 K-Theory 227
- III.46 The Leech Lattice 227
- III.47 L-Functions 228
- III.48 Lie Theory 229
- III.49 Linear and Nonlinear Waves and Solitons 234
- III.50 Linear Operators and Their Properties 239
- III.51 Local and Global in Number Theory 241
- III.52 The Mandelbrot Set 244
- III.53 Manifolds 244
- III.54 Matroids 244
- III.55 Measures 246
- III.56 Metric Spaces 247
- III.57 Models of Set Theory 248
- III.58 Modular Arithmetic 249
- III.59 Modular Forms 250
- III.60 Moduli Spaces 252
- III.61 The Monster Group 252
- III.62 Normed Spaces and Banach Spaces 252
- III.63 Number Fields 254
- III.64 Optimization and Lagrange Multipliers 255
- III.65 Orbifolds 257
- III.66 Ordinals 258
- III.67 The Peano Axioms 258
- III.68 Permutation Groups 259
- III.69 Phase Transitions 261
- III.70 π 261
- III.71 Probability Distributions 263
- III.72 Projective Space 267
- III.73 Quadratic Forms 267
- III.74 Quantum Computation 269
- III.75 Quantum Groups 272
- III.76 Quaternions, Octonions, and Normed Division Algebras 275
- III.77 Representations 279
- III.78 Ricci Flow 279
- III.79 Riemann Surfaces 282
- III.80 The Riemann Zeta Function 283
- III.81 Rings, Ideals, and Modules 284
- III.82 Schemes 285
- III.83 The Schrödinger Equation 285
- III.84 The Simplex Algorithm 288
- III.85 Special Functions 290
- III.86 The Spectrum 294
- III.87 Spherical Harmonics 295
- III.88 Symplectic Manifolds 297
- III.89 Tensor Products 301
- III.90 Topological Spaces 301
- III.91 Transforms 303
- III.92 Trigonometric Functions 307
- III.93 Universal Covers 309
- III.94 Variational Methods 310
- III.95 Varieties 313
- III.96 Vector Bundles 313
- III.97 Von Neumann Algebras 313
- III.98 Wavelets 313
- III.99 The Zermelo–Fraenkel Axioms 314
-
Part IV. Branches of Mathematics
- IV.1 Algebraic Numbers 315
- IV.2 Analytic Number Theory 332
- IV.3 Computational Number Theory 348
- IV.4 Algebraic Geometry 363
- IV.5 Arithmetic Geometry 372
- IV.6 Algebraic Topology 383
- IV.7 Differential Topology 396
- IV.8 Moduli Spaces 408
- IV.9 Representation Theory 419
- IV.10 Geometric and Combinatorial Group Theory 431
- IV.11 Harmonic Analysis 448
- IV.12 Partial Differential Equations 455
- IV.13 General Relativity and the Einstein Equations 483
- IV.14 Dynamics 493
- IV.15 Operator Algebras 510
- IV.16 Mirror Symmetry 523
- IV.17 Vertex Operator Algebras 539
- IV.18 Enumerative and Algebraic Combinatorics 550
- IV.19 Extremal and Probabilistic Combinatorics 562
- IV.20 Computational Complexity 575
- IV.21 Numerical Analysis 604
- IV.22 Set Theory 615
- IV.23 Logic and Model Theory 635
- IV.24 Stochastic Processes 647
- IV.25 Probabilistic Models of Critical Phenomena 657
- IV.26 High-Dimensional Geometry and Its Probabilistic Analogues 670
-
Part V. Theorems and Problems
- V.1 The ABC Conjecture 681
- V.2 The Atiyah–Singer Index Theorem 681
- V.3 The Banach–Tarski Paradox 684
- V.4 The Birch–Swinnerton-Dyer Conjecture 685
- V.5 Carleson’s Theorem 686
- V.6 The Central Limit Theorem 687
- V.7 The Classification of Finite Simple Groups 687
- V.8 Dirichlet’s Theorem 689
- V.9 Ergodic Theorems 689
- V.10 Fermat’s Last Theorem 691
- V.11 Fixed Point Theorems 693
- V.12 The Four-Color Theorem 696
- V.13 The Fundamental Theorem of Algebra 698
- V.14 The Fundamental Theorem of Arithmetic 699
- V.15 Gödel’s Theorem 700
- V.16 Gromov’s Polynomial-Growth Theorem 702
- V.17 Hilbert’s Nullstellensatz 703
- V.18 The Independence of the Continuum Hypothesis 703
- V.19 Inequalities 703
- V.20 The Insolubility of the Halting Problem 706
- V.21 The Insolubility of the Quintic 708
- V.22 Liouville’s Theorem and Roth’s Theorem 710
- V.23 Mostow’s Strong Rigidity Theorem 711
- V.24 The P versus NP Problem 713
- V.25 The Poincaré Conjecture 714
- V.26 The Prime Number Theorem and the Riemann Hypothesis 714
- V.27 Problems and Results in Additive Number Theory 715
- V.28 From Quadratic Reciprocity to Class Field Theory 718
- V.29 Rational Points on Curves and the Mordell Conjecture 720
- V.30 The Resolution of Singularities 722
- V.31 The Riemann–Roch Theorem 723
- V.32 The Robertson–Seymour Theorem 725
- V.33 The Three-Body Problem 726
- V.34 The Uniformization Theorem 728
- V.35 The Weil Conjectures 729
-
Part VI. Mathematicians
- VI.1 Pythagoras 733
- VI.2 Euclid 734
- VI.3 Archimedes 734
- VI.4 Apollonius 735
- VI.5 Abu Ja’far Muhammad ibn Mūsā al-Khwārizmī 736
- VI.6 Leonardo of Pisa (known as Fibonacci) 737
- VI.7 Girolamo Cardano 737
- VI.8 Rafael Bombelli 737
- VI.9 François Viète 737
- VI.10 Simon Stevin 738
- VI.11 René Descartes 739
- VI.12 Pierre Fermat 740
- VI.13 Blaise Pascal 741
- VI.14 Isaac Newton 742
- VI.15 Gottfried Wilhelm Leibniz 743
- VI.16 Brook Taylor 745
- VI.17 Christian Goldbach 745
- VI.18 The Bernoullis 745
- VI.19 Leonhard Euler 747
- VI.20 Jean Le Rond d’Alembert 749
- VI.21 Edward Waring 750
- VI.22 Joseph Louis Lagrange 751
- VI.23 Pierre-Simon Laplace 752
- VI.24 Adrien-Marie Legendre 754
- VI.25 Jean-Baptiste Joseph Fourier 755
- VI.26 Carl Friedrich Gauss 755
- VI.27 Siméon-Denis Poisson 757
- VI.28 Bernard Bolzano 757
- VI.29 Augustin-Louis Cauchy 758
- VI.30 August Ferdinand Möbius 759
- VI.31 Nicolai Ivanovich Lobachevskii 759
- VI.32 George Green 760
- VI.33 Niels Henrik Abel 760
- VI.34 János Bolyai 762
- VI.35 Carl Gustav Jacob Jacobi 762
- VI.36 Peter Gustav Lejeune Dirichlet 764
- VI.37 William Rowan Hamilton 765
- VI.38 Augustus De Morgan 765
- VI.39 Joseph Liouville 766
- VI.40 Ernst Eduard Kummer 767
- VI.41 Évariste Galois 767
- VI.42 James Joseph Sylvester 768
- VI.43 George Boole 769
- VI.44 Karl Weierstrass 770
- VI.45 Pafnuty Chebyshev 771
- VI.46 Arthur Cayley 772
- VI.47 Charles Hermite 773
- VI.48 Leopold Kronecker 773
- VI.49 Georg Friedrich Bernhard Riemann 774
- VI.50 Julius Wilhelm Richard Dedekind 776
- VI.51 Émile Léonard Mathieu 776
- VI.52 Camille Jordan 777
- VI.53 Sophus Lie 777
- VI.54 Georg Cantor 778
- VI.55 William Kingdon Clifford 780
- VI.56 Gottlob Frege 780
- VI.57 Christian Felix Klein 782
- VI.58 Ferdinand Georg Frobenius 783
- VI.59 Sofya (Sonya) Kovalevskaya 784
- VI.60 William Burnside 785
- VI.61 Jules Henri Poincaré 785
- VI.62 Giuseppe Peano 787
- VI.63 David Hilbert 788
- VI.64 Hermann Minkowski 789
- VI.65 Jacques Hadamard 790
- VI.66 Ivar Fredholm 791
- VI.67 Charles-Jean de la Vallée Poussin 792
- VI.68 Felix Hausdorff 792
- VI.69 Élie Joseph Cartan 794
- VI.70 Emile Borel 795
- VI.71 Bertrand Arthur William Russell 795
- VI.72 Henri Lebesgue 796
- VI.73 Godfrey Harold Hardy 797
- VI.74 Frigyes (Frédéric) Riesz 798
- VI.75 Luitzen Egbertus Jan Brouwer 799
- VI.76 Emmy Noether 800
- VI.77 Wacław Sierpiński 801
- VI.78 George Birkhoff 802
- VI.79 John Edensor Littlewood 803
- VI.80 Hermann Weyl 805
- VI.81 Thoralf Skolem 806
- VI.82 Srinivasa Ramanujan 807
- VI.83 Richard Courant 808
- VI.84 Stefan Banach 809
- VI.85 Norbert Wiener 811
- VI.86 Emil Artin 812
- VI.87 Alfred Tarski 813
- VI.88 Andrei Nikolaevich Kolmogorov 814
- VI.89 Alonzo Church 816
- VI.90 William Vallance Douglas Hodge 816
- VI.91 John von Neumann 817
- VI.92 Kurt Gödel 819
- VI.93 André Weil 819
- VI.94 Alan Turing 821
- VI.95 Abraham Robinson 822
- VI.96 Nicolas Bourbaki 823
-
Part VII. The Influence of Mathematics
- VII.1 Mathematics and Chemistry 827
- VII.2 Mathematical Biology 837
- VII.3 Wavelets and Applications 848
- VII.4 The Mathematics of Traffic in Networks 862
- VII.5 The Mathematics of Algorithm Design 871
- VII.6 Reliable Transmission of Information 878
- VII.7 Mathematics and Cryptography 887
- VII.8 Mathematics and Economic Reasoning 895
- VII.9 The Mathematics of Money 910
- VII.10 Mathematical Statistics 916
- VII.11 Mathematics and Medical Statistics 921
- VII.12 Analysis, Mathematical and Philosophical 928
- VII.13 Mathematics and Music 935
- VII.14 Mathematics and Art 944
-
Part VIII. Final Perspectives
- VIII.1 The Art of Problem Solving 955
- VIII.2 “Why Mathematics?” You Might Ask 966
- VIII.3 The Ubiquity of Mathematics 977
- VIII.4 Numeracy 983
- VIII.5 Mathematics: An Experimental Science 991
- VIII.6 Advice to a Young Mathematician 1000
- VIII.7 A Chronology of Mathematical Events 1010
- Index 1015
Chapters in this book
- Frontmatter i
- Contents v
- Preface ix
- Contributors xvii
-
Part I. Introduction
- I.1 What Is Mathematics About? 1
- I.2 The Language and Grammar of Mathematics 8
- I.3 Some Fundamental Mathematical Definitions 16
- I.4 The General Goals of Mathematical Research 47
-
Part II. The Origins of Modern Mathematics
- II.1 From Numbers to Number Systems 77
- II.2 Geometry 83
- II.3 The Development of Abstract Algebra 95
- II.4 Algorithms 106
- II.5 The Development of Rigor in Mathematical Analysis 117
- II.6 The Development of the Idea of Proof 129
- II.7 The Crisis in the Foundations of Mathematics 142
-
Part III. Mathematical Concepts
- III.1 The Axiom of Choice 157
- III.2 The Axiom of Determinacy 159
- III.3 Bayesian Analysis 159
- III.4 Braid Groups 160
- III.5 Buildings 161
- III.6 Calabi–Yau Manifolds 163
- III.7 Cardinals 165
- III.8 Categories 165
- III.9 Compactness and Compactification 167
- III.10 Computational Complexity Classes 169
- III.11 Countable and Uncountable Sets 170
- III.12 C*-Algebras 172
- III.13 Curvature 172
- III.14 Designs 172
- III.15 Determinants 174
- III.16 Differential Forms and Integration 175
- III.17 Dimension 180
- III.18 Distributions 184
- III.19 Duality 187
- III.20 Dynamical Systems and Chaos 190
- III.21 Elliptic Curves 190
- III.22 The Euclidean Algorithm and Continued Fractions 191
- III.23 The Euler and Navier–Stokes Equations 193
- III.24 Expanders 196
- III.25 The Exponential and Logarithmic Functions 199
- III.26 The Fast Fourier Transform 202
- III.27 The Fourier Transform 204
- III.28 Fuchsian Groups 208
- III.29 Function Spaces 210
- III.30 Galois Groups 213
- III.31 The Gamma Function 213
- III.32 Generating Functions 214
- III.33 Genus 215
- III.34 Graphs 215
- III.35 Hamiltonians 215
- III.36 The Heat Equation 216
- III.37 Hilbert Spaces 219
- III.38 Homology and Cohomology 221
- III.39 Homotopy Groups 221
- III.40 The Ideal Class Group 221
- III.41 Irrational and Transcendental Numbers 222
- III.42 The Ising Model 223
- III.43 Jordan Normal Form 223
- III.44 Knot Polynomials 225
- III.45 K-Theory 227
- III.46 The Leech Lattice 227
- III.47 L-Functions 228
- III.48 Lie Theory 229
- III.49 Linear and Nonlinear Waves and Solitons 234
- III.50 Linear Operators and Their Properties 239
- III.51 Local and Global in Number Theory 241
- III.52 The Mandelbrot Set 244
- III.53 Manifolds 244
- III.54 Matroids 244
- III.55 Measures 246
- III.56 Metric Spaces 247
- III.57 Models of Set Theory 248
- III.58 Modular Arithmetic 249
- III.59 Modular Forms 250
- III.60 Moduli Spaces 252
- III.61 The Monster Group 252
- III.62 Normed Spaces and Banach Spaces 252
- III.63 Number Fields 254
- III.64 Optimization and Lagrange Multipliers 255
- III.65 Orbifolds 257
- III.66 Ordinals 258
- III.67 The Peano Axioms 258
- III.68 Permutation Groups 259
- III.69 Phase Transitions 261
- III.70 π 261
- III.71 Probability Distributions 263
- III.72 Projective Space 267
- III.73 Quadratic Forms 267
- III.74 Quantum Computation 269
- III.75 Quantum Groups 272
- III.76 Quaternions, Octonions, and Normed Division Algebras 275
- III.77 Representations 279
- III.78 Ricci Flow 279
- III.79 Riemann Surfaces 282
- III.80 The Riemann Zeta Function 283
- III.81 Rings, Ideals, and Modules 284
- III.82 Schemes 285
- III.83 The Schrödinger Equation 285
- III.84 The Simplex Algorithm 288
- III.85 Special Functions 290
- III.86 The Spectrum 294
- III.87 Spherical Harmonics 295
- III.88 Symplectic Manifolds 297
- III.89 Tensor Products 301
- III.90 Topological Spaces 301
- III.91 Transforms 303
- III.92 Trigonometric Functions 307
- III.93 Universal Covers 309
- III.94 Variational Methods 310
- III.95 Varieties 313
- III.96 Vector Bundles 313
- III.97 Von Neumann Algebras 313
- III.98 Wavelets 313
- III.99 The Zermelo–Fraenkel Axioms 314
-
Part IV. Branches of Mathematics
- IV.1 Algebraic Numbers 315
- IV.2 Analytic Number Theory 332
- IV.3 Computational Number Theory 348
- IV.4 Algebraic Geometry 363
- IV.5 Arithmetic Geometry 372
- IV.6 Algebraic Topology 383
- IV.7 Differential Topology 396
- IV.8 Moduli Spaces 408
- IV.9 Representation Theory 419
- IV.10 Geometric and Combinatorial Group Theory 431
- IV.11 Harmonic Analysis 448
- IV.12 Partial Differential Equations 455
- IV.13 General Relativity and the Einstein Equations 483
- IV.14 Dynamics 493
- IV.15 Operator Algebras 510
- IV.16 Mirror Symmetry 523
- IV.17 Vertex Operator Algebras 539
- IV.18 Enumerative and Algebraic Combinatorics 550
- IV.19 Extremal and Probabilistic Combinatorics 562
- IV.20 Computational Complexity 575
- IV.21 Numerical Analysis 604
- IV.22 Set Theory 615
- IV.23 Logic and Model Theory 635
- IV.24 Stochastic Processes 647
- IV.25 Probabilistic Models of Critical Phenomena 657
- IV.26 High-Dimensional Geometry and Its Probabilistic Analogues 670
-
Part V. Theorems and Problems
- V.1 The ABC Conjecture 681
- V.2 The Atiyah–Singer Index Theorem 681
- V.3 The Banach–Tarski Paradox 684
- V.4 The Birch–Swinnerton-Dyer Conjecture 685
- V.5 Carleson’s Theorem 686
- V.6 The Central Limit Theorem 687
- V.7 The Classification of Finite Simple Groups 687
- V.8 Dirichlet’s Theorem 689
- V.9 Ergodic Theorems 689
- V.10 Fermat’s Last Theorem 691
- V.11 Fixed Point Theorems 693
- V.12 The Four-Color Theorem 696
- V.13 The Fundamental Theorem of Algebra 698
- V.14 The Fundamental Theorem of Arithmetic 699
- V.15 Gödel’s Theorem 700
- V.16 Gromov’s Polynomial-Growth Theorem 702
- V.17 Hilbert’s Nullstellensatz 703
- V.18 The Independence of the Continuum Hypothesis 703
- V.19 Inequalities 703
- V.20 The Insolubility of the Halting Problem 706
- V.21 The Insolubility of the Quintic 708
- V.22 Liouville’s Theorem and Roth’s Theorem 710
- V.23 Mostow’s Strong Rigidity Theorem 711
- V.24 The P versus NP Problem 713
- V.25 The Poincaré Conjecture 714
- V.26 The Prime Number Theorem and the Riemann Hypothesis 714
- V.27 Problems and Results in Additive Number Theory 715
- V.28 From Quadratic Reciprocity to Class Field Theory 718
- V.29 Rational Points on Curves and the Mordell Conjecture 720
- V.30 The Resolution of Singularities 722
- V.31 The Riemann–Roch Theorem 723
- V.32 The Robertson–Seymour Theorem 725
- V.33 The Three-Body Problem 726
- V.34 The Uniformization Theorem 728
- V.35 The Weil Conjectures 729
-
Part VI. Mathematicians
- VI.1 Pythagoras 733
- VI.2 Euclid 734
- VI.3 Archimedes 734
- VI.4 Apollonius 735
- VI.5 Abu Ja’far Muhammad ibn Mūsā al-Khwārizmī 736
- VI.6 Leonardo of Pisa (known as Fibonacci) 737
- VI.7 Girolamo Cardano 737
- VI.8 Rafael Bombelli 737
- VI.9 François Viète 737
- VI.10 Simon Stevin 738
- VI.11 René Descartes 739
- VI.12 Pierre Fermat 740
- VI.13 Blaise Pascal 741
- VI.14 Isaac Newton 742
- VI.15 Gottfried Wilhelm Leibniz 743
- VI.16 Brook Taylor 745
- VI.17 Christian Goldbach 745
- VI.18 The Bernoullis 745
- VI.19 Leonhard Euler 747
- VI.20 Jean Le Rond d’Alembert 749
- VI.21 Edward Waring 750
- VI.22 Joseph Louis Lagrange 751
- VI.23 Pierre-Simon Laplace 752
- VI.24 Adrien-Marie Legendre 754
- VI.25 Jean-Baptiste Joseph Fourier 755
- VI.26 Carl Friedrich Gauss 755
- VI.27 Siméon-Denis Poisson 757
- VI.28 Bernard Bolzano 757
- VI.29 Augustin-Louis Cauchy 758
- VI.30 August Ferdinand Möbius 759
- VI.31 Nicolai Ivanovich Lobachevskii 759
- VI.32 George Green 760
- VI.33 Niels Henrik Abel 760
- VI.34 János Bolyai 762
- VI.35 Carl Gustav Jacob Jacobi 762
- VI.36 Peter Gustav Lejeune Dirichlet 764
- VI.37 William Rowan Hamilton 765
- VI.38 Augustus De Morgan 765
- VI.39 Joseph Liouville 766
- VI.40 Ernst Eduard Kummer 767
- VI.41 Évariste Galois 767
- VI.42 James Joseph Sylvester 768
- VI.43 George Boole 769
- VI.44 Karl Weierstrass 770
- VI.45 Pafnuty Chebyshev 771
- VI.46 Arthur Cayley 772
- VI.47 Charles Hermite 773
- VI.48 Leopold Kronecker 773
- VI.49 Georg Friedrich Bernhard Riemann 774
- VI.50 Julius Wilhelm Richard Dedekind 776
- VI.51 Émile Léonard Mathieu 776
- VI.52 Camille Jordan 777
- VI.53 Sophus Lie 777
- VI.54 Georg Cantor 778
- VI.55 William Kingdon Clifford 780
- VI.56 Gottlob Frege 780
- VI.57 Christian Felix Klein 782
- VI.58 Ferdinand Georg Frobenius 783
- VI.59 Sofya (Sonya) Kovalevskaya 784
- VI.60 William Burnside 785
- VI.61 Jules Henri Poincaré 785
- VI.62 Giuseppe Peano 787
- VI.63 David Hilbert 788
- VI.64 Hermann Minkowski 789
- VI.65 Jacques Hadamard 790
- VI.66 Ivar Fredholm 791
- VI.67 Charles-Jean de la Vallée Poussin 792
- VI.68 Felix Hausdorff 792
- VI.69 Élie Joseph Cartan 794
- VI.70 Emile Borel 795
- VI.71 Bertrand Arthur William Russell 795
- VI.72 Henri Lebesgue 796
- VI.73 Godfrey Harold Hardy 797
- VI.74 Frigyes (Frédéric) Riesz 798
- VI.75 Luitzen Egbertus Jan Brouwer 799
- VI.76 Emmy Noether 800
- VI.77 Wacław Sierpiński 801
- VI.78 George Birkhoff 802
- VI.79 John Edensor Littlewood 803
- VI.80 Hermann Weyl 805
- VI.81 Thoralf Skolem 806
- VI.82 Srinivasa Ramanujan 807
- VI.83 Richard Courant 808
- VI.84 Stefan Banach 809
- VI.85 Norbert Wiener 811
- VI.86 Emil Artin 812
- VI.87 Alfred Tarski 813
- VI.88 Andrei Nikolaevich Kolmogorov 814
- VI.89 Alonzo Church 816
- VI.90 William Vallance Douglas Hodge 816
- VI.91 John von Neumann 817
- VI.92 Kurt Gödel 819
- VI.93 André Weil 819
- VI.94 Alan Turing 821
- VI.95 Abraham Robinson 822
- VI.96 Nicolas Bourbaki 823
-
Part VII. The Influence of Mathematics
- VII.1 Mathematics and Chemistry 827
- VII.2 Mathematical Biology 837
- VII.3 Wavelets and Applications 848
- VII.4 The Mathematics of Traffic in Networks 862
- VII.5 The Mathematics of Algorithm Design 871
- VII.6 Reliable Transmission of Information 878
- VII.7 Mathematics and Cryptography 887
- VII.8 Mathematics and Economic Reasoning 895
- VII.9 The Mathematics of Money 910
- VII.10 Mathematical Statistics 916
- VII.11 Mathematics and Medical Statistics 921
- VII.12 Analysis, Mathematical and Philosophical 928
- VII.13 Mathematics and Music 935
- VII.14 Mathematics and Art 944
-
Part VIII. Final Perspectives
- VIII.1 The Art of Problem Solving 955
- VIII.2 “Why Mathematics?” You Might Ask 966
- VIII.3 The Ubiquity of Mathematics 977
- VIII.4 Numeracy 983
- VIII.5 Mathematics: An Experimental Science 991
- VIII.6 Advice to a Young Mathematician 1000
- VIII.7 A Chronology of Mathematical Events 1010
- Index 1015