ANN - SQP Approach For NOx Emission Reduction In Coal Fired Boilers
-
Ilamathi Balamurugan
Abstract
In this research paper, predictive modelling of NOx emission of a 210 MW capacity pulverized coal-fired boiler and combustion parameter optimization to reduce NOx emission in flue gas is proposed. The effects of oxygen concentration in flue gas, coal properties, coal flow, boiler load, air distribution scheme, flue gas outlet temperature and nozzle tilt were studied. The data collected from parametric field experiments were used to build a feed-forward back-propagation artificial neural net (ANN). The coal combustion parameters were used as inputs and NOx emission as outputs of the model. The ANN model was developed for full load condition and its predicted values were verified with the actual values. The algebraic equation containing weights and biases of the trained net was used as fitness function in sequential quadratic programming (SQP) to find the optimum level of input operating conditions for low NOx emission. The results proved that the proposed approach could be used for generating feasible operating conditions.
©2012 Walter de Gruyter GmbH & Co. KG, Berlin/Boston
Articles in the same Issue
- Article
- ANN - SQP Approach For NOx Emission Reduction In Coal Fired Boilers
- Comparison of Levenberg-Marquardt Method and Path Following Interior Point Method for the Solution of Optimal Power Flow Problem
- A Transient Stability Constrained, Line-Flow-Based Fast Contingency Screening and Power Flow Evaluation
- Study of Transformer Switching Overvoltages during Power System Restoration Using Delta-Bar-Delta and Directed Random Search Algorithms
- Economic Justification for a V2G Facility in a Radial Distribution Network
- Operation of Multi DC Smart Grids Based on Renewable Energy Sources and Protection of DC Transmission Line
- Novel Real-Time Stability Assessment Algorithm Based on Synchro-Phasors Measurement and Parallel Algorithms for Multi-Machine Networks.
- Integrated Kalman-Independent Component Analysis Method for Harmonic Current Estimation on an Interconnected Four Bus Simulated and Laboratory Model
- Identification of Fault Location in Distribution Networks Using Multi Class Support Vector Machines
Articles in the same Issue
- Article
- ANN - SQP Approach For NOx Emission Reduction In Coal Fired Boilers
- Comparison of Levenberg-Marquardt Method and Path Following Interior Point Method for the Solution of Optimal Power Flow Problem
- A Transient Stability Constrained, Line-Flow-Based Fast Contingency Screening and Power Flow Evaluation
- Study of Transformer Switching Overvoltages during Power System Restoration Using Delta-Bar-Delta and Directed Random Search Algorithms
- Economic Justification for a V2G Facility in a Radial Distribution Network
- Operation of Multi DC Smart Grids Based on Renewable Energy Sources and Protection of DC Transmission Line
- Novel Real-Time Stability Assessment Algorithm Based on Synchro-Phasors Measurement and Parallel Algorithms for Multi-Machine Networks.
- Integrated Kalman-Independent Component Analysis Method for Harmonic Current Estimation on an Interconnected Four Bus Simulated and Laboratory Model
- Identification of Fault Location in Distribution Networks Using Multi Class Support Vector Machines