Home Cracks on the Roots of Turbine Blades of the Low-Pressure Turbine in a Steam Power Plant
Article
Licensed
Unlicensed Requires Authentication

Cracks on the Roots of Turbine Blades of the Low-Pressure Turbine in a Steam Power Plant

  • E. Plesiutschnig , R. Vallant , G. Stöfan , C. Sommitsch , M. Mayr , A. Marn and F. Heitmeier
Published/Copyright: March 28, 2015
Become an author with De Gruyter Brill

Abstract

Cracks were found in the roots of steam turbine blades of the third blade row (LA-2) of the low-pressure turbine during revision works in a coal-fired power plant. Metallographic examinations reveal pitting corrosion sites, branched cracks, and local plastic deformation at the root of the first load bearing flank radius. The fracture surface was analyzed using light microscopy and scanning electron microscopy (SEM). Finite element (FE) simulations were performed in order to qualitatively represent the stress peak positions on the blade root.

Kurzfassung

Bei Revisionsarbeiten eines Kohlekraftwerkes wurden in der Niederdruckturbine Fußrisse an den Dampfturbinenschaufeln der 3. Laufreihe (LA-2) entdeckt. Metallografische Untersuchungen zeigen Positionen mit Lochkorrosion, verzweigte Risse und lokale plastische Verformung am Fuße des ersten Tragflankenradius. Die Bruchfläche wurde mit Lichtmikroskopie und Rasterelektronenmikroskopie (REM) analysiert. Finite Elemente (FE) Simulationen wurden durchgeführt, um die Positionen der Spannungsspitzen am Schaufelfuß qualitativ darzustellen.


Translation: E. Engert


References / Literatur

[1] Huang, Y.; Zhang, F.; Hwang, K.; Nix, W.; Pharr, G.; Feng, G.: A model of size effects in nano-indentation, J. Mech. Phys. Solids, vol. 54, no. 8, pp. 16681686, Aug. 2006. 10.1016/j.jmps.2006.02.002Search in Google Scholar

[2] Wild, E.: Beanspruchungsbedingte Gefügeänderungen von ferritisch-perlitischen Stählen am Beispiel des Rad-Schiene-Kontaktes, Technische UniversitätBerlin, 2008.Search in Google Scholar

[3] Bramfitt, B.; Benscoter, A.: Metallographer's guide: practices and procedures for irons and steels. ASM International, 2002, p. 80.10.31399/asm.tb.mgppis.9781627082587Search in Google Scholar

[4] Petzow, G.: Metallographisches, keramographisches, plastographisches Ätzen. Borntraeger, 1994, p. 298.Search in Google Scholar

[5] Bürgel, R.: Festigkeitslehre und Werkstoffmechanik, 1st ed.Wiesbaden, Germany: Vieweg & Sohn Verlag/GWV Fachverlage GmbH, 2005, p. 237.10.1007/978-3-322-82040-2_1Search in Google Scholar

[6] Mundt, G.; Neidel, A.; Matijasevic-Lux, B.: Moving Blade Failure in the Low-Pressure Turbine of a Steam Turbo Set, Pr. Metallogr., vol. 12, pp. 782791, 2012. 10.3139/147.110204Search in Google Scholar

[7] EffertzP.; Forchhammer, P.: Die Lochkorrosionsanfälligkeit des Vergütungsstahles X20Cr 13 in Natriumchloridlosungen, Mater. Corros., vol. 816, pp. 809816, 1977. 10.1002/maco.19770281202Search in Google Scholar

[8] Pfennig, A.; Zastrow, P; Kranzmann, A.: Corrosion Behavior of Differently Heat Treated Steels in CCS Environment with Supercritical CO2,”Energy Technol. 2014 Carbon Dioxide Manag. Other Technol., no. 35, 2014.Search in Google Scholar

[9] Cerit, M.; Genel, K.; Eksi, S.: Numerical investigation on stress concentration of corrosion pit, Eng. Fail. Anal., vol. 16, no. 7, pp. 24672472, Oct. 2009. 10.1016/j.engfailanal.2009.04.004Search in Google Scholar

Received: 2014-07-31
Accepted: 2014-10-25
Published Online: 2015-03-28
Published in Print: 2015-04-15

© 2015, Carl Hanser Verlag, München

Downloaded on 3.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/147.110318/html
Scroll to top button