Removal of Acid Yellow 34 from Aqueous Solution by Activated Charcoal of Animal Bones
-
F. K. Bangash
Abstract
Activated charcoal prepared from the animal bones at different temperatures (600–1000°C) was characterized for surface area, pore volume and by FTIR, EDS, SEM and XRD techniques. The surfaces contained functional groups like carboxyl's and ketones which disappeared at above 800°C, favoring exposure of porous structural surfaces; resulting in enhancement of the adsorption capacity. At the high temperatures the carbon content in the charcoal increased while oxygen got decreased. Adsorption kinetics of acid yellow 34 on the prepared activated charcoal was studied at 10°C and 45°C. Bangham and Parabolic diffusion kinetic models fitted the adsorption data. The two components of the intraparticle diffusion plots suggested that the adsorption process proceeded by surface adsorption and intraparticle diffusion. The thermodynamic parameters of adsorption, such as rate constant (kad), activation energy (DE¿), enthalpy (DH¿) and entropy (DS¿) were evaluated from the first order rate kinetics. The enthalpy of activation (DH¿) indicated that the process was endothermic in nature and its values decreased with the increase in activation temperature. The negative entropy of activation DS¿ reflect the affinity of charcoal toward dye and it decreased with the increase in activation temperature indicating that the dye molecules take more oriented position on the surface of charcoal.
Kurzfassung
Aktivkohle, hergestellt aus Tierknochen bei verschiedenen Temperaturen (600–1000°C), wurde bezüglich Oberfläche, Porenvolumen und durch FTIR-, EDS-, SEM- und XRD-Methoden charakterisiert. Die Oberfläche enthält funktionelle Gruppen, wie Carboxyle und Ketone, die oberhalb 800°C verschwinden und eine bevorzugte porenstrukturierte Oberfläche freilegen, wodurch sich eine Erhöhung der Adsorptionskapazität ergibt. Bei höheren Temperaturen steigt der Karbongehalt in der Aktivkohle an, da der Sauerstoffgehalt abnimmt. Die Adsorptionskinetik von Acid Yellow 34 über die so hergestellte Aktivkohle wurde bei 10°C and 45°C untersucht. Die Adsorptionswerte wurden an die Bangham- und parabolische Diffusionskinetikmodelle angepasst. Die zwei Komponenten der intrapartikulären Diffusionsplots weisen darauf hin, dass der Adsorptionsprozess nach einer Oberflächenadsorption und einer intrapartikulären Diffusion abläuft. Die thermodynamischen Parameter der Adsorption, wie die Geschwindigkeitskonstante (kad), Aktivierungsenergie (DE¿), Enthalpie (DH¿) und Entropie (DS¿) wurden nach der Geschwindigkeitskinetik 1. Ordnung bewertet. Die Aktivierungsenthalpie (DH¿) zeigte, dass dieser Prozess eine natürliche, endotherme Reaktion ist und ihre Werte mit Erhöhung der Aktivierungstemperatur abnehmen. Die negative Aktivierungsentropie DS¿ reflektiert die Affinität von Aktivkohle zum Farbstoff und nimmt mit Erhöhung der Aktivierungstemperatur ab, was darauf hinweist, dass die Farbstoffmoleküle eine mehr orientierende Position auf der Oberfläche einnehmen.
References
1.Chilton, Ng., Losso, J. N., Marshall, W. E. and Rao, R. M.: Bioresou. Technol.84(2002)177–185. 10.1016/S0960-8524(02)00014-7Search in Google Scholar
2.Sakalis, A., Mpoulmpasakos, K., Nickel, U., Fytianos, K. and Voulgaropoulos, A.: J. Chem. Eng.111(2005)63–70. 10.1016/j.cej.2005.05.008Search in Google Scholar
3.Ohura, R., Katayama, A. and Takagishi, T.: J. Text. Res.62(1992)552–556.10.1177/004051759206200909Search in Google Scholar
4.Hao, O. J., Kim, H. and Chiang, P. C.: Envi. Sci. Technol.30(2000)449–505. 10.1080/10643380091184237Search in Google Scholar
5.Kuo, W. G.: Wat. Res.26(1992)881–886. 10.1016/0043-1354(92)90192-7Search in Google Scholar
6.Solozhenko, E. G., Soboleva, N. M. and Goncharuk, V. V.: Water Res.29(1995)2206–2210. 10.1016/0043-1354(95)00042-JSearch in Google Scholar
7.Wu, J., Eiteman, M. A. and Law, S. E.: J. Envi. Eng.-ASCE124(1998)272–277. 10.1061/(ASCE)0733-9372(1998)124:3(272)Search in Google Scholar
8.Lin, S. H. and Lin, C. M.: Wat. Res.27(1993)1743–1748. 10.1016/0043-1354(93)90112-USearch in Google Scholar
9.Sevimli, M. F. and Sarikaya, H. Z.: J. Chem. Technol. Biot.77(2002)842–850. 10.1002/jctb.644Search in Google Scholar
10.Sarasa, J., Roche, M. P., Ormad, M. P., Gimeno, E., Puig, A. and Ovelleiro, J. L.: Wat. Res.32(1998)2721–2727. 10.1016/S0043-1354(98)00030-XSearch in Google Scholar
11.Pelekani, C., Vernon, L. and Snoeyink, A.: Carbon39(2001)25–37. 10.1016/S0008-6223(00)00078-6Search in Google Scholar
12.Cheung, C. W., Porter, J. F. and Mckay, G.: Wat. Res.35(2001)605–612. 10.1016/S0043-1354(00)00306-7Search in Google Scholar
13.Ko, D. C. K., Porter, J. F. and McKay, G.: Chem. Eng. Sci.55(2000)5819–5829. 10.1016/S0009-2509(00)00416-4Search in Google Scholar
14.Tay, J. H., Chen, X. G., Jeyaseelan, S. and Graham, N.: Chemosphere44(2001)45–51. 10.1016/S0045-6535(00)00383-0Search in Google Scholar
15.Faust, D. S. and Aly, M. O.: Adsorption Processes for water Treatment. Butterworth London.180(1987).10.1016/B978-0-409-90000-2.50005-4Search in Google Scholar
16.Dubinin, M. M. and Radushkevich, L. V.: Proc. Acad. Sci. USSR55(1947)31–331.Search in Google Scholar
17.Bangash, F. K. and Manaf, A.: J. Chem. Soc. Pak.26(2004)111–115.Search in Google Scholar
18.Bhabendra, K., Pradhan and Sandle, N. K.: Carbon32(1999)123–1332.Search in Google Scholar
19.Cooke, N. E., Fuller, O. M. and Gaikwad, R. P.: Fuel65(1986)1254–1259. 10.1016/0016-2361(86)90238-3Search in Google Scholar
20.Younas, M.: Organic Spectroscopy. AHP International Lahore71–76(1998).Search in Google Scholar
21.Ahmad, I., Khan, M. A., Ishaq, M., Shakirullah, M. and Bahader, A.: J. Eng. Appl. Sci.23(2004)117–123.Search in Google Scholar
22.Mul, G., Neeft, J. P. A., Kapteijn, F. and Moulijn, J. A.: Carbon36(1998)1269–1276. 10.1016/S0008-6223(97)00209-1Search in Google Scholar
23.Shin, S., Jang, J., Yoon, S. H. and Mochida, I.: Carbon35(1997)1739–1743. 10.1016/S0008-6223(97)00132-2Search in Google Scholar
24.Douglas, B. Mawhinney, John, T. and YatesJr.: Carbon39(2001)1167–1173. 10.1016/S0008-6223(00)00238-4Search in Google Scholar
25.Samuel, L., Turek, M. D. and Lippincott, J. B.: Orthopaedics: Principles and Appications, 2nd Edition(1985)113, 136.Search in Google Scholar
26.Iqbal, Y., Khan, M. A. and Ihsanullah, N. A.: Int. J. Envi. Stud.62(2005)47–57. 10.1080/0020723042000253875Search in Google Scholar
27.Hassler, J. W.: Purification with Activated Carbon Chemical, Publishing CO., INC.New York, 176(1974).Search in Google Scholar
28.Laidler, K. L.: Chemical Kinetics, Mc-Graw HillNew York(1965).Search in Google Scholar
29.Sharma, K. K. and Sharma, K. L.: A Text Book of Physical Chemistry, Vikas Pub., House Pvt. Ltd.New Delhi493(1992).Search in Google Scholar
30.Vickerstaff, T.: The Physical Chemistry of Dyeing, Interscience Publisher Inc. New York100(1954).Search in Google Scholar
31.Aharoni, C., Sideman, S. and Hoffer, E.: J. Chem. Technol. Biotechnol.29(1979)404–412. 10.1002/jctb.503290703Search in Google Scholar
32.Qadeer, R., Hanif, J., Saleem, M. and Afzal, M.: J. Chem. Soc. Pak.17(1995)82–86.Search in Google Scholar
33.Connor, P., Lewis, J. B. and Thomas, W. J.: Proceeding of the Fifth Conference on Carbon. Pergamon Press New York, 1(1961)120–124.Search in Google Scholar
34.Vadivelan, V. and Kumar, K. V. J.: Colloid Interf. Sci.286(2005)90–100. 10.1016/j.jcis.2005.01.007Search in Google Scholar
35.Weber, Jr.W. J. and Morris, J. C.: Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. ASCE89 (SA2), 31–59(1963).10.1061/JSEDAI.0000430Search in Google Scholar
36.Kannan, K. and Sundaram, M. M.: Dyes Pig.51(2001)25–40. 10.1016/S0143-7208(01)00056-0Search in Google Scholar
© 2006, Carl Hanser Publisher, Munich
Articles in the same Issue
- Contents/Inhalt
- Contents
- Abstracts
- Abstracts
- Application
- Antagonisms between Surfactants: The Case of Laundry Detergents
- Spectrometric Determination of Detergency of Laundry Detergents Using Sudan Red IV as Label
- Environmental Chemistry
- Removal of Acid Yellow 34 from Aqueous Solution by Activated Charcoal of Animal Bones
- Physical Chemistry
- Mixed Micellar Systems of n-Alkyl-β-D Glucopyranosides with Hexadecyl Cationic Surfactants
- Preparation of some Ethoxylated Alkyl Sulfosuccinate Surfactants and Investigate their Mixed Solutions
- Krafft Points and Cloud Points of Polyoxyethylated Nonionic Surfactants
Articles in the same Issue
- Contents/Inhalt
- Contents
- Abstracts
- Abstracts
- Application
- Antagonisms between Surfactants: The Case of Laundry Detergents
- Spectrometric Determination of Detergency of Laundry Detergents Using Sudan Red IV as Label
- Environmental Chemistry
- Removal of Acid Yellow 34 from Aqueous Solution by Activated Charcoal of Animal Bones
- Physical Chemistry
- Mixed Micellar Systems of n-Alkyl-β-D Glucopyranosides with Hexadecyl Cationic Surfactants
- Preparation of some Ethoxylated Alkyl Sulfosuccinate Surfactants and Investigate their Mixed Solutions
- Krafft Points and Cloud Points of Polyoxyethylated Nonionic Surfactants