Home Crystal chemistry of the hydrothermally synthesized Na2(Mn1-xFex 2+)2Fe3+(PO4)3 alluaudite-type solid solution
Article
Licensed
Unlicensed Requires Authentication

Crystal chemistry of the hydrothermally synthesized Na2(Mn1-xFex 2+)2Fe3+(PO4)3 alluaudite-type solid solution

  • Frédéric Hatert EMAIL logo , Leila Rebbouh , Raphaël P. Hermann , André-Mathieu Fransolet , Gary J. Long and Fernande Grandjean
Published/Copyright: March 28, 2015
Become an author with De Gruyter Brill

Abstract

Several compounds of the Na2(Mn1-xFex2+)2Fe3+(PO4)3 solid solution have been hydrothermally synthesized at 400 °C and 1 kbar; pure alluaudite-like compounds have been obtained for x = 0.00, 0.25, 0.50, 0.75, and 1.00. Rietveld refinements of the powder X-ray diffraction patterns indicate the presence of Na+ at the A1 and A2' sites, Mn2+ and Fe2+ at the M1 site, and Mn2+, Fe2+, and Fe3+ at the M2 site. The presence of small amounts of Na+ at the M1 site and Mn2+ at the A1 site indicates a partially disordered distribution of these cations. An excellent linear correlation has been established between the M1-M2 distance and the energy of the infrared band attributed to the M2+-O vibrations. The Mössbauer spectra, measured between 85 and 295 K, were analyzed in terms of a model which includes the next-nearest neighbor interactions at the M2 and M1 crystallographic sites. Fe2+ and Fe3+ isomer shifts are typical of the alluaudite structure and exhibit the expected second-order Doppler shift. The derived iron vibrating masses and Mössbauer lattice temperatures are within the range of values expected for iron cations in an octahedral environment. The Fe2+ and Fe3+ quadrupole splittings are typical of the alluaudite structure, and the temperature dependence of the Fe2+ quadrupole splitting was fit with the Ingalls model, which yielded a ground state orbital splitting of ca. 460 to 735 cm-1 for the Fe2+ sites. The isomer shifts and quadrupole splittings of Fe2+ at the M1 site are larger than those of Fe2+ at M2, indicating that the M1 site is both larger and more distorted than the M2 site.

Received: 2003-11-18
Accepted: 2004-8-31
Published Online: 2015-3-28
Published in Print: 2005-4-1

© 2015 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. Analytical perils (and progress) in electron microprobe trace element analysis applied to geochronology: Background acquisition, interferences, and beam irradiation effects
  2. Contributions to precision and accuracy of monazite microprobe ages
  3. Electron-microprobe age mapping of monazite
  4. Isotopic age constraints from electron microprobe U-Th-Pb dates, using a three-dimensional concordia diagram
  5. Monazite ages in the Chesham Pond Nappe, SW New Hampshire, U.S.A.: Implications for assembly of central New England thrust sheets
  6. Electron-microprobe dating as a tool for determining the closure of Th-U-Pb systems in migmatitic monazites
  7. Comparative isotopic and chemical geochronometry of monazite, with implications for U-Th-Pb dating by electron microprobe: An example from metamorphic rocks of the eastern Wyoming Craton (U.S.A.)
  8. Re-examination of the hydrogarnet structure at high pressure using neutron powder diffraction and infrared spectroscopy
  9. Anomalous elastic behavior and high-pressure structural evolution of zeolite levyne
  10. Crystal chemistry of the hydrothermally synthesized Na2(Mn1-xFex 2+)2Fe3+(PO4)3 alluaudite-type solid solution
  11. Thermodynamic properties of uvarovite garnet (Ca3Cr2Si3O12)
  12. Post-aragonite phase transformation in CaCO3 at 40 GPa
  13. Direct formation of the γ-CaSO4 phase in dehydration process of gypsum: In situ FTIR study
  14. The order-disorder character of FeOHSO4 obtained from the thermal decomposition of metahohmannite, Fe3+2(H2O)4[O(SO4)2]
  15. Temperature and composition dependence of structural phase transitions in Ca(TixZr1-x)OGeO4
  16. Low-T neutron powder-diffraction and synchrotron-radiation IR study of synthetic amphibole Na(NaMg)Mg5Si8O22(OH)2
  17. Charge contrast imaging of fine-scale microstructure and compositional variation in garnet using the environmental scanning electron microscope
  18. Piston-cylinder experiments on H2O undersaturated Fe-bearing systems: An experimental setup approaching fO₂ conditions of natural calc-alkaline magmas
  19. Environmentally important, poorly crystalline Fe/Mn hydrous oxides: Ferrihydrite and a possibly new vernadite-like mineral from the Clark Fork River Superfund Complex
  20. The true structure of wonesite, an interlayer-deficient trioctahedral sodium mica
  21. Clinoholmquistite discredited: The new amphibole end-member fluoro-sodic-pedrizite
  22. XRMapAnal: A program for analysis of quantitative X-ray maps
  23. Letter. Growth zoning and strain patterns inside diamond crystals as revealed by Raman maps
  24. Letter. Differentiation of commercial vermiculite based on statistical analysis of bulk chemical data: Fingerprinting vermiculite from Libby, Montana U.S.A.
  25. Letter. Crystal structure of single-crystal CaGeO3 tetragonal garnet synthesized at 3 GPa and 1000 °C
  26. Letter. Iron isotope exchange kinetics at the nanoparticulate ferrihydrite surface
  27. Letter. Cation distribution in MgFe2O4 vs. pressure and temperature: Experiments in a piston-cylinder apparatus
Downloaded on 20.9.2025 from https://www.degruyterbrill.com/document/doi/10.2138/am.2005.1551/html
Scroll to top button