Home Optimization of the GPU-based data evaluation for the low coherence interferometry
Article
Licensed
Unlicensed Requires Authentication

Optimization of the GPU-based data evaluation for the low coherence interferometry

  • Yinan Li

    Yinan Li is a research assistant at the Institute of Measurement and Automatic Control at the Leibniz University of Hanover. His research interests are 3D shape measurement, roughness measurement, instrument development, data analysis and image processing.

    Gottfried Wilhelm Leibniz Universität Hannover, Institute of Measurement and Automatic Control, Nienburger Str. 17, 30167 Hannover, Germany, Tel.: +49-511-762-3236

    EMAIL logo
    , Markus Kästner

    Markus Kästner is the group leader of Production Metrology of the Institute of Measurement and Automatic Control, Faculty Mechanical Engineering of the Leibniz University of Hanover.

    Gottfried Wilhelm Leibniz Universität Hannover, Institute of Measurement and Automatic Control, Nienburger Str. 17, 30167 Hannover, Germany, Tel.: +49-511-762-4286

    and Eduard Reithmeier

    Eduard Reithmeier is the director of the Institute of Measurement and Automatic Control, Faculty Mechanical Engineering of the Leibniz University of Hanover.

    Gottfried Wilhelm Leibniz Universität Hannover, Institute of Measurement and Automatic Control, Nienburger Str. 17, 30167 Hannover, Germany, Tel.: +49-511-762-3334

Published/Copyright: October 17, 2017

Abstract

Optical interferometers as non-contact measurement devices are very desirable for the measurement of surface roughness and topography. Compared to phase shifting interferometers (PSIs) with a limited measurement range and a scan step of maximum λ/4, the optical interferometers like low coherence interferometers (LCIs) evaluating the degree of fringe coherence allow a larger vertical measurement range. Their vertical measurement range is only limited by the scan length allowed by the linear piezo stage and the coherence length of the light source. To evaluate the obtained data for a large range, the common LCIs require much computation time. To overcome this drawback, we present an evaluation algorithm based on the Hilbert-Transform and curve fitting (Levenberg–Marquardt algorithm) using Compute Unified Device Architecture (CUDA) technology, which allows parallel and independent data evaluation on General Purpose Graphics Processing Unit (GPGPU). Firstly, the evaluation algorithm is implemented and tested on an in-house developed LCI, which is based on Michelson configurations. Furthermore, we focus on the performance optimization of the GPU-based program using the different approaches to further achieve efficient and accurate massive parallel computing. Finally, the performance comparison for evaluating measurement data using different approaches is discussed in this paper.

Zusammenfassung

Interferometer werden häufig zur kontaktlosen Messung von Oberflächenrauheit und -topographie eingesetzt. Im Vergleich zu Phase-Shifting-Interferometern (PSI) mit einem begrenzten Messbereich und einer Abtastschrittweite von maximal λ/4, ermöglichen optische Interferometer sowie Low-Coherence-Interferometer (LCI) einen größeren vertikalen Messbereich mittels vertical scanning. Aufgrund des langen vertikalen Messbereichs erfordern übliche LCIs eine lange Berechnungszeit für die Datenauswertung. Um diesen Nachteil überzuwinden, präsentieren wir einen Evaluierungsalgorithmus basierend auf der Hilbert-Transformation und Kurvenanpassung (Levenberg–Marquardt-Algorithmus) mittels der Compute Unified Device Architecture (CUDA), welche eine parallele und unabhängige Datenauswertung auf Basis der General Purpose Graphics Processing Unit (GPGPU) ermöglicht. Zunächst wird der Auswertungsalgorithmus auf einem Laborrechner für ein LCI auf Basis einer Michelson-Konfiguration implementiert. Darüber hinaus konzentrieren wir uns auf die Leistungsoptimierung des GPU-basierten Auswertungsalgorithmuses mittels verschiedener Optimierungsansätze, um ein effizientes und massiv paralleles Rechnen zu ermöglichen.

About the authors

Yinan Li

Yinan Li is a research assistant at the Institute of Measurement and Automatic Control at the Leibniz University of Hanover. His research interests are 3D shape measurement, roughness measurement, instrument development, data analysis and image processing.

Gottfried Wilhelm Leibniz Universität Hannover, Institute of Measurement and Automatic Control, Nienburger Str. 17, 30167 Hannover, Germany, Tel.: +49-511-762-3236

Markus Kästner

Markus Kästner is the group leader of Production Metrology of the Institute of Measurement and Automatic Control, Faculty Mechanical Engineering of the Leibniz University of Hanover.

Gottfried Wilhelm Leibniz Universität Hannover, Institute of Measurement and Automatic Control, Nienburger Str. 17, 30167 Hannover, Germany, Tel.: +49-511-762-4286

Eduard Reithmeier

Eduard Reithmeier is the director of the Institute of Measurement and Automatic Control, Faculty Mechanical Engineering of the Leibniz University of Hanover.

Gottfried Wilhelm Leibniz Universität Hannover, Institute of Measurement and Automatic Control, Nienburger Str. 17, 30167 Hannover, Germany, Tel.: +49-511-762-3334

Acknowledgement

The authors would like to thank the “German Research Foundation” (DFG) for funding this project A2 “Multi Scale Geometry Measurement” within the Collaborative Research Centre (CRC) 871 Regeneration of Complex Goods (http://www.sfb871.de).

Received: 2017-07-19
Revised: 2017-09-14
Accepted: 2017-09-16
Published Online: 2017-10-17
Published in Print: 2018-11-27

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/teme-2017-0091/html
Scroll to top button