Abstract
In this work, polypropylene/poly(ethylene-co-octene)/multiwalled carbon nanotube (PP/POE/MWCNT) nanocomposites with different contents of MWCNTs were prepared by an eccentric rotor extruder to obtain engineering materials with excellent performance capability. Microphotographs (scanning electron microscopy and transmission electron microscopy) and dynamic mechanical analysis indicate that the MWCNTs were well dispersed in the polymer matrix under the elongation flow. The crystallization behavior was explored by X-ray diffraction and differential scanning calorimetry. The results show that MWCNTs promote heterogeneous nucleation and improve the To, Tc and Te values of the composites. On the basis of the rheology analysis, the complex viscosity of the PP/POE/MWCNT composites increased and formed an obvious Newton plat in the low-frequency range; both the G′ and G″ of all the samples increased monotonically, and a percolation threshold appeared for 1 wt% MWCNTs. Thus, the mechanical properties of the nanocomposites prepared under an elongation flow lead to an effective strengthening of PP/POE better than under a shear flow. This work provides a novel method based on elongational rheology to prepare engineered materials that possess excellent performance capabilities.
Acknowledgments
The authors wish to acknowledge the National Natural Science Foundation of China (grant nos. 51435005 and 51505153), the PhD Start-up Fund of Natural Science Foundation of Guangdong Province, China (grant no. 2016A030310429), the National Natural Science Foundation of China-Guangdong Joint Foundation Project (grant no. U1201242), the Special-Funded Program on National Key Scientific Instruments and Equipment Development of China (grant no. 2012YQ230043), the Science and Technology Programme of Guangzhou Municipal Government (grant no. 2014J4100012), and the Science and Technology Planning Project of Guangdong Province, China (grant no. 2014B090921006).
References
[1] Ma LF, Wei XF, Zhang Q, Wang WK, Gu L, Yang W, Xie BH, Yang MB. Mater. Design. 2012, 33, 104–110.10.1016/j.matdes.2011.07.017Search in Google Scholar
[2] Sedighen BK, Daniel F, Chen YH, Geeven LM, Alireza K, Reza B, Clement LH, Zhang HZ, Chen BQ. Compos. Sci. Technol. 2012, 72, 1697–1704.10.1016/j.compscitech.2012.06.007Search in Google Scholar
[3] Wei GX, Sue HJ, Chu J, Huang C, Gong K. Polymer 2000, 41, 2947–2960.10.1016/S0032-3861(99)00454-1Search in Google Scholar
[4] Diego P, Alessandro P. Compos. Sci. Technol. 2013, 76, 77–83.10.1016/j.compscitech.2012.12.016Search in Google Scholar
[5] Wang JF, Wang CL, Zhang XL, Wu H, Guo SY. Rsc. Adv. 2014, 4, 20297–20307.10.1039/C3RA48036DSearch in Google Scholar
[6] Yang JH, Zhang Y, Zhang YX. Polymer 2003, 44, 5047–5052.10.1016/S0032-3861(03)00438-5Search in Google Scholar
[7] Liang JZ, Zhu B, Ma WY. Polym. Compos. 2014, 37, 539–546.10.1002/pc.23210Search in Google Scholar
[8] Wu JH, Chen CW, Wu YT, Wu GT, Kuo MC, Tsai YH. Polym. Composite 2015, 36, 69–77.10.1002/pc.22914Search in Google Scholar
[9] Yin J, Zhang Y, Zhang YX. J. Appl. Polym. Sci. 2005, 98, 957–967.10.1002/app.22111Search in Google Scholar
[10] Dimitrios B. Materials 2010, 3, 2884–2946.10.3390/ma3042884Search in Google Scholar
[11] Li Y, Han CH, Bian JJ, Zhang X, Han LJ, Dong LS. Polym. Compos. 2013, 34, 131–140.10.1002/pc.22384Search in Google Scholar
[12] Tang LC, Wan YJ, Yan D, Peo YB, Zhao L, Li YB, Wu LB, Jiang JX, Lai GQ. Carbon 2014, 60, 16–27.10.1016/j.carbon.2013.03.050Search in Google Scholar
[13] Zhao P, Wang K, Yang H, Zhang Q, Du RN, Fu Q. Polymer 2007, 48, 5688–5695.10.1016/j.polymer.2007.07.022Search in Google Scholar
[14] Masuda J, Torkelson JM. Macromolecules 2008, 41, 5974–5977.10.1021/ma801321jSearch in Google Scholar
[15] Zhong J, Isayev AI, Huang KY. Polymer 2014, 55, 1745–1755.10.1016/j.polymer.2014.02.014Search in Google Scholar
[16] Zhou XP, Xie XL, Zeng F, Li RKY, Mai YW. Key. Eng. Mater. 2006, 312, 223–228.10.4028/www.scientific.net/KEM.312.223Search in Google Scholar
[17] Lee SH, Cho EN, Jeon SH, Youn JR. Carbon 2007, 45, 2810–2822.10.1016/j.carbon.2007.08.042Search in Google Scholar
[18] Qu JP. A method and a device for plasticizing and transporting polymer material based on elongation rheology: EP, WO 2009094815 A1. 2009.Search in Google Scholar
[19] Huang JT, Lu X, Zhang N, Yang L, Yan M, Liu HY, Zhang GZ, Qu JP. Polym. Compos 2014, 35, 4360–4365.10.1002/pc.22694Search in Google Scholar
[20] Qu JP, Chen HZ, Liu SR, Tan B, Liu LM, Yin XC, Liu QJ, Guo RB. J. Appl. Polym. Sci. 2013, 128, 3576–3585.10.1002/app.38573Search in Google Scholar
[21] Janssen JMH, Meijer HEH. J. Rheol. 1993, 37, 597–608.10.1122/1.550385Search in Google Scholar
[22] Scott CE, Macosko CW. Polymer 1994, 35, 5422–5433.10.1016/S0032-3861(05)80005-9Search in Google Scholar
[23] Kang J, Smith TG, Bigio DI. Aiche. J. 1996, 42, 649–659.10.1002/aic.690420306Search in Google Scholar
[24] Qu JP, Yang ZT, Yin XC, He HZ, Feng YH. Polym.-Plast. Technol. 2009, 48, 1269–1274.10.1080/03602550903204121Search in Google Scholar
[25] Qu JP, Xu YS, Chen JJ, Zhang GZ, Zhang N. Polym. Eng. Sci. 2014, 54, 1403–411.10.1002/pen.23679Search in Google Scholar
[26] Bikiaris D, Vassiliou A, Chrissafis K, Paraskevopoulos KM, Jannnakoudakis A, Docoslis A. Polym. Degrad. Stabil. 2008, 93, 952–967.10.1016/j.polymdegradstab.2008.01.033Search in Google Scholar
[27] Bhattacharyya AR, Sreekumar TV, Liou T, Kumar S, Ericson LM, Hauge RH, Smalley RE. Polymer 2003, 44, 2373–2377.10.1016/S0032-3861(03)00073-9Search in Google Scholar
[28] Seo MK, Lee JR, Park SJ. Mater. Sci. Eng. A. 2005, 404, 79–84.10.1016/j.msea.2005.05.065Search in Google Scholar
[29] Satapathy BK, Gans M, Weidisch R, Potschke P, Jehnichen D, Keller T, Jandt KD. Macromol. Rapid. Commun. 2007, 28, 834–841.10.1002/marc.200600892Search in Google Scholar
[30] Valentini L, Biagiotti J, Kenny JM, Santucci S. J. Appl. Polym. Sci. 2003, 87, 708–713.10.1002/app.11469Search in Google Scholar
[31] Logakis E, Pandis Ch, Peoglos V, Pissis P, Stergiou Ch, Pionteck J, Pötschke P, Mičušík M, Omastová M. J. Polym. Sci. Part. B. Polym. Phys. 2009, 47, 764–774.10.1002/polb.21681Search in Google Scholar
[32] Hiong X, Gao Y, Li HM. Exp. Polym. Lett. 2007, 1, 416–426.10.3144/expresspolymlett.2007.59Search in Google Scholar
[33] Kim JA, Seong DG, Kang TJ, Youn JR. Carbon 2006, 44, 1898–1905.10.1016/j.carbon.2006.02.026Search in Google Scholar
[34] Lee SH, Kim MW, Kim SH, Youn JR. Eur. Pol. J. 2008, 44, 1620–1630.10.1016/j.eurpolymj.2008.03.017Search in Google Scholar
[35] Teng CC, Ma CCM, Huang YW, Yuen SM, Weng CC, Chen CH, Su SF. Compos. Part A Appl. Sci. Manuf. 2008, 39, 1869–1875.10.1016/j.compositesa.2008.09.004Search in Google Scholar
[36] Rahmatpour A, Aalaie JJ. Macromol. Sci. B. 2008, 5, 929–941.10.1080/00222340802218356Search in Google Scholar
[37] Pötschke P, Krause B, Stange J, Munstedt H. Macromol. Symp. 2007, 254, 400–408.10.1002/masy.200750858Search in Google Scholar
[38] Ali FB, Mohan R. Polym. Composite. 2009, 31, 1309–1314.10.1002/pc.20913Search in Google Scholar
[39] Hong MK, Ko SW, Park JH, Kim JH. J. Nanosci. Nanotechnol. 2011, 11, 5352–5357.10.1166/jnn.2011.3795Search in Google Scholar PubMed
[40] Yuan LJ, Wu DF, Zhang M, Zhou WD, Lin DP. Ind. Eng. Chem. Res. 2011, 50, 14186–14192.10.1021/ie202039vSearch in Google Scholar
[41] Roberto S, Andera M, Simonpietro A, Antonella G. Plasma. Process. Polym. 2012, 9, 503–512.10.1002/ppap.201100140Search in Google Scholar
[42] Andera M, Luigi B, Alina CT, Lorenzo P, Matteo D, Roberto S. Plasma. Process. Polym. 2014, 11, 664–677.10.1002/ppap.201400008Search in Google Scholar
©2018 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material properties
- Structural, optical, and aging studies of biocompatible PVC-PVP blend films
- Structure-property relationships in polypropylene/poly(ethylene-co-octene)/multiwalled carbon nanotube nanocomposites prepared via a novel eccentric rotor extruder
- Swelling behavior of poly (N-hydroxymethylacrylamide-co-acrylic acid) hydrogels and release of potassium nitrate as fertilizer
- Preparation and assembly
- Preparation of poly(L-lactide)/poly(ethylene glycol)/organo-modified montmorillonite nanocomposites via melt intercalation under continuous elongation flow
- Engineering and processing
- Glass fiber–reinforced polypropylene composites fabricated by direct fiber feeding injection molding
- Dip coated stretchable and bendable PEDOTPSS films on low modulus micro-bumpy PDMS substrate
- Influence of a locally variable mold temperature on injection molded thin-wall components
- Process control strategies for injection molding processes with changing raw material viscosity
- Three-dimensional numerical simulation of total warpage deformation for short-glass-fiber-reinforced polypropylene composite injection-molded parts using coupled FEM
- Three-dimensional viscoelastic numerical analysis of the effects of gas flow on L-profiled polymers in gas-assisted coextrusion
Articles in the same Issue
- Frontmatter
- Material properties
- Structural, optical, and aging studies of biocompatible PVC-PVP blend films
- Structure-property relationships in polypropylene/poly(ethylene-co-octene)/multiwalled carbon nanotube nanocomposites prepared via a novel eccentric rotor extruder
- Swelling behavior of poly (N-hydroxymethylacrylamide-co-acrylic acid) hydrogels and release of potassium nitrate as fertilizer
- Preparation and assembly
- Preparation of poly(L-lactide)/poly(ethylene glycol)/organo-modified montmorillonite nanocomposites via melt intercalation under continuous elongation flow
- Engineering and processing
- Glass fiber–reinforced polypropylene composites fabricated by direct fiber feeding injection molding
- Dip coated stretchable and bendable PEDOTPSS films on low modulus micro-bumpy PDMS substrate
- Influence of a locally variable mold temperature on injection molded thin-wall components
- Process control strategies for injection molding processes with changing raw material viscosity
- Three-dimensional numerical simulation of total warpage deformation for short-glass-fiber-reinforced polypropylene composite injection-molded parts using coupled FEM
- Three-dimensional viscoelastic numerical analysis of the effects of gas flow on L-profiled polymers in gas-assisted coextrusion