Home Topological innovation in molecular design: advances in Möbius architectures for functional materials
Article
Licensed
Unlicensed Requires Authentication

Topological innovation in molecular design: advances in Möbius architectures for functional materials

  • Bin Hu , Dan-Yang Wang , Yu-Bo Guo and Han-Yuan Gong ORCID logo EMAIL logo
Published/Copyright: August 5, 2025

Abstract

Molecular topology fundamentally influences self-assembly, molecular recognition, and dynamic behavior in chemical systems. Among topologically nontrivial architectures, Möbius molecules – defined by a non-orientable, fully conjugated cyclic backbone with an odd linking number (Lk) – represent a unique class of π-conjugated macrocycles distinct from geometrically twisted analogues. Their one-sided surface and topological singularity confer exceptional properties, including intrinsic chirality, delocalized electronic pathways, and unconventional charge transport characteristics, positioning them as promising platforms for applications in optoelectronics, chiral sensing, and molecular electronics. Despite significant synthetic challenges arising from ring strain and conformational instability, recent advances in dynamic covalent chemistry, metal-templated cyclization, and heteroatom incorporation have enabled the construction of stable Möbius nanobelts and heterocyclic macrocycles with tunable redox and photophysical properties. Beyond discrete molecules, Möbius topology has also been extended to supramolecular assemblies and interlocked systems, broadening the functional scope of these structures. This review surveys recent progress in the design, synthesis, and functional exploration of Möbius systems, highlighting the critical role of topology in shaping their structure–property relationships and their emerging impact on supramolecular chemistry and molecular materials science.


Corresponding author: Han-Yuan Gong, College of Chemistry, Beijing Normal University, No. 19, Xin Jie Kou Wai St, Hai Dian District, Beijing, 100875, P.R. China, e-mail:
Article note: A collection of invited papers based on presentations at the International Conference on Physical Organic Chemistry held on 18–22 Aug 2024 in Beijing, China.

Award Identifier / Grant number: 21971022

Award Identifier / Grant number: 92156009

Acknowledgments

H.-Y. G. is grateful to the National Natural Science Foundation of China (21971022 and 92156009), the Fundamental Research Funds for the Central Universities and Beijing Normal University for financial support.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: Bin Hu and Dan-Yang Wang contributed equally to this work.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: The National Natural Science Foundation of China (21971022 and 92156009).

  7. Data availability: Not applicable.

References

1. Chakrabarty, R.; Mukherjee, P. S.; Stang, P. J. Chem. Rev. 2011, 111, 6810–6918; https://doi.org/10.1021/cr200077m.Search in Google Scholar PubMed PubMed Central

2. Rappaport, S. M.; Rzepa, H. S. J. Am. Chem. Soc. 2010, 132, 4500; https://doi.org/10.1021/ja100035p.Search in Google Scholar

3. Ghibaudi, E.; Cerruti, L.; Villani, G. Found. Chem. 2019, 22, 279–307; https://doi.org/10.1007/s10698-019-09333-8.Search in Google Scholar

4. Schaller, G. R.; Herges, R. Chem. Commun. 2013, 49, 1254–1260; https://doi.org/10.1039/c2cc34763f.Search in Google Scholar PubMed

5. Herges, R. Chem. Rev. 2006, 106, 4820–4842; https://doi.org/10.1021/cr0505425.Search in Google Scholar PubMed

6. Ajami, D.; Oeckler, O.; Simon, A.; Herges, R. Nature 2003, 426, 819–821; https://doi.org/10.1038/nature02224.Search in Google Scholar PubMed

7. Schaller, G. R.; Topić, F.; Rissanen, K.; Okamoto, Y.; Shen, J.; Herges, R. Nat. Chem. 2014, 6, 608–613; https://doi.org/10.1038/nchem.1995.Search in Google Scholar PubMed

8. Wang, E.; He, Z.; Zhao, E.; Meng, L.; Schütt, C.; Lam, J. W.; Sung, H. H.; Williams, I. D.; Huang, X.; Herges, R.; Tang, B. Z. Chem. Eur. J. 2015, 21, 11707–11711; https://doi.org/10.1002/chem.201502224.Search in Google Scholar PubMed

9. Jiang, X.; Laffoon, J. D.; Chen, D.; Pérez-Estrada, S.; Danis, A. S.; Rodríguez-López, J.; Garcia-Garibay, M. A.; Zhu, J.; Moore, J. S. J. Am. Chem. Soc. 2020, 142, 6493–6498; https://doi.org/10.1021/jacs.0c01430.Search in Google Scholar PubMed

10. Li, K.; Xu, Z.; Xu, J.; Weng, T.; Chen, X.; Sato, S.; Wu, J.; Sun, Z. J. Am. Chem. Soc. 2021, 143, 20419–20430; https://doi.org/10.1021/jacs.1c10170.Search in Google Scholar PubMed

11. Malinčík, J.; Gaikwad, S.; Mora-Fuentes, J. P.; Boillat, M. A.; Prescimone, A.; Häussinger, D.; Campaña, A. G.; Šolomek, T. Angew. Chem. Int. Ed. 2022, 61, e202208591; https://doi.org/10.1002/anie.202208591.Search in Google Scholar PubMed PubMed Central

12. Terabayashi, T.; Kayahara, E.; Zhang, Y.; Mizuhata, Y.; Tokitoh, N.; Nishinaga, T.; Kato, T.; Yamago, S. Angew. Chem. Int. Ed. 2023, 62, e202214960; https://doi.org/10.1002/anie.202214960.Search in Google Scholar PubMed

13. Naulet, G.; Sturm, L.; Robert, A.; Dechambenoit, P.; Röhricht, F.; Herges, R.; Bock, H.; Durola, F. Chem. Sci. 2018, 9, 8930–8936; https://doi.org/10.1039/c8sc02877j.Search in Google Scholar PubMed PubMed Central

14. Luo, Z.; Yang, X.; Cai, K.; Fu, X.; Zhang, D.; Ma, Y.; Zhao, D. Angew. Chem., Int. Ed. 2020, 59, 14854–14860; https://doi.org/10.1002/anie.202003538.Search in Google Scholar PubMed

15. Segawa, Y.; Watanabe, T.; Yamanoue, K.; Kuwayama, M.; Watanabe, K.; Pirillo, J.; Hijikata, Y.; Itami, K. Nat. Synth. 2022, 1, 535–541; https://doi.org/10.1038/s44160-022-00075-8.Search in Google Scholar

16. Hasegawa, M.; Hasegawa, C.; Nagaya, Y.; Tsubaki, K.; Mazaki, Y. Chem. Eur. J. 2022, 28, e202202218; https://doi.org/10.1002/chem.202202218.Search in Google Scholar PubMed

17. Fan, W.; Fukunaga, T. M.; Wu, S.; Han, Y.; Zhou, Q.; Wang, J.; Li, Z.; Hou, X.; Wei, H.; Ni, Y.; Isobe, H.; Wu, J. Nat. Synth. 2023, 2, 880–887; https://doi.org/10.1038/s44160-023-00317-3.Search in Google Scholar

18. Wu, S.; Han, Y.; Ni, Y.; Hou, X.; Wei, H.; Li, Z.; Wu, J. Angew. Chem. Int. Ed. 2024, 63, e202320144; https://doi.org/10.1002/anie.202320144.Search in Google Scholar PubMed

19. Zhou, Q.; Yuan, W.; Li, Y.; Han, Y.; Bao, L.; Fan, W.; Jiao, L.; Zhao, Y.; Ni, Y.; Zou, Y.; Yang, H. B.; Wu, J. Angew. Chem., Int. Ed. 2025, 64, e202417749; https://doi.org/10.1002/anie.202417749.Search in Google Scholar PubMed

20. Stȩpień, M.; Latos-Grażyński, L.; Sprutta, N.; Chwalisz, P.; Szterenberg, L. Angew. Chem., Int. Ed. 2007, 46, 7869–7873; https://doi.org/10.1002/anie.200700555.Search in Google Scholar PubMed

21. Pacholska-Dudziak, E.; Skonieczny, J.; Pawlicki, M.; Szterenberg, L.; Ciunik, Z.; Latos-Grażyński, L. J. Am. Chem. Soc. 2008, 130, 6182–6195; https://doi.org/10.1021/ja711039c.Search in Google Scholar PubMed

22. Stȩpień, M.; Szyszko, B.; Latos-Grażyński, L. J. Am. Chem. Soc. 2010, 132, 3140–3152; https://doi.org/10.1021/ja909913y.Search in Google Scholar PubMed

23. Szyszko, B.; Sprutta, N.; Chwalisz, P.; Stȩpień, M.; Latos-Grażyński, L. Chem. Eur. J. 2014, 20, 1985–1997; https://doi.org/10.1002/chem.201303676.Search in Google Scholar PubMed

24. Park, J. K.; Yoon, Z. S.; Yoon, M.-C.; Kim, K. S.; Mori, S.; Shin, J.-Y.; Osuka, A.; Kim, D. J. Am. Chem. Soc. 2008, 130, 1824–1825; https://doi.org/10.1021/ja7100483.Search in Google Scholar PubMed

25. Tanaka, Y.; Saito, S.; Mori, S.; Aratani, N.; Shinokubo, H.; Shibata, N.; Higuchi, Y.; Yoon, Z. S.; Kim, K. S.; Noh, S. B.; Park, J. K.; Kim, D.; Osuka, A. Angew. Chem. Int. Ed. 2008, 47, 681–684; https://doi.org/10.1002/anie.200704407.Search in Google Scholar PubMed

26. Rath, H.; Suzuki, M.; Inokuma, Y.; Shinokubo, H.; Kim, K. S.; Yoon, Z. S.; Shin, J.-Y.; Lim, J. M.; Matsuzaki, Y.; Matsushita, O.; Muranaka, A.; Kobayashi, N.; Kim, D.; Osuka, A. J. Am. Chem. Soc. 2008, 130, 13568–13579; https://doi.org/10.1021/ja801983d.Search in Google Scholar PubMed

27. Tokuji, S.; Shin, J.-Y.; Kim, K. S.; Lim, J. M.; Youfu, K.; Saito, S.; Kim, D.; Osuka, A. J. Am. Chem. Soc. 2009, 131, 7240–7241; https://doi.org/10.1021/ja902836x.Search in Google Scholar PubMed

28. Inoue, M.; Kim, K. S.; Suzuki, M.; Lim, J. M.; Shin, J. Y.; Kim, D.; Osuka, A. Angew. Chem. Int. Ed. 2009, 48, 6687–6690; https://doi.org/10.1002/anie.200902677.Search in Google Scholar PubMed

29. Lim, J. M.; Shin, J.-Y.; Tanaka, Y.; Saito, S.; Osuka, A.; Kim, D. J. Am. Chem. Soc. 2010, 132, 3105–3114; https://doi.org/10.1021/ja909744z.Search in Google Scholar PubMed

30. Tanaka, T.; Sugita, T.; Tokuji, S.; Saito, S.; Osuka, A. Angew. Chem. Int. Ed. 2010, 49, 6619–6621; https://doi.org/10.1002/anie.201002282.Search in Google Scholar PubMed

31. Higashino, T.; Inoue, M.; Osuka, A. J. Org. Chem. 2010, 75, 7958–7961; https://doi.org/10.1021/jo1018156.Search in Google Scholar PubMed

32. Inoue, M.; Osuka, A. Angew. Chem., Int. Ed. 2010, 49, 9488–9491; https://doi.org/10.1002/anie.201005334.Search in Google Scholar PubMed

33. Inoue, M.; Yoneda, T.; Youfu, K.; Aratani, N.; Osuka, A. Chem. Eur. J. 2011, 17, 9028–9031; https://doi.org/10.1002/chem.201100757.Search in Google Scholar PubMed

34. Tanaka, T.; Osuka, A. Chem. Eur. J. 2012, 18, 7036–7040; https://doi.org/10.1002/chem.201200762.Search in Google Scholar PubMed

35. Higashino, T.; Lee, B. S.; Lim, J. M.; Kim, D.; Osuka, A. Angew. Chem. Int. Ed. 2012, 51, 13105–13108; https://doi.org/10.1002/anie.201208147.Search in Google Scholar PubMed

36. Yoneda, T.; Aratani, N.; Osuka, A. J. Porphyrins Phthalocyanines. 2013, 17, 665–672; https://doi.org/10.1142/S1088424612501428.Search in Google Scholar

37. Yoneda, T.; Sung, Y. M.; Lim, J. M.; Kim, D.; Osuka, A. Angew. Chem., Int. Ed. 2014, 53, 13169–13173; https://doi.org/10.1002/anie.201408506.Search in Google Scholar PubMed

38. Ishida, S.; Tanaka, T.; Lim, J. M.; Kim, D.; Osuka, A. Chem. Eur. J. 2014, 20, 8274–8278; https://doi.org/10.1002/chem.201402929.Search in Google Scholar PubMed

39. Higashino, T.; Soya, T.; Kim, W.; Kim, D.; Osuka, A. Angew. Chem. Int. Ed. 2015, 54, 5456–5459; https://doi.org/10.1002/anie.201500099.Search in Google Scholar PubMed

40. Nakai, A.; Kim, J.; Tanaka, T.; Kim, D.; Osuka, A. Angew. Chem., Int. Ed. 2021, 60, 26540–26544; https://doi.org/10.1002/anie.202112023.Search in Google Scholar PubMed

41. Mallick, A.; Rath, H. Chem. Asian. J. 2016, 11, 986–990; https://doi.org/10.1002/anie.20.Search in Google Scholar

42. Mallick, A.; Oh, J.; Majewski, M. A.; Stȩpień, M.; Kim, D.; Rath, H. J. Org. Chem. 2016, 82, 556–566; https://doi.org/10.1021/acs.joc.6b02576.Search in Google Scholar PubMed

43. Cha, W. Y.; Soya, T.; Tanaka, T.; Mori, H.; Hong, Y.; Lee, S.; Park, K. H.; Osuka, A.; Kim, D. Chem. Commun. 2016, 52, 6076–6078; https://doi.org/10.1039/C6CC02051H.Search in Google Scholar

44. Anju, K. S.; Das, M.; Adinarayana, B.; Suresh, C. H.; Srinivasan, A. Angew. Chem. Int. Ed. 2017, 56, 15667–15671; https://doi.org/10.1002/anie.201709859.Search in Google Scholar PubMed

45. Ghosh, A.; Dash, S.; Srinivasan, A.; Sahu, M. S. R.; Suresh, C. H.; Chandrashekar, T. K. Chem. Eur. J. 2018, 24, 17997–18002; https://doi.org/10.1002/chem.201803552.Search in Google Scholar PubMed

46. Dash, S.; Ghosh, A.; Bandyopadhyay, S.; Kalita, P.; Vishwakarma, R.; Srinivasan, A.; Suresh, C. H.; Chandrashekar, T. K. Eur. J. Org. Chem. 2023, 26, e202300870; https://doi.org/10.1002/ejoc.202300870.Search in Google Scholar

47. Fan, Y. Y.; Chen, D.; Huang, Z. A.; Zhu, J.; Tung, C. H.; Wu, L. Z.; Cong, H. Nat. Commun. 2018, 9, 3037; https://doi.org/10.1038/s41467-018-05498-6.Search in Google Scholar PubMed PubMed Central

48. Nishigaki, S.; Shibata, Y.; Nakajima, A.; Okajima, H.; Masumoto, Y.; Osawa, T.; Muranaka, A.; Sugiyama, H.; Horikawa, A.; Uekusa, H.; Koshino, H.; Uchiyama, M.; Sakamoto, A.; Tanaka, K. J. Am. Chem. Soc. 2019, 141, 14955–14960; https://doi.org/10.1021/jacs.9b06197.Search in Google Scholar PubMed

49. Panda, K. N.; Thorat, K. G.; Ravikanth, M. Inorg. Chem. 2020, 59, 3585–3595; https://doi.org/10.1021/acs.inorgchem.9b02905.Search in Google Scholar PubMed

50. Varak, P.; Sinha, A.; Ravikanth, M. New J. Chem. 2023, 47, 4720–4729; https://doi.org/10.1039/d2nj05085d.Search in Google Scholar

51. Zhou, W.; Hao, M.; Lu, T.; Duan, Z.; Sarma, T.; Sessler, J. L.; Lei, C. Chem. Eur. J. 2021, 27, 16173–16180; https://doi.org/10.1002/chem.202102939.Search in Google Scholar PubMed

52. Ye, L.; Hu, C.; Yang, D.; Zhang, L.; Chen, X.; Qiao, L.; Huang, Z.; Yang, J.; Miao, Q. J. Am. Chem. Soc. 2025, 147, 17795–17803; https://doi.org/10.1021/jacs.5c01323.Search in Google Scholar PubMed PubMed Central

53. Walba, D. M.; Richards, R. M.; Haltiwanger, R. C. J. Am. Chem. Soc. 1982, 104, 3219–3221; https://doi.org/10.1021/ja00375a051.Search in Google Scholar

54. Wang, S.; Yuan, J.; Xie, J.; Lu, Z.; Jiang, L.; Mu, Y.; Huo, Y.; Tsuchido, Y.; Zhu, K. Angew. Chem., Int. Ed. 2021, 60, 18443–18447; https://doi.org/10.1002/anie.202104054.Search in Google Scholar PubMed

55. Yuan, J.; Song, Y.; Li, X.; Xie, J.; Dong, S.; Zhu, K. Org. Lett. 2021, 23, 9554–9558; https://doi.org/10.1021/acs.orglett.1c03781.Search in Google Scholar PubMed

56. Lv, W.; Song, Y.; Lv, X.; Yuan, J.; Zhu, K. Chin. Chem. Lett. 2023, 34, 108179; https://doi.org/10.1016/j.cclet.2023.108179.Search in Google Scholar

57. Ouyang, G.; Ji, L.; Jiang, Y.; Würthner, F.; Liu, M. Nat. Commun. 2020, 11, 5910; https://doi.org/10.1038/s41467-020-19683-z.Search in Google Scholar PubMed PubMed Central

58. Chen, Y.; Jing, B.; Chang, Z.; Gong, J. JACS. Au. 2022, 2, 2686–2692; https://doi.org/10.1021/jacsau.2c00469.Search in Google Scholar PubMed PubMed Central

Received: 2025-04-15
Accepted: 2025-07-03
Published Online: 2025-08-05

© 2025 IUPAC & De Gruyter

Downloaded on 3.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pac-2025-0482/html
Scroll to top button