Abstract
Molecular topology fundamentally influences self-assembly, molecular recognition, and dynamic behavior in chemical systems. Among topologically nontrivial architectures, Möbius molecules – defined by a non-orientable, fully conjugated cyclic backbone with an odd linking number (Lk) – represent a unique class of π-conjugated macrocycles distinct from geometrically twisted analogues. Their one-sided surface and topological singularity confer exceptional properties, including intrinsic chirality, delocalized electronic pathways, and unconventional charge transport characteristics, positioning them as promising platforms for applications in optoelectronics, chiral sensing, and molecular electronics. Despite significant synthetic challenges arising from ring strain and conformational instability, recent advances in dynamic covalent chemistry, metal-templated cyclization, and heteroatom incorporation have enabled the construction of stable Möbius nanobelts and heterocyclic macrocycles with tunable redox and photophysical properties. Beyond discrete molecules, Möbius topology has also been extended to supramolecular assemblies and interlocked systems, broadening the functional scope of these structures. This review surveys recent progress in the design, synthesis, and functional exploration of Möbius systems, highlighting the critical role of topology in shaping their structure–property relationships and their emerging impact on supramolecular chemistry and molecular materials science.
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: 21971022
Award Identifier / Grant number: 92156009
Acknowledgments
H.-Y. G. is grateful to the National Natural Science Foundation of China (21971022 and 92156009), the Fundamental Research Funds for the Central Universities and Beijing Normal University for financial support.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: Bin Hu and Dan-Yang Wang contributed equally to this work.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: The National Natural Science Foundation of China (21971022 and 92156009).
-
Data availability: Not applicable.
References
1. Chakrabarty, R.; Mukherjee, P. S.; Stang, P. J. Chem. Rev. 2011, 111, 6810–6918; https://doi.org/10.1021/cr200077m.Search in Google Scholar PubMed PubMed Central
2. Rappaport, S. M.; Rzepa, H. S. J. Am. Chem. Soc. 2010, 132, 4500; https://doi.org/10.1021/ja100035p.Search in Google Scholar
3. Ghibaudi, E.; Cerruti, L.; Villani, G. Found. Chem. 2019, 22, 279–307; https://doi.org/10.1007/s10698-019-09333-8.Search in Google Scholar
4. Schaller, G. R.; Herges, R. Chem. Commun. 2013, 49, 1254–1260; https://doi.org/10.1039/c2cc34763f.Search in Google Scholar PubMed
5. Herges, R. Chem. Rev. 2006, 106, 4820–4842; https://doi.org/10.1021/cr0505425.Search in Google Scholar PubMed
6. Ajami, D.; Oeckler, O.; Simon, A.; Herges, R. Nature 2003, 426, 819–821; https://doi.org/10.1038/nature02224.Search in Google Scholar PubMed
7. Schaller, G. R.; Topić, F.; Rissanen, K.; Okamoto, Y.; Shen, J.; Herges, R. Nat. Chem. 2014, 6, 608–613; https://doi.org/10.1038/nchem.1995.Search in Google Scholar PubMed
8. Wang, E.; He, Z.; Zhao, E.; Meng, L.; Schütt, C.; Lam, J. W.; Sung, H. H.; Williams, I. D.; Huang, X.; Herges, R.; Tang, B. Z. Chem. Eur. J. 2015, 21, 11707–11711; https://doi.org/10.1002/chem.201502224.Search in Google Scholar PubMed
9. Jiang, X.; Laffoon, J. D.; Chen, D.; Pérez-Estrada, S.; Danis, A. S.; Rodríguez-López, J.; Garcia-Garibay, M. A.; Zhu, J.; Moore, J. S. J. Am. Chem. Soc. 2020, 142, 6493–6498; https://doi.org/10.1021/jacs.0c01430.Search in Google Scholar PubMed
10. Li, K.; Xu, Z.; Xu, J.; Weng, T.; Chen, X.; Sato, S.; Wu, J.; Sun, Z. J. Am. Chem. Soc. 2021, 143, 20419–20430; https://doi.org/10.1021/jacs.1c10170.Search in Google Scholar PubMed
11. Malinčík, J.; Gaikwad, S.; Mora-Fuentes, J. P.; Boillat, M. A.; Prescimone, A.; Häussinger, D.; Campaña, A. G.; Šolomek, T. Angew. Chem. Int. Ed. 2022, 61, e202208591; https://doi.org/10.1002/anie.202208591.Search in Google Scholar PubMed PubMed Central
12. Terabayashi, T.; Kayahara, E.; Zhang, Y.; Mizuhata, Y.; Tokitoh, N.; Nishinaga, T.; Kato, T.; Yamago, S. Angew. Chem. Int. Ed. 2023, 62, e202214960; https://doi.org/10.1002/anie.202214960.Search in Google Scholar PubMed
13. Naulet, G.; Sturm, L.; Robert, A.; Dechambenoit, P.; Röhricht, F.; Herges, R.; Bock, H.; Durola, F. Chem. Sci. 2018, 9, 8930–8936; https://doi.org/10.1039/c8sc02877j.Search in Google Scholar PubMed PubMed Central
14. Luo, Z.; Yang, X.; Cai, K.; Fu, X.; Zhang, D.; Ma, Y.; Zhao, D. Angew. Chem., Int. Ed. 2020, 59, 14854–14860; https://doi.org/10.1002/anie.202003538.Search in Google Scholar PubMed
15. Segawa, Y.; Watanabe, T.; Yamanoue, K.; Kuwayama, M.; Watanabe, K.; Pirillo, J.; Hijikata, Y.; Itami, K. Nat. Synth. 2022, 1, 535–541; https://doi.org/10.1038/s44160-022-00075-8.Search in Google Scholar
16. Hasegawa, M.; Hasegawa, C.; Nagaya, Y.; Tsubaki, K.; Mazaki, Y. Chem. Eur. J. 2022, 28, e202202218; https://doi.org/10.1002/chem.202202218.Search in Google Scholar PubMed
17. Fan, W.; Fukunaga, T. M.; Wu, S.; Han, Y.; Zhou, Q.; Wang, J.; Li, Z.; Hou, X.; Wei, H.; Ni, Y.; Isobe, H.; Wu, J. Nat. Synth. 2023, 2, 880–887; https://doi.org/10.1038/s44160-023-00317-3.Search in Google Scholar
18. Wu, S.; Han, Y.; Ni, Y.; Hou, X.; Wei, H.; Li, Z.; Wu, J. Angew. Chem. Int. Ed. 2024, 63, e202320144; https://doi.org/10.1002/anie.202320144.Search in Google Scholar PubMed
19. Zhou, Q.; Yuan, W.; Li, Y.; Han, Y.; Bao, L.; Fan, W.; Jiao, L.; Zhao, Y.; Ni, Y.; Zou, Y.; Yang, H. B.; Wu, J. Angew. Chem., Int. Ed. 2025, 64, e202417749; https://doi.org/10.1002/anie.202417749.Search in Google Scholar PubMed
20. Stȩpień, M.; Latos-Grażyński, L.; Sprutta, N.; Chwalisz, P.; Szterenberg, L. Angew. Chem., Int. Ed. 2007, 46, 7869–7873; https://doi.org/10.1002/anie.200700555.Search in Google Scholar PubMed
21. Pacholska-Dudziak, E.; Skonieczny, J.; Pawlicki, M.; Szterenberg, L.; Ciunik, Z.; Latos-Grażyński, L. J. Am. Chem. Soc. 2008, 130, 6182–6195; https://doi.org/10.1021/ja711039c.Search in Google Scholar PubMed
22. Stȩpień, M.; Szyszko, B.; Latos-Grażyński, L. J. Am. Chem. Soc. 2010, 132, 3140–3152; https://doi.org/10.1021/ja909913y.Search in Google Scholar PubMed
23. Szyszko, B.; Sprutta, N.; Chwalisz, P.; Stȩpień, M.; Latos-Grażyński, L. Chem. Eur. J. 2014, 20, 1985–1997; https://doi.org/10.1002/chem.201303676.Search in Google Scholar PubMed
24. Park, J. K.; Yoon, Z. S.; Yoon, M.-C.; Kim, K. S.; Mori, S.; Shin, J.-Y.; Osuka, A.; Kim, D. J. Am. Chem. Soc. 2008, 130, 1824–1825; https://doi.org/10.1021/ja7100483.Search in Google Scholar PubMed
25. Tanaka, Y.; Saito, S.; Mori, S.; Aratani, N.; Shinokubo, H.; Shibata, N.; Higuchi, Y.; Yoon, Z. S.; Kim, K. S.; Noh, S. B.; Park, J. K.; Kim, D.; Osuka, A. Angew. Chem. Int. Ed. 2008, 47, 681–684; https://doi.org/10.1002/anie.200704407.Search in Google Scholar PubMed
26. Rath, H.; Suzuki, M.; Inokuma, Y.; Shinokubo, H.; Kim, K. S.; Yoon, Z. S.; Shin, J.-Y.; Lim, J. M.; Matsuzaki, Y.; Matsushita, O.; Muranaka, A.; Kobayashi, N.; Kim, D.; Osuka, A. J. Am. Chem. Soc. 2008, 130, 13568–13579; https://doi.org/10.1021/ja801983d.Search in Google Scholar PubMed
27. Tokuji, S.; Shin, J.-Y.; Kim, K. S.; Lim, J. M.; Youfu, K.; Saito, S.; Kim, D.; Osuka, A. J. Am. Chem. Soc. 2009, 131, 7240–7241; https://doi.org/10.1021/ja902836x.Search in Google Scholar PubMed
28. Inoue, M.; Kim, K. S.; Suzuki, M.; Lim, J. M.; Shin, J. Y.; Kim, D.; Osuka, A. Angew. Chem. Int. Ed. 2009, 48, 6687–6690; https://doi.org/10.1002/anie.200902677.Search in Google Scholar PubMed
29. Lim, J. M.; Shin, J.-Y.; Tanaka, Y.; Saito, S.; Osuka, A.; Kim, D. J. Am. Chem. Soc. 2010, 132, 3105–3114; https://doi.org/10.1021/ja909744z.Search in Google Scholar PubMed
30. Tanaka, T.; Sugita, T.; Tokuji, S.; Saito, S.; Osuka, A. Angew. Chem. Int. Ed. 2010, 49, 6619–6621; https://doi.org/10.1002/anie.201002282.Search in Google Scholar PubMed
31. Higashino, T.; Inoue, M.; Osuka, A. J. Org. Chem. 2010, 75, 7958–7961; https://doi.org/10.1021/jo1018156.Search in Google Scholar PubMed
32. Inoue, M.; Osuka, A. Angew. Chem., Int. Ed. 2010, 49, 9488–9491; https://doi.org/10.1002/anie.201005334.Search in Google Scholar PubMed
33. Inoue, M.; Yoneda, T.; Youfu, K.; Aratani, N.; Osuka, A. Chem. Eur. J. 2011, 17, 9028–9031; https://doi.org/10.1002/chem.201100757.Search in Google Scholar PubMed
34. Tanaka, T.; Osuka, A. Chem. Eur. J. 2012, 18, 7036–7040; https://doi.org/10.1002/chem.201200762.Search in Google Scholar PubMed
35. Higashino, T.; Lee, B. S.; Lim, J. M.; Kim, D.; Osuka, A. Angew. Chem. Int. Ed. 2012, 51, 13105–13108; https://doi.org/10.1002/anie.201208147.Search in Google Scholar PubMed
36. Yoneda, T.; Aratani, N.; Osuka, A. J. Porphyrins Phthalocyanines. 2013, 17, 665–672; https://doi.org/10.1142/S1088424612501428.Search in Google Scholar
37. Yoneda, T.; Sung, Y. M.; Lim, J. M.; Kim, D.; Osuka, A. Angew. Chem., Int. Ed. 2014, 53, 13169–13173; https://doi.org/10.1002/anie.201408506.Search in Google Scholar PubMed
38. Ishida, S.; Tanaka, T.; Lim, J. M.; Kim, D.; Osuka, A. Chem. Eur. J. 2014, 20, 8274–8278; https://doi.org/10.1002/chem.201402929.Search in Google Scholar PubMed
39. Higashino, T.; Soya, T.; Kim, W.; Kim, D.; Osuka, A. Angew. Chem. Int. Ed. 2015, 54, 5456–5459; https://doi.org/10.1002/anie.201500099.Search in Google Scholar PubMed
40. Nakai, A.; Kim, J.; Tanaka, T.; Kim, D.; Osuka, A. Angew. Chem., Int. Ed. 2021, 60, 26540–26544; https://doi.org/10.1002/anie.202112023.Search in Google Scholar PubMed
41. Mallick, A.; Rath, H. Chem. Asian. J. 2016, 11, 986–990; https://doi.org/10.1002/anie.20.Search in Google Scholar
42. Mallick, A.; Oh, J.; Majewski, M. A.; Stȩpień, M.; Kim, D.; Rath, H. J. Org. Chem. 2016, 82, 556–566; https://doi.org/10.1021/acs.joc.6b02576.Search in Google Scholar PubMed
43. Cha, W. Y.; Soya, T.; Tanaka, T.; Mori, H.; Hong, Y.; Lee, S.; Park, K. H.; Osuka, A.; Kim, D. Chem. Commun. 2016, 52, 6076–6078; https://doi.org/10.1039/C6CC02051H.Search in Google Scholar
44. Anju, K. S.; Das, M.; Adinarayana, B.; Suresh, C. H.; Srinivasan, A. Angew. Chem. Int. Ed. 2017, 56, 15667–15671; https://doi.org/10.1002/anie.201709859.Search in Google Scholar PubMed
45. Ghosh, A.; Dash, S.; Srinivasan, A.; Sahu, M. S. R.; Suresh, C. H.; Chandrashekar, T. K. Chem. Eur. J. 2018, 24, 17997–18002; https://doi.org/10.1002/chem.201803552.Search in Google Scholar PubMed
46. Dash, S.; Ghosh, A.; Bandyopadhyay, S.; Kalita, P.; Vishwakarma, R.; Srinivasan, A.; Suresh, C. H.; Chandrashekar, T. K. Eur. J. Org. Chem. 2023, 26, e202300870; https://doi.org/10.1002/ejoc.202300870.Search in Google Scholar
47. Fan, Y. Y.; Chen, D.; Huang, Z. A.; Zhu, J.; Tung, C. H.; Wu, L. Z.; Cong, H. Nat. Commun. 2018, 9, 3037; https://doi.org/10.1038/s41467-018-05498-6.Search in Google Scholar PubMed PubMed Central
48. Nishigaki, S.; Shibata, Y.; Nakajima, A.; Okajima, H.; Masumoto, Y.; Osawa, T.; Muranaka, A.; Sugiyama, H.; Horikawa, A.; Uekusa, H.; Koshino, H.; Uchiyama, M.; Sakamoto, A.; Tanaka, K. J. Am. Chem. Soc. 2019, 141, 14955–14960; https://doi.org/10.1021/jacs.9b06197.Search in Google Scholar PubMed
49. Panda, K. N.; Thorat, K. G.; Ravikanth, M. Inorg. Chem. 2020, 59, 3585–3595; https://doi.org/10.1021/acs.inorgchem.9b02905.Search in Google Scholar PubMed
50. Varak, P.; Sinha, A.; Ravikanth, M. New J. Chem. 2023, 47, 4720–4729; https://doi.org/10.1039/d2nj05085d.Search in Google Scholar
51. Zhou, W.; Hao, M.; Lu, T.; Duan, Z.; Sarma, T.; Sessler, J. L.; Lei, C. Chem. Eur. J. 2021, 27, 16173–16180; https://doi.org/10.1002/chem.202102939.Search in Google Scholar PubMed
52. Ye, L.; Hu, C.; Yang, D.; Zhang, L.; Chen, X.; Qiao, L.; Huang, Z.; Yang, J.; Miao, Q. J. Am. Chem. Soc. 2025, 147, 17795–17803; https://doi.org/10.1021/jacs.5c01323.Search in Google Scholar PubMed PubMed Central
53. Walba, D. M.; Richards, R. M.; Haltiwanger, R. C. J. Am. Chem. Soc. 1982, 104, 3219–3221; https://doi.org/10.1021/ja00375a051.Search in Google Scholar
54. Wang, S.; Yuan, J.; Xie, J.; Lu, Z.; Jiang, L.; Mu, Y.; Huo, Y.; Tsuchido, Y.; Zhu, K. Angew. Chem., Int. Ed. 2021, 60, 18443–18447; https://doi.org/10.1002/anie.202104054.Search in Google Scholar PubMed
55. Yuan, J.; Song, Y.; Li, X.; Xie, J.; Dong, S.; Zhu, K. Org. Lett. 2021, 23, 9554–9558; https://doi.org/10.1021/acs.orglett.1c03781.Search in Google Scholar PubMed
56. Lv, W.; Song, Y.; Lv, X.; Yuan, J.; Zhu, K. Chin. Chem. Lett. 2023, 34, 108179; https://doi.org/10.1016/j.cclet.2023.108179.Search in Google Scholar
57. Ouyang, G.; Ji, L.; Jiang, Y.; Würthner, F.; Liu, M. Nat. Commun. 2020, 11, 5910; https://doi.org/10.1038/s41467-020-19683-z.Search in Google Scholar PubMed PubMed Central
58. Chen, Y.; Jing, B.; Chang, Z.; Gong, J. JACS. Au. 2022, 2, 2686–2692; https://doi.org/10.1021/jacsau.2c00469.Search in Google Scholar PubMed PubMed Central
© 2025 IUPAC & De Gruyter