A Monte Carlo study on burnup treatment in sodium-cooled reactor with Th fuel
-
M. E. Korkmaz
Abstract
Sodium Cooled Reactors is one of the Generation-IV plants selected to manage the long-lived minor actinides and to transmute the long-life radioactive elements. This study presents the comparison between two-designed SFR cores with 600 and 800 MWth total heating power. We have analyzed a conceptual core design and nuclear characteristic of SFR. Monte Carlo depletion calculations have been performed to investigate essential characteristics of the SFR core. The core calculations were performed by using the Serpent Monte Carlo code for determining the burnup behavior of the SFR, the power distribution and the effective multiplication factor. The neutronic and burn-up calculations were done by means of Serpent-2 Code with the ENDF-7 cross-sections library. Sodium Cooled Fast Reactor core was taken as the reference core for Th-232 burnup calculations. The results showed that SFR is an important option to deplete the minor actinides as well as for transmutation from Th-232 to U-233.
Abstract
Natriumgekühlte Reaktoren gehören zu den Anlagen der Generation-IV, die für die Entsorgung der langlebigen minoren Aktiniden und die Transmutation der langlebigen radioaktiven Elemente ausgewählt wurden. Diese Studie stellt den Vergleich zwischen zwei konzipierten SFR-Kernen mit 600 und 800 MWth Gesamtheizleistung vor. Wir haben ein konzeptionelles Kerndesign und die nukleare Charakteristik des SFR analysiert. Es wurden Monte-Carlo-Berechnungen durchgeführt, um die wesentlichen Eigenschaften des SFR-Kerns zu untersuchen. Die Kernberechnungen wurden mit dem Monte-Carlo-Code Serpent unter Verwendung der Querschnittsbibliothek ENDF-7 durchgeführt, dabei wurde das Abbrandverhalten des SFR, die Leistungsverteilung und den effektiven Multiplikationsfaktor bestimmt. Der Kern des natriumgekühlten schnellen Reaktors wurde als Referenzkern für die Th-232-Abbrandberechnungen ausgewählt. Die Ergebnisse zeigen, dass der SFR eine wichtige Option für die Abreicherung der minoren Aktiniden sowie für die Transmutation von Th-232 zu U-233 ist.
References
1 Ochoa, R.; Jimenez, G.; Perez-Martin,S.: Analysis of a Spanish energy scenario with Generation IV nuclear reactors, Energy Conversion and Management 75 (2013) 389–397, DOI:10.1016/j.enconman.2013.06.03810.1016/j.enconman.2013.06.038Search in Google Scholar
2 Mukaida, K.; Katoh, A.; Shiotani, H.; Hayafune, H.; Ono, K.: Benchmarking of economic evaluation models for an advanced loop-type sodium cooled fast reactor, Nuclear Engineering and Design, 324 (2017) 35–44, DOI:10.1016/j.nucengdes.2017.08.01110.1016/j.nucengdes.2017.08.011Search in Google Scholar
3 Al Qaaod, A. A.; Shahbunder, H.; Refeat, R. M.; Amin, E. A.; El-Kameesy, S. U.: Transmutation performance of uniform and nonuniform distributions of plutonium and minor actinides in TRIGA Mark II ADS reactor, Annals of Nuclear Energy, 121 (2018) 101– 107, DOI:10.1016/j.anucene.2018.07.01210.1016/j.anucene.2018.07.012Search in Google Scholar
4 Il Kim, Y.; Lee, Y. B.; Lee, C. B.; Chang, J.; Choi, C.: Design concept of advanced sodium-cooled fast reactor and related R&Din Korea, Science and Technology of Nuclear Installations, 2013 (2013), DOI:10.1155/2013/29036210.1155/2013/290362Search in Google Scholar
5 Song, P.; Zhang, D.; Feng, T.; Wang, S.; Chen, J.; Wang, X.; Xue, X.; Zhang, Y.; Wang, M.; Qiu, S.; Su, G. H.: Numerical approach to study the thermal-hydraulic characteristics of Reactor Vessel Cooling system in sodium-cooled fast reactors, Progress in Nuclear Energy, 110 (2019) 213–223, DOI:10.1016/j.pnucene.2018.09.02110.1016/j.pnucene.2018.09.021Search in Google Scholar
6 Kim, C.; Hartanto, D.; Kim, Y.: Neutronics feasibility of simple and dry recycling technologies for a self-sustainable breed-and-burn fast reactor, Annals of Nuclear Energy, 110 (2017) 847–855, DOI:10.1016/j.anucene.2017.07.03610.1016/j.anucene.2017.07.036Search in Google Scholar
7 Cui, D. Y.; Xia, S. P.; Li, X. X.; Cai, X. Z.; Chen, J. G.: Transition toward thorium fuel cycle in a molten salt reactor by using plutonium, Nuclear Science and Techniques, 28 (2017) 1–10, DOI:10.1007/s41365-017-0303-y10.1007/s41365-017-0303-ySearch in Google Scholar
8 Ault, T.; Krahn, S.; Worrall, A.; Croff, A.: Applications for Thorium in Multistage Fuel Cycles with Heavy Water Reactors, Nuclear Technology, 204 (2018) 41 –58, DOI:10.1080/00295450.2018.146870210.1080/00295450.2018.1468702Search in Google Scholar
9 György, H.; Czifrus, S.: Investigation on the potential use of thorium as fuel for the Sodium-cooled Fast Reactor, Annals of Nuclear Energy, 103 (2017) 238–250, DOI:10.1016/j.anucene.2017.01.03010.1016/j.anucene.2017.01.030Search in Google Scholar
10 Hartanto, D.; Kim, C.; Kim, Y.: A comparative physics study for an innovative sodium-cooled fast reactor (iSFR), in: International Journal of Energy Research, 2018, DOI:10.1002/er.361210.1002/er.3612Search in Google Scholar
11 Park, T.; Lin, C. S.; Yang,W. S.:A moderated target design for minor actinide transmutation in sodium-cooled fast reactor, Annals of Nuclear Energy, 98 (2016) 178–190, DOI:10.1016/j.anucene.2016.08.00310.1016/j.anucene.2016.08.003Search in Google Scholar
12 Heuer, D.; Merle-Lucotte, E.; Allibert, M.; Brovchenko, M.; Ghetta, V.; Rubiolo, P.: Towards the thorium fuel cycle with molten salt fast reactors, Annals of Nuclear Energy, 64 (2014) 421–429, DOI:10.1016/j.anucene.2013.08.00210.1016/j.anucene.2013.08.002Search in Google Scholar
13 Korkmaz, M. E.; Agar, O.: The investigation of burnup characteristics using the serpent Monte Carlo code for a sodium cooled fast reactor, Nuclear Engineering and Technology, 46 (2014) 407–412, DOI:10.5516/NET.07.2013.05010.5516/NET.07.2013.050Search in Google Scholar
14 Korkmaz, M. E.; Agar, O.; Büyüker, E.: Burnup analysis of the VVER-1000 reactor using thorium-based fuel, Kerntechnik. 79 (2014) 478–483, DOI:10.3139/124.11044910.3139/124.110449Search in Google Scholar
15 Şarer, B.; Korkmaz, M. E.; Günay, M.; Aydin, A.: Monte Carlo studies in accelerator-driven systems for transmutation of high-level nuclear waste, 13th Int. Conf. Emerg. Nucl. Energy Syst. 2007, ICENES 2007. 1 (2007) 129–141, DOI:10.1016/j.enconman.2007.09.02910.1016/j.enconman.2007.09.029Search in Google Scholar
16 Qvist, S.; Greenspan, E.: The ADOPT code for automated fast reactor core design, Annals of Nuclear Energy, 71 (2014) 23 –36, DOI:10.1016/j.anucene.2014.03.01310.1016/j.anucene.2014.03.013Search in Google Scholar
17 Mochizuki, H.: Analyses of decay heat removal tests with PRACS and DRACS of a sodium loop using the NETFLOW++ code, Nuclear Engineering and Design, 322 (2017) 345–359, DOI:10.1016/j.nucengdes.2017.07.01310.1016/j.nucengdes.2017.07.013Search in Google Scholar
18 Vidal, J. F.; Archier, P.; Faure, B.; Jouault, V.; Palau, J. M.; Pascal, V.; Rimpault, G.; Auffret, F.; Graziano, L.; Masiello, E.; Santandrea, S.: APOLLO3 homogenization techniques for transport core calculations–application to the ASTRID CFV core, Nuclear Engineering and Technology, 49 (2017) 1379–1387, 10.1016/j.net.2017.08.014Search in Google Scholar
19 Ohshima, H.; Kubo, S.: 5 – Sodium-cooled fast reactor, Elsevier Ltd, 2016, DOI:10.1016/B978-0-08-100149-3.00005-710.1016/B978-0-08-100149-3.00005-7Search in Google Scholar
20 Scherr, J.; Tsvetkov, P.: Annals of Nuclear Energy Reactor design strategy to support spectral variability within a sodium-cooled fast spectrum materials testing reactor, Annals of Nuclear Energy, 113 (2018) 15–24. , DOI:10.1016/j.anucene.2017.10.04910.1016/j.anucene.2017.10.049Search in Google Scholar
21 Aoto, K.; Dufour, P.; Hongyi, Y.; Glatz, J. P.; Il Kim, Y.; Ashurko, Y.; Hill, R.; Uto, N.: A summary of sodium-cooled fast reactor development, Progress in Nuclear Energy, 77 (2014) 247–265, DOI:10.1016/j.pnucene.2014.05.00810.1016/j.pnucene.2014.05.008Search in Google Scholar
22 Loewen, E.; DeSilva, S.; Stachowski, R.: PRISM reference fuel design, Nuclear Engineering and Design, 340 (2018) 40 –53, DOI:10.1016/j.nucengdes.2018.09.01610.1016/j.nucengdes.2018.09.016Search in Google Scholar
23 Shin, S. H.; Kim, J. H.; Ryu, W. S.; Heo, H. M.; Kim, S. H.: Aging effect on the thermal transient behavior of the fuel cladding of a sodium-cooled fast reactor, Journal of Nuclear Materials, 495 (2017) 225–233, DOI:10.1016/j.jnucmat.2017.08.02210.1016/j.jnucmat.2017.08.022Search in Google Scholar
24 Silva Pinto Wahnon, S.; Ammirabile, L.; Kloosterman, J. L.; Lathouwers, D.: Multi-physics models for design basis accident analysis of sodium fast reactors. Part I: Validation of three-dimensional TRACE thermal-hydraulics model using Phenix end-of-life experiments, Nuclear Engineering and Design, 331 (2018) 331–341, DOI:10.1016/j.nucengdes.2018.02.03810.1016/j.nucengdes.2018.02.038Search in Google Scholar
25 Leppänen, J.: Serpent – a Continuous-energy Monte Carlo Reactor Physics Burnup Calculation Code, VTT Technical Research Centre of Finland (2013). http://www.polymtl.ca/merlin/Serpent_Dragon/Serpent_manual_2013.pdfSearch in Google Scholar
26 Macdonald, R.; Driscoll,M. J.: Magnesium oxide: An improved reflector for blanket-free fast reactors, Transactions of the American Nuclear Society, 102 (2010) 488–489.Search in Google Scholar
27 Zhang, G.; Fratoni, M.; Greenspan,E.: Advanced burner reactors with breed-and-burn thorium blankets for improved economics and resource utilization, Nuclear Technology, 199 (2017) 187–218, DOI:10.1080/00295450.2017.133740810.1080/00295450.2017.1337408Search in Google Scholar
28 Vauchy, R.; Belin, R. C.; Robisson, A. C.; Lebreton, F.; Aufore, L.; Scheinost, A. C.; Martin, P. M.: Actinide Oxidation State and O/M Ratio in Hypostoichiometric Uranium-Plutonium-Americium U0.750Pu0.246Am0.004O2-x Mixed Oxides, Inorganic Chemistry, 55 (2016) 2123–2132, DOI:10.1021/acs.inorgchem.5b0253310.1021/acs.inorgchem.5b02533Search in Google Scholar PubMed
29 Tanaka, K.; Osaka, M.; Miwa, S.; Hirosawa, T.; Kurosaki, K.; Muta, H.; Uno, M.; Yamanaka, S.: Preparation and characterization of the simulated burnup americium-containing uranium-plutonium mixed oxide fuel, Journal of Nuclear Materials, 420 (2012) 207–212, DOI:10.1016/j.jnucmat.2011.10.00410.1016/j.jnucmat.2011.10.004Search in Google Scholar
30 World Nuclear Association, 2018. \Plutonium," (2018). https://www.world-nuclear.org/information-library/nuclear-fuel-cycle/fuel-recycling/plutonium.aspx (accessed July 23, 2019).Search in Google Scholar
31 Zhang, G.; Fratoni, M.; Greenspan, E.: Fuel cycle analysis of Advanced Burner Reactor with breed-and-burn thorium blanket, Annals of Nuclear Energy,112 (2018) 383–394, DOI:10.1016/j.anucene.2017.10.01610.1016/j.anucene.2017.10.016Search in Google Scholar
32 György, H.; Czifrus, S.: The utilization of thorium in Generation IV reactors, Progress in Nuclear Energy, 93 (2016) 306–317, DOI:10.1016/j.pnucene.2016.09.00710.1016/j.pnucene.2016.09.007Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany
Articles in the same Issue
- Frontmatter
- Large eddy fire simulation applications from nuclear industry
- Characterization of polystyrene and polyacrylic based polymeric materials exposed to oxidative degradation
- Thorium-based CANDU qualification as plutonium burner
- Higher order TN approximation for the neutron diffusion problem in a slab reactor
- A Monte Carlo study on burnup treatment in sodium-cooled reactor with Th fuel
- Neutronics and both analytical and numerical solutions for the rod centered subchannel thermal-hydraulic model
Articles in the same Issue
- Frontmatter
- Large eddy fire simulation applications from nuclear industry
- Characterization of polystyrene and polyacrylic based polymeric materials exposed to oxidative degradation
- Thorium-based CANDU qualification as plutonium burner
- Higher order TN approximation for the neutron diffusion problem in a slab reactor
- A Monte Carlo study on burnup treatment in sodium-cooled reactor with Th fuel
- Neutronics and both analytical and numerical solutions for the rod centered subchannel thermal-hydraulic model