Home Algorithms for solving scattering problems for the Manakov model of nonlinear Schrödinger equations
Article
Licensed
Unlicensed Requires Authentication

Algorithms for solving scattering problems for the Manakov model of nonlinear Schrödinger equations

  • Leonid L. Frumin ORCID logo EMAIL logo
Published/Copyright: December 2, 2020

Abstract

We introduce numerical algorithms for solving the inverse and direct scattering problems for the Manakov model of vector nonlinear Schrödinger equation. We have found an algebraic group of 4-block matrices with off-diagonal blocks consisting of special vector-like matrices for generalizing the scalar problem’s efficient numerical algorithms to the vector case. The inversion of block matrices of the discretized system of Gelfand–Levitan–Marchenko integral equations solves the inverse scattering problem using the vector variant the Toeplitz Inner Bordering algorithm of Levinson’s type. The reversal of steps of the inverse problem algorithm gives the solution of the direct scattering problem. Numerical tests confirm the proposed vector algorithms’ efficiency and stability. We also present an example of the algorithms’ application to simulate the Manakov vector solitons’ collision.

MSC 2010: 65R32; 37K15; 37K40; 34L25; 37M15

Award Identifier / Grant number: AAAA-A17-117062110026-3

Award Identifier / Grant number: 17-72-30006

Funding statement: This work was supported by the Ministry of Science and Higher Education of the Russian Federation, project AAAA-A17-117062110026-3, and Section 7 (numerical simulation) was supported by the Russian Science Foundation (RSF) (17-72-30006).

Acknowledgements

The author is grateful to Professors A. A. Gelash, A. V. Mikhailov, D. A. Shapiro and S. K. Turitsyn for helpful discussions, recommendations, and interest in this work.

References

[1] M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, SIAM Stud. Appl. Math. 4, Society for Industrial and Applied Mathematics, Philadelphia, 1981. 10.1137/1.9781611970883Search in Google Scholar

[2] V. Aref, S. T. Le and H. Buelow, Modulation over nonlinear fourier spectrum: Continuous and discrete spectrum, IEEE J. Lightwave Technol. 36 (2018), 1289–1295. 10.1109/JLT.2018.2794475Search in Google Scholar

[3] A. M. Basharov and A. I. Maimistov, Self-induced transparency when the resonance energy levels are degenerate, Sov. Phys. JETP 60 (1984), 913–919. Search in Google Scholar

[4] O. V. Belai, L. L. Frumin, E. V. Podivilov and D. A. Shapiro, Efficient numerical method of the fiber Bragg grating synthesis, J. Opt. Soc. Amer. B Opt. Phys. 24 (2007), no. 7, 1451–1457. 10.1364/JOSAB.24.001451Search in Google Scholar

[5] O. V. Belai, L. L. Frumin, E. V. Podivilov and D. A. Shapiro, Inverse scattering for the one-dimensional Helmholtz equation: Fast numerical method, Opt. Lett. 33 (2008), 2101–2103. 10.1364/OL.33.002101Search in Google Scholar

[6] O. V. Belai, L. L. Frumin, E. V. Podivilov and D. A. Shapiro, Inverse scattering problem for gratings with deep modulation, Laser Phys. 20 (2010), 318–324. 10.1134/S1054660X10030023Search in Google Scholar

[7] D. S. Bernstein, Matrix Mathematics. Theory, Facts, and Formulas with Application to Linear Systems Theory, Princeton University, Princeton, 2005. Search in Google Scholar

[8] R. E. Blahut, Fast Algorithms for Digital Signal Processing, Addison-Wesley, Reading, 1985. 10.1007/978-94-009-5113-6_8Search in Google Scholar

[9] A. Buryak, J. Bland-Hawthorn and V. Steblina, Comparison of inverse scattering algorithms for designing ultrabroadband fibre Bragg gratings, Opt. Express 17 (2009), 1995–2004. 10.1364/OE.17.001995Search in Google Scholar

[10] L. L. Frumin, O. V. Belai, E. V. Podivilov and D. A. Shapiro, Efficient numerical method for solving the direct Zakharov–Shabat scattering problem, J. Opt. Soc. Am. B 32 (2015), 290–296. 10.1364/JOSAB.32.000290Search in Google Scholar

[11] L. L. Frumin, A. A. Gelash and S. K. Turitsyn, New approaches to coding information using inverse scattering transform, Phys. Rev. Lett. 118 (2017), no. 22, Article ID 223901. 10.1103/PhysRevLett.118.223901Search in Google Scholar PubMed

[12] F. R. Gantmacher, The Theory of Matrices, AMS Chelsea, Providence, 2000. Search in Google Scholar

[13] R. Hirota, Exact solution of the Korteweg–de Vries equation for multiple collisions of solitons, Phys. Rev. Lett. 27 (1971), 1192–1194. 10.1103/PhysRevLett.27.1192Search in Google Scholar

[14] T. Kanna and M. Lakshmanan, Exact soliton solutions of coupled nonlinear Schroedinger equations: Shape–changing collisions, logic gates, and partially coherent solitons, Phys. Rev. E 67 (2003), Article ID 046617. 10.1103/PhysRevE.67.046617Search in Google Scholar

[15] Y. S. Kivshar and G. Agrawal, Optical Solitons: From Fibers to Photonic Crystals, Academic Press, New York, 2003. 10.1016/B978-012410590-4/50012-7Search in Google Scholar

[16] G. L. Lamb, Jr., Elements of Soliton Theory, John Wiley & Sons, New York, 1980. Search in Google Scholar

[17] S. Le, J. Prilepskiy and S. Turitsyn, Nonlinear inverse synthesis for high spectral efficiency transmission in optical fibers, Opt. Express 22 (2014), 26720–26741. 10.1364/OE.22.026720Search in Google Scholar

[18] N. Levinson, The Wiener RMS (root mean square) error criterion in filter design and prediction, J. Math. Phys. Mass. Inst. Tech. 25 (1947), 261–278. 10.1007/978-1-4612-5335-8_16Search in Google Scholar

[19] A. I. Maimistov, Solitons in nonlinear optics, Sov. J. Quantum Electron. 40 (2010), 756–781. 10.1070/QE2010v040n09ABEH014396Search in Google Scholar

[20] A. I. Maimistov and A. M. Basharov, Nonlinear Optical Waves, Kluwer Academic, Dordrecht, 1999. 10.1007/978-94-017-2448-7Search in Google Scholar

[21] A. I. Maimistov and A. M. Basharov, Nonlinear Optical Waves, Springer, Cham, 2013. Search in Google Scholar

[22] A. I. Maimistov, A. M. Basharov, S. O. Elyutin and Y. M. Sklyarov, Present state of self-induced transparency theory, Phys. Rep. 191 (1990), 1–108. 10.1016/0370-1573(90)90142-OSearch in Google Scholar

[23] S. V. Manakov, On the theory of two-dimensional stationary self-focusing of electromagnetic waves, Sov. Phys. JETP 38 (1974), 248–253. Search in Google Scholar

[24] L. F. Mollenauer and J. P. Gordon, Solitons in Optical Fibers: Fundamentals and Applications, Academic Press, New York, 2006. Search in Google Scholar

[25] S. Olver, A general framework for solving Riemann–Hilbert problems numerically, Numer. Math. 122 (2012), no. 2, 305–340. 10.1007/s00211-012-0459-7Search in Google Scholar

[26] R. Radhakrishnan, M. Lakshmanan and J. Hietarinta, Inelastic collision and switching of coupled bright solitons in optical fibers, Phys. Rev. E 56 (1997), 2213–2216. 10.1103/PhysRevE.56.2213Search in Google Scholar

[27] C. Rogers and W. F. Shadwick, Bäcklund Transformations and Their Applications, Math. Sci. Eng. 161, Academic Press, New York, 1982. Search in Google Scholar

[28] S. K. Turitsyn, J. E. Prilepsky, S. T. Le, S. Wahls, L. L. Frumin, M. Kamalian and S. A. Derevyanko, Nonlinear Fourier transform for optical data processing and transmission: Advances and perspectives, Optica 4 (2017), 307–322. 10.1109/ECOC.2018.8535515Search in Google Scholar

[29] V. E. Zaharov, S. V. Manakov, S. P. Novikov and L. P. Pitaevskiĭ, Theory of Solitons: The Inverse Scattering Method, Springer, Cham, 1984. Search in Google Scholar

[30] V. E. Zakharov and A. V. Mikhaĭlov, Relativistically invariant two-dimensional models of field theory which are integrable by means of the inverse scattering problem method, Sov. Phys. JETP 47 (1978), 1017–1027. Search in Google Scholar

[31] V. E. Zakharov and A. B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Ž. Èksper. Teoret. Fiz. 61 (1971), no. 1, 118–134. Search in Google Scholar

Received: 2020-09-07
Revised: 2020-11-08
Accepted: 2020-11-09
Published Online: 2020-12-02
Published in Print: 2021-06-01

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 21.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/jiip-2020-0126/html
Scroll to top button