Home An inversion formula for the transport equation in ℝ3 using complex analysis in several variables
Article
Licensed
Unlicensed Requires Authentication

An inversion formula for the transport equation in ℝ3 using complex analysis in several variables

  • Seyed Majid Saberi Fathi ORCID logo EMAIL logo
Published/Copyright: October 30, 2018

Abstract

In this paper, the stationary photon transport equation has been extended by analytical continuation from 3 to 3. A solution to the inverse problem posed by this equation is obtained on a hyper-sphere and a hyper-cylinder as X-ray and Radon transforms, respectively. We show that these results can be transformed into each other, and they agree with known results. Numerical reconstructions of a three-dimensional Shepp–Logan head phantom using the obtained inverse formula illustrate the analytical results obtained in this manuscript.

MSC 2010: 65R32; 34M50

References

[1] R. Abreu Blaya and J. Bory Reyes, On the Riemann Hilbert type problems in Clifford analysis, Adv. Appl. Clifford Algebr. 11 (2001), no. 1, 15–26. 10.1007/BF03042036Search in Google Scholar

[2] E. V. Arbuzov, A. L. Bukhgeĭm and S. G. Kazantsev, Two-dimensional tomography problems and the theory of A-analytic functions Siberian Adv. Math. 8 (1998), no. 4, 1–20. Search in Google Scholar

[3] G. Bal, Columbia University (2004), Lecture Notes in http://www.colombia.edu/?gb2030/. Search in Google Scholar

[4] H. H. Barrett and W. Swindell, Radiological Imaging. Vol. 1, Academic Press, New York, 1981. 10.1016/B978-0-08-057230-7.50008-1Search in Google Scholar

[5] S. Bernstein, R. Hielscher and H. Schaeben, The generalized totally geodesic Radon transform and its application to texture analysis, Math. Methods Appl. Sci. 32 (2009), no. 4, 379–394. 10.1002/mma.1042Search in Google Scholar

[6] H. Boas, Topics in several complex variables lecture notes, preprint (2005), http://www.math.tamu.edu␣/~boas/courses/685-2005c/. Search in Google Scholar

[7] P. Chandramohan, B. U. Nayak and V. S. Raju, Application of longshore transport equations to the Andhra coast, east coast of India, Coastal Eng. 12 (1988), no. 3, 285–297. 10.1016/0378-3839(88)90009-9Search in Google Scholar

[8] Z. Chen, G. Huan and Y. Ma, Computational Methods for Multiphase Flows in Porous Media, SIAM, Philadelphia, 2006. 10.1137/1.9780898718942Search in Google Scholar

[9] S. R. Deans, The Radon Transform and some of its Applications, John Wiley & Sons, New York, 1983. Search in Google Scholar

[10] D. V. Finch, Cone beam reconstruction with sources on a curve, SIAM J. Appl. Math. 45 (1985), no. 4, 665–673. 10.1137/0145039Search in Google Scholar

[11] D. V. Finch, Approximate reconstruction formulae for the cone beam transform. I, unpulished (1987). Search in Google Scholar

[12] I. M. Gel’fand, M. I. Graev and N. Y. Vilenkin, Generalized Functions. Vol. 5: Integral Geometry and Representation Theory, Academic Press, New York, 1966. Search in Google Scholar

[13] I. M. Gel’fand and G. E. Shilov, Generalized Functions. Vol. I: Properties and Operations, Academic Press, New York, 1964. Search in Google Scholar

[14] F. Golfier, M. Quintard and S. Whitaker S. 2002, Heat and mass transfer in tubes: An analysis using the method of volume averaging, J. Porous Media 5 (2002), no. 2, 169–185. 10.1615/JPorMedia.v5.i3.10Search in Google Scholar

[15] P. Grangeat, Analysis d’un système d’imagerie 3D par´réconstruction à partir de X, en géométrie conique PhD Thesis, Ecole Nationale Supérieure des Té1écommunications, Paris, 1987. Search in Google Scholar

[16] R. C. Gunning, Introduction to Holomorphic Functions of Several Variables. Vol. I: Function Theory, Wadsworth & Brooks/Cole, Pacific Grove, 1990. Search in Google Scholar

[17] C. Hamaker, K. T. Smith, D. C. Solmon and S. L. Wagner, The divergent beam X-ray transform, Rocky Mountain J. Math. 10 (1980), no. 1, 253–283. 10.1216/RMJ-1980-10-1-253Search in Google Scholar

[18] S. Helgason, The Radon Transform, 2nd ed., Progr. Math. 5, Birkhäuser, Boston, 1999. 10.1007/978-1-4757-1463-0Search in Google Scholar

[19] S. M. Hong, A. T. Pham and C. Jungemann, Deterministic Solvers for the Boltzmann Transport Equation, Springer, Wien, 2011. 10.1007/978-3-7091-0778-2Search in Google Scholar

[20] F. John, Plane Waves and Spherical Means Applied to Partial Differential Equations, Interscience, New York, 1955. Search in Google Scholar

[21] A. A. Kirillov, A problem of I. M. Gel’fand, Dokl. Akad. Nauk SSSR 137 (1961), 276–277; translation in Soviet Math. Dokl. 2 (1961), 268–269. Search in Google Scholar

[22] M. Landucci, Boundary values of holomorphic functions and Cauchy problem for ¯ operator in the polydisc, Rend. Semin. Mat. Univ. Padova 62 (1980), 23–34. Search in Google Scholar

[23] C. Laurent-Thiébaut, Transformation de Bochner–Martinelli dans une variété de Stein, Séminaire d’Analyse P. Lelong–P. Dolbeault–H. Skoda, Années 1985/1986, Lecture Notes in Math. 1295, Springer, Berlin (1987), 96–131. 10.1007/BFb0081979Search in Google Scholar

[24] C. Laurent-Thiébaut, Holomorphic Function Theory in Several Variables, Universitext, Springer, London, 2011. 10.1007/978-0-85729-030-4Search in Google Scholar

[25] P. D. Lax and R. S. Phillips, The Paley–Wiener theorem for the Radon transform, Comm. Pure Appl. Math. 23 (1970), 409–424. 10.1002/cpa.3160230311Search in Google Scholar

[26] B. Meinerzhagen, A. T. Pham, S.-M. Hong and C. Jungemann, Solving Boltzmann transport equation without Monte-Carlo algorithms - New methods for industrial TCAD applications, International Conference on Simulation of Semiconductor Processes and Devices (Bologna 2010), IEEE Press, Piscataway (2010), 10.1109/SISPAD.2010.5604501. 10.1109/SISPAD.2010.5604501Search in Google Scholar

[27] R. G. Novikov, An inversion formula for the attenuated X-ray transformation, Ark. Mat. 40 (2002), no. 1, 145–167. 10.1007/BF02384507Search in Google Scholar

[28] V. P. Palamodov, Inversion formulas for the three-dimensional ray transform, Mathematical Methods in Tomography (Oberwolfach 1990), Lecture Notes in Math. 1497, Springer, Berlin (1991), 53–62. 10.1007/BFb0084507Search in Google Scholar

[29] M. Quintard and M. Whitaker, Convection, dispersion, and interfacial transport of contaminants: Homogeneous porous media, Adv. Water Res. 17 (1994), no. 4, 221–239. 10.1016/0309-1708(94)90002-7Search in Google Scholar

[30] W. Rudin, Function Theory in Polydiscs, W. A. Benjamin, New York, 1969. Search in Google Scholar

[31] W. Rudin, Lumer’s Hardy spaces, Michigan Math. J. 24 (1977), no. 1, 1–5. 10.1307/mmj/1029001813Search in Google Scholar

[32] S. M. Saberi Fathi, Inversion formula for the non-uniformly attenuated x-ray transform for emission imaging in 3 using quaternionic analysis, J. Phys. A 43 (2010), no. 33, Article ID 335202. 10.1088/1751-8113/43/33/335202Search in Google Scholar

[33] S. M. Saberi Fathi and T. T. Truong, On the inverse of the directional derivative operator in N, J. Phys. A 42 (2009), no. 4, Article ID 045203. 10.1088/1751-8113/42/4/045203Search in Google Scholar

[34] S. M. Saberi-Fathi, T. T. Truong and M. K. Nguyen, A quaternionic approach to x-ray transform inversion in 3, J. Phys. A 42 (2009), no. 41, Article ID 415205. 10.1088/1751-8113/42/41/415205Search in Google Scholar

[35] B. D. Smith, Cone-beam tomography: Recent advances and a tutorial review, Optical Eng. 29 (1990), no. 5, 524–534. 10.1117/12.55621Search in Google Scholar

[36] K. T. Smith, D. C. Solmon and S. L. Wagner, Practical and mathematical aspects of the problem of reconstructing objects from radiographs, Bull. Amer. Math. Soc. 83 (1977), no. 6, 1227–1270. 10.1090/S0002-9904-1977-14406-6Search in Google Scholar

[37] D. C. Solmon, The X-ray transform, J. Math. Anal. Appl. 56 (1976), no. 1, 61–83. 10.1016/0022-247X(76)90008-1Search in Google Scholar

[38] H. K. Tuy, An inversion formula for cone-beam reconstruction, SIAM J. Appl. Math. 43 (1983), no. 3, 546–552. 10.1137/0143035Search in Google Scholar

[39] F. Zanotti and R. G. Carbonell, Development of Transport Equations for Multiphase Systems. III: Application to heat transfer in packed beds, Chem. Eng. Sci. 39 (1984), no. 2, 299–311. 10.1016/0009-2509(84)80028-7Search in Google Scholar

Received: 2018-03-05
Revised: 2018-05-23
Accepted: 2018-09-20
Published Online: 2018-10-30
Published in Print: 2019-06-01

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/jiip-2018-0015/html
Scroll to top button