Home Testing Spatial Dependence in Spatial Models with Endogenous Weights Matrices
Article
Licensed
Unlicensed Requires Authentication

Testing Spatial Dependence in Spatial Models with Endogenous Weights Matrices

  • Anil K. Bera , Osman Doğan EMAIL logo and Süleyman Taşpınar
Published/Copyright: October 9, 2018
Become an author with De Gruyter Brill

Abstract

In this study, we propose simple test statistics for identifying the source of spatial dependence in spatial autoregressive models with endogenous weights matrices. Elements of the weights matrices are modelled in such a way that endogenity arises when the unobserved factors that affect elements of the weights matrices are correlated with the unobserved factors in the outcome equation. The proposed test statistics are robust to the presence of endogeneity in the weights and can be used to detect spatial dependence in the dependent variable and/or the disturbance terms. The robust test statistics are easy to calculate as computationally simple estimations are needed for their calculations. Our Monte Carlo results indicate that these tests have good size and power properties in finite samples. We also provide an empirical illustration to demonstrate the usefulness of the robust tests in identifying the source of spatial dependence.

JEL Classification: C13; C21; C31

Acknowledgment

We are grateful to a co-editor and two anonymous referees for their constructive comments.

  1. Funding

    This research was supported, in part, by a grant of computer time from the City University of New York High Performance Computing Center under NSF Grants CNS-0855217 and CNS-0958379.

A First and Second Order Derivatives

From (9), the first order derivatives are

ln L ( θ ) λ = 1 σ ξ 2 ( R ( ρ ) W Y ) ξ ( θ ) t r ( W S 1 ( λ ) ) , ln L ( θ ) δ = 1 σ ξ 2 ε ( θ ) ξ ( θ ) , ln L ( θ ) ρ = 1 σ ξ 2 ( M ( S ( λ ) Y X 1 β ) ) ξ ( θ ) t r ( M R 1 ( ρ ) ) , ln L ( θ ) σ ξ 2 = n 2 σ ξ 2 + 1 2 σ ξ 4 ξ ( θ ) ξ ( θ ) , ln L ( θ ) β = 1 σ ξ 2 ( R ( ρ ) X 1 ) ξ ( θ ) , ln L ( θ ) α = n 2 ln | Σ ε | α 1 2 t r ( Σ ε 1 ε ( Γ ) ε ( Γ ) ) α .

Note that ln|Σε|α has the jth element that is equal to tr(Σε1Σεαj). Similarly, the jth element of tr(Σε1ε(Γ)ε(Γ))α is equal to tr(Σε1ΣεαjΣε1ε(Γ)ε(Γ)).

The derivation of the first order derivative with respect to Γ requires some well-known properties. Let A, B and C be matrices with appropriate dimensions, then

  1. vec(AB) = (IA)vec(B) = (B′I)vec(A),

  2. vec′(B′)vec(A) = tr(BA) = tr(AB) = vec′(A′)vec(B),

where I is an identity matrix that has appropriate dimension. Using these properties, it can be shown that

i = 1 n ( Z i X i Γ ) Σ ε 1 ( Z i Γ X i ) = vec ( ( Z X Γ ) ) ( I n Σ ε 1 ) vec ( ( Z X Γ ) ) = vec ( ( Z X Γ ) ) vec ( Σ ε 1 ( Z X Γ ) ) = vec ( ( Z X Γ ) Σ ε 1 ) vec ( ( Z X Γ ) ) = vec ( Z X Γ ) ( Σ ε 1 I n ) vec ( Z X Γ ) .

Also, vec() = (Ip2 + p3X)vec(Γ) and vec′() = vec′(Γ)(Ip2 + p3X′). Thus,

ln L ( θ ) vec ( Γ ) = ( I p 2 + p 3 X ) ( Σ ε 1 I n ) vec ( Z X Γ ) 1 σ ξ 2 δ ( X ξ ( θ ) ) = ( Σ ε 1 X ) vec ( Z X Γ ) 1 σ ξ 2 δ ( X ξ ( θ ) ) .

The second order derivatives are listed as follows:

2 ln L ( θ ) λ 2 = 1 σ ξ 2 ( R ( ρ ) W Y ) R ( ρ ) W Y t r ( [ W S 1 ( λ ) ] 2 ) , 2 ln L ( θ ) λ ρ = 1 σ ξ 2 ( M W Y ) ξ ( θ ) 1 σ ξ 2 ( R ( ρ ) W Y ) M ( S ( λ ) Y X 1 β ) , 2 ln L ( θ ) λ σ ξ 2 = 1 σ ξ 4 ( R ( ρ ) W Y ) ξ ( θ ) , 2 ln L ( θ ) λ β = 1 σ ξ 2 X 1 R ( ρ ) R ( ρ ) W Y , 2 ln L ( θ ) λ vec ( Γ ) = 1 σ ξ 2 δ X R ( ρ ) W Y , 2 ln L ( θ ) λ δ = 1 σ ξ 2 ε ( Γ ) R ( ρ ) W Y , 2 ln L ( θ ) λ α = 0 J × 1 ,

2 ln L ( θ ) ρ 2 = 1 σ ξ 2 ( S ( λ ) Y X 1 β ) M M ( S ( λ ) Y X 1 β ) t r ( [ M R 1 ( ρ ) ] 2 ) , 2 ln L ( θ ) ρ σ ξ 2 = 1 σ ξ 4 ( M ( S ( λ ) Y X 1 β ) ) ξ ( θ ) , 2 ln L ( θ ) ρ β = 1 σ ξ 2 X 1 M ξ ( θ ) 1 σ ξ 2 X 1 R ( ρ ) M ( S ( λ ) Y X 1 β ) , 2 ln L ( θ ) ρ vec ( Γ ) = 1 σ ξ 2 δ X M ( S ( λ ) Y X 1 β ) , 2 ln L ( θ ) ρ δ = 1 σ ξ 2 ε ( Γ ) M ( S ( λ ) Y X 1 β ) , 2 ln L ( θ ) ρ α = 0 J × 1 ,

2 ln L ( θ ) σ ξ 2 σ ξ 2 = n 2 σ ξ 4 1 σ ξ 6 ξ ( θ ) ξ ( θ ) , 2 ln L ( θ ) σ ξ 2 β = 1 σ ξ 4 X 1 R ( ρ ) ξ ( θ ) , 2 ln L ( θ ) σ ξ 2 vec ( Γ ) = 1 σ ξ 4 δ X ξ ( θ ) , 2 ln L ( θ ) σ ξ 2 δ = 1 σ ξ 4 ε ( Γ ) ξ ( θ ) , 2 ln L ( θ ) σ ξ 2 α = 0 J × 1 ,

2 ln L ( θ ) β β = 1 σ ξ 2 X 1 R ( ρ ) R ( ρ ) X 1 , 2 ln L ( θ ) β vec ( Γ ) = 1 σ ξ 2 δ X 1 R ( ρ ) X , 2 ln L ( θ ) β δ = 1 σ ξ 2 X 1 R ( ρ ) ε ( Γ ) , 2 ln L ( θ ) β α = 0 k 1 × J ,

2 ln L ( θ ) vec ( Γ ) vec ( Γ ) = ( Σ ε 1 X X ) 1 σ ξ 2 ( δ δ X X ) , 2 ln L ( θ ) vec ( Γ ) δ = 1 σ ξ 2 ( I p 2 + p 3 X ξ ( θ ) ) + 1 σ ξ 2 δ X ε ( Γ ) , 2 ln L ( θ ) vec ( Γ ) α = ( I p 2 + p 3 X ε ( Γ ) ) vec ( Σ ε 1 ) α .

Note that above we used the fact that in the first order derivative with respect to vec(Γ), only the first term involves Σε1 and that term can be written as (Σε1X)vec(ε(Γ))=Xε(Γ)Σε1=(Ip2+p3Xε(Γ))vec(Σε1).

2 ln L ( θ ) δ δ = 1 σ ξ 2 ε ( Γ ) ε ( Γ ) , 2 ln L ( θ ) δ α = 0 ( p 2 + p 3 ) × J ,

2 ln L ( θ ) α α = n 2 2 ln | Σ ε | α α 1 2 2 t r ( Σ ε 1 ε ( Γ ) ε ( Γ ) ) α α .

Note that 2ln|Σε|αjαk is equal to tr(Σε1ΣεαjΣε1Σεαk). Similarly, 2tr(Σε1ε(Γ)ε(Γ))αjαk is equal to tr(Σε1[ΣεαkΣε1Σεαj+ΣεαjΣε1Σεαk]Σε1ε(Γ)ε(Γ)).

For notational simplicity, denote H = MR−1, G = WS−1, and G¯=RGR1. Define B(s) = B + B′ for any square matrix B. Then, we have

E [ 2 ln L ( θ 0 ) θ θ ] = 1 σ ξ 0 2 ( I ρ ρ I ρ λ E [ ( ε δ 0 ) H R X 1 ] δ 0 E [ ( ε δ 0 ) H X ] t r ( E [ H ] ) 0 1 × J E [ ( ε δ 0 ) H ε ] I λ λ I λ β I λ vec ( Γ ) t r ( E [ G ¯ ] ) 0 1 × J I λ δ E [ X 1 R R X 1 ] δ 0 E [ X 1 R X ] 0 k 1 × 1 0 k 1 × J 0 k 1 × ( p 2 + p 3 ) I vec ( Γ ) vec ( Γ ) 0 k p × k p 0 k p × J 0 k p × ( p 2 + p 3 ) n 2 σ ξ 0 2 0 1 × J 0 1 × ( p 2 + p 3 ) I α α 0 J × ( p 2 + p 3 ) n Σ ε 0 ) ,

where kp = (k2 + k3)(p2 + p3),

I ρ ρ = E ( δ 0 ε H H ε δ 0 ) σ ξ 0 2 t r ( E [ H 2 + H H ] ) , I ρ λ = E [ ( ε δ 0 ) H G ¯ ( X 1 β 0 + ε δ 0 ) ] σ ξ 0 2 t r ( E [ H ( s ) G ¯ ] ) , I λ λ = E [ ( X 1 β 0 + ε δ 0 ) G ¯ G ¯ ( X 1 β 0 + ε δ 0 ) ] σ ξ 0 2 t r ( E [ G ¯ 2 + G ¯ G ¯ ] ) , I λ β = E [ ( X 1 β 0 + ε δ 0 ) G ¯ R X 1 ] , I λ vec ( Γ ) = δ 0 E [ ( X 1 β 0 + ε δ 0 ) G ¯ X ] , I λ δ = E [ ( X 1 β 0 + ε δ 0 ) G ¯ ε ] , I vec ( Γ ) vec ( Γ ) = ( σ ξ 0 2 Σ ε 0 1 + δ 0 δ 0 ) X X , I α α [ k , j ] = n σ ξ 0 2 2 t r ( Σ ε 0 1 Σ ε 0 α j Σ ε 0 1 Σ ε 0 α k ) .

B Detailed Expressions for Test Statistics

Let θ~ be the restricted MLE under the joint null H0 : ρ0 = λ0 = 0 and δ0 = 0. Then, evaluating the required first order conditions at θ~ yields

(48) L λ ( θ ~ ) = 1 n σ ~ ξ 2 ( W Y ) ξ ~ , L ρ ( θ ~ ) = 1 n σ ~ ξ 2 ( M ( Y X 1 β ~ ) ) ξ ~ , L δ ( θ ~ ) = 1 n σ ~ ξ 2 ε ~ ξ ~ .

Similarly, I(θ~) is given by

I ( θ ~ ) = 1 n σ ~ ξ 2 ( I ρ ρ I ρ λ 0 0 0 0 1 × J 0 I λ λ I λ β 0 0 0 1 × J I λ δ X 1 X 1 0 0 k 1 × 1 0 k 1 × J 0 k 1 × ( p 2 + p 3 ) I vec ( Γ ) vec ( Γ ) 0 k p × k p 0 k p × J 0 k p × ( p 2 + p 3 ) n 2 σ ~ ξ 2 0 1 × J 0 1 × ( p 2 + p 3 ) I α α 0 J × ( p 2 + p 3 ) n Σ ~ ε ) ,

where kp = (k2 + k3)(p2 + p3),

I ρ ρ = σ ~ ξ 2 t r ( M 2 + M M ) , I ρ λ = σ ~ ξ 2 t r ( M ( s ) W ) , I λ λ = ( X 1 β ~ ) W W X 1 β ~ + σ ~ ξ 2 t r ( W 2 + W W ) , I λ β = ( X 1 β ~ ) W X 1 , I λ δ = ( X 1 β ~ ) W ε ~ , I vec ( Γ ) vec ( Γ ) = ( σ ~ ξ 2 Σ ~ ε 1 ) X X , I α α [ k , j ] = n σ ~ ξ 2 2 t r ( Σ ~ ε 0 1 Σ ε 0 α j Σ ~ ε 1 Σ ε 0 α k ) .

C Proofs of Propositions

Proof of Proposition 1

We first discuss the identification conditions stated in Assumption 5 and then give the asymptotic arguments for the consistency and asymptotic normality of the MLE.

Recall that

(49) 1 n [ Q ( θ ) Q ( θ 0 ) ] = 1 2 E ( ln | R ( ρ ) S ( λ ) S 1 R 1 R 1 S 1 S ( λ ) R ( ρ ) | 1 / n ) 1 2 ln ( σ ξ 2 / σ ξ 0 2 ) 1 2 [ i = 1 p 2 + p 3 ( ω i ln ω i 1 ) ] 1 2 n i = 1 n X i ( Γ 0 Γ ) Σ ε 1 ( Γ 0 Γ ) X i ,

where ωi is the ith eigenvalue of Σε01/2Σε1Σε01/2. Since Σε01/2Σε1Σε01/2 is positive definite, ωi for i = 1, 2, …, (p2 + p3) are positive. Therefore, (ωilnωi − 1) is non-negative, i.e. it is positive for ωi ≠ 1 and is zero for ωi = 1.

There are two cases that lead to 1n[Q(θ)Q(θ0)]<0 for all θθ0. Suppose E(HH) is a positive definite matrix. Then, 1n[(λ0λ),(β0β),δ(ΓΓ0),(δ0δ)]E(HH)[(λ0λ),(β0β),δ(ΓΓ0),(δ0δ)]/σξ02>0 and λ0, β0, Γ0 and δ0 can be identified and (49) reduces to

(50) 1 n [ Q ( θ ) Q ( θ 0 ) ] = 1 2 E [ ln | R ( ρ ) R 1 R 1 R ( ρ ) | 1 / n ] 1 2 ln [ 1 n t r ( E [ R ( ρ ) R 1 R 1 R ( ρ ) ] ) + 1 n ( ρ 0 ρ ) δ 0 Σ ε 0 σ ξ 0 2 δ 0 ( ρ 0 ρ ) ] .

Since Σε0 is positive definite by assumption, 1n(ρ0ρ)δ0Σε0σξ02δ0(ρ0ρ)>0. Note that by the strict inequality of arithmetic and geometric means, we have 1ntr(E[R(ρ)R1R1R(ρ)])>E|R(ρ)R1R1R(ρ)|1/n. Then, by Jensen’s inequality lnE(|R(ρ)R1R1R(ρ)|1/n)Eln(|R(ρ)R1R1R(ρ)|1/n). The strict inequality of arithmetic and geometric means hold if R′(ρ)R(ρ) is linearly independent of R′R with probability one for any ρρ0.

In the second case, the rank condition for E(HH) may be deficient. Hence λ0, β0, Γ0 and δ0 cannot be separately identified. In that case, 1n(ρ0ρ)δ0Σε0σξ02δ0(ρ0ρ)>0 can be used to identify ρ0. Then, using the strict inequality of arithmetic and geometric means hold by assuming that S′(λ)R′(ρ)S(λ)R(ρ) is linearly independent of S′R′SR with probability one for any ρρ0, λ0 can be identified. Then, 1n[(β0β),δ(ΓΓ0),(δ0δ)]E([RX1,X,ε(Γ0)][RX1,X,ε(Γ0)])[(β0β),δ(ΓΓ0),(δ0δ)]/σξ02>0 to identify β0, Γ0 and δ0. These results are summarized in Assumption 5.

The asymptotic analysis will involve evaluation of the terms in the log-likelihood such as 1nX1GRRGX1, 1nX1GMMGX1, 1nX1GMRGX1, 1nX1GRG¯ε(Γ0), 1nX1GMHG¯X1, 1nX1GMG¯ε(Γ0), 1nXG¯ε(Γ0), 1nXHG¯ε(Γ0), 1nε(Γ0)G¯G¯ε(Γ0), 1nε(Γ0)G¯HG¯ε(Γ0), 1nε(Γ0)G¯HHG¯ε(Γ0), 1nε(Γ0)G¯ξ(θ0), 1nε(Γ0)G¯G¯ξ(θ0), 1nε(Γ0)G¯HG¯ξ(θ0), 1nε(Γ0)G¯G¯ξ(θ0), 1nε(Γ0)G¯HHG¯ξ(θ0), 1nξ(θ0)G¯G¯ξ(θ0), 1nξ(θ0)HHξ(θ0), 1nξ(θ0)G¯HHG¯ξ(θ0), 1nln|S(λ)|=1ni=1n(l=1λllWiil) and 1nln|R(ρ)|=1ni=1n(l=1ρllMiil). The last two equalities are derived in Qu and Lee (2013), and are useful to establish their convergence to their expectations under NED.

To prove consistency of the MLE θ^, we have to show uniform convergence of the elements of the log-likelihood to their expectations. Along with the identifiable uniqueness of the population parameters, this uniform convergence is sufficient for the consistency of the MLE. To show supθΘ|1nlnL(θ)1nQ(θ)|p0, first pointwise convergence can be established using Proposition 1 in Qu and Lee (2015). In order to satisfy the conditions of their Proposition 1, counterparts of Claims C.1.5 C.1.6, C.2.5 and C.2.6 in Qu and Lee (2015) are needed for the matrices M and H. However, these counterparts are trivial to obtain. Hence, Proposition 1 can be used in our setup to show pointwise convergence of the log-likelihood function to its expectation. To show uniform convergence, stochastic equicontinuity of 1nlnL(θ) needs to be established. Note that except ln|S(λ) and ln|R(ρ)| all parameters enter the log-likelihood function as polynomials. Since the assumed parameter space is compact, uniform convergence of these terms follow. Equicontinuity of 1nln|S(λ) and 1nln|R(ρ)| can be established as in Qu and Lee (2015).

For the asymptotic normality of the MLE θ^, first Proposition 2 in Qu and Lee (2015) can be used to establish asymptotic normality of 1nlnL(θ0)θ, i.e. 1nlnL(θ0)θdN(0,I). A mean value expansion of 1nlnL(θ^)θ around θ0 along with uniform convergence of the Hessian matrix to its expectation (and applying Cramér’s theorem) yield the desired result. To show uniform convergence of the Hessian matrix to its expectation, Corollary 1 in Qu and Lee (2015) can be used. Thus, supθΘ1n2lnL(θ)θθE[1n2lnL(θ)θθ]p0. Furthermore, we assume that E[1n2lnL(θ)θθ] is a nonsingular matrix. Hence, by continuity of the inverse at a nonsingular matrix, the inverse Hessian converges uniformly to the inverse of the expectation of the Hessian. Then, the information matrix equality yields the desired result.    □

Proof of Proposition 2

The Taylor expansions of nLψ(θ~), nLϕ(θ~) and nLγ(θ~) around θ0 under HAψ and HAϕ can be written as

n L ψ ( θ ~ ) = n L ψ ( θ 0 ) L ψ ψ ( θ 0 ) δ ψ L ψ ϕ ( θ 0 ) δ ϕ + n L ψ γ ( θ 0 ) ( γ ~ γ 0 ) + o p ( 1 ) , n L ϕ ( θ ~ ) = n L ϕ ( θ 0 ) L ϕ ϕ ( θ 0 ) δ ϕ L ϕ ψ ( θ 0 ) δ ψ + n L ϕ γ ( θ 0 ) ( γ ~ γ 0 ) + o p ( 1 ) , n L γ ( θ ~ ) = n L γ ( θ 0 ) L γ ψ ( θ 0 ) δ ψ L γ ϕ ( θ 0 ) δ ϕ + n L γ γ ( θ 0 ) ( γ ~ γ 0 ) + o p ( 1 ) .

Using the fact that nLγ(θ~)=0 in the Taylor expansions above, we can get the following results.

(51) n L ψ ( θ ~ ) = [ I k ψ , I ψ γ I γ γ 1 ] × [ 1 n ln L ( θ 0 ) ψ 1 n ln L ( θ 0 ) γ ] + [ I ψ ψ I ψ γ I γ γ 1 I γ ψ ] δ ψ + [ I ψ ϕ I δ γ I γ γ 1 I γ ϕ ] δ ϕ + o p ( 1 ) ,

(52) n L ϕ ( θ ~ ) = [ I k ϕ , I ϕ γ I γ γ 1 ] × [ 1 n ln L ( θ 0 ) ϕ 1 n ln L ( θ 0 ) γ ] + [ I ϕ ϕ I ϕ γ I γ γ 1 I γ ϕ ] δ ϕ + [ I ϕ ψ I ψ γ I γ γ 1 I γ ψ ] δ ψ + o p ( 1 ) .

Using the asymptotic normality of score functions from Proposition 1, we can show that nLψ(θ~)dN(Iψγδψ+Iψϕγδϕ,Iψγ), where Iψγ=[IψψIψγIγγ1Iγψ] and Iψϕγ=[IψϕIψγIγγ1Iγϕ]. Then, under HAψ and HAϕ, this result implies that

(53) LM ψ ( θ ~ ) d χ k ψ 2 ( φ 1 ) ,

where φ1=δψIψγδψ+δψIψϕγδϕ+δϕIψϕγδψ+δϕIψϕγIψγ1Iψϕγ(θ0)δϕ. Thus, the first result in Proposition 2 follows from (53).

Note that the adjusted score function in Proposition 2 can be written as

(54) n L ψ ( θ ~ ) = [ n L ψ ( θ ~ ) I ψ ϕ γ ( θ ~ ) I ϕ γ 1 ( θ ~ ) n L ϕ ( θ ~ ) ] = [ I k ψ , I ψ ϕ γ I ϕ γ 1 ] × [ n L δ ( θ ~ ) n L λ ( θ ~ ) ] + o p ( 1 ) .

Thus, we need to consider both (51) and (52) for the the last two results of Proposition 2. The combined system can be written as

(55) [ n L ψ ( θ ~ ) n L ϕ ( θ ~ ) ] = [ I k ψ 0 k ϕ × k ϕ I ψ γ I γ γ 1 0 k ϕ × k ψ I k ϕ I ϕ γ I γ γ 1 ] × [ n L ψ ( θ 0 ) n L ϕ ( θ 0 ) n L γ ( θ 0 ) ] + [ I ψ γ δ ψ + I ψ ϕ γ δ ϕ I ϕ γ δ ϕ + I ϕ ψ γ δ ψ ] + o p ( 1 ) .

Then, using the asymptotic normality of score functions from Proposition 1, we get

(56) [ n L ψ ( θ ~ ) n L ϕ ( θ ~ ) ] d N ( [ I ψ γ δ ψ + I ψ ϕ γ δ ϕ I ϕ γ δ ϕ + I ϕ ψ γ δ ψ ] , [ I ψ γ I ψ ϕ γ I ϕ ψ γ I ϕ γ ] ) .

Using (56) in (54), we get the following result under H0ψ.

(57) n L ψ ( θ ~ ) d N ( 0 k ψ , I ψ γ I ψ ϕ γ I ϕ γ 1 I ϕ ψ γ ) .

Thus, LMψ(θ~)dχkψ2, which proves the second part of Proposition 2. Similarly, using (56) in (54), we get the following result under HAψ

(58) n L ψ ( θ ~ ) d N ( [ I ψ γ I ψ ϕ γ I ϕ γ 1 I ϕ ψ γ ] δ ψ , I ψ γ I ψ ϕ γ I ϕ γ 1 I ϕ ψ γ ) .

Then, the last result in Proposition 2 directly follows from the above result, namely

(59) LM ψ ( θ ~ ) d χ k ψ 2 ( φ 2 ) ,

where φ2=δψ(IψγIψϕγIϕγ1Iψϕγ)δψ.

   □

D Simulation Results

The simulation results are based on the following weight matrices: (i) WS is the 49 × 49 contiguity weights matrix of 48 US states, (ii) WO is the 98 × 98 contiguity weights matrix corresponding to five nearest neighbors of each census tract in Toledo, Ohio, (iii) WC is the 361 × 361 weights matrix corresponding to whether the school districts are in the same county in Iowa in 2009, and (iv) WA is the 361 × 361 matrix corresponding to adjacency of 361 school districts in Iowa in 2009. LMμ and LMμ are robust and non-robust tests for H0 = ρ0 = λ0 = 0, (ii) LMκ is the joint test for H0 : ρ0 = λ0 = δ0 = 0. For all specifications, the nominal size of tests is set to 0.05, and the number of Monte Carlo repetitions to 1000. In each table, the first panel reveals the size properties for LMρ, LMρ and LMρa, while the first row in each panel corresponds to the size properties for LMλ, LMλ and LMλa. For LMμ, LMμ and LMκ, their size properties will be seen from the first row of the first panel in each table. The other rows show the power properties for all test statistics.

Table 3:

LM Tests (Bivariate Normal Distribution): δ0 = 0.

WS
WO
λ 0 ρ 0 LMρ LM ρ a LM ρ LMλ LM λ a LM λ LMμ LM μ LMκ LMρ LM ρ a LM ρ LMλ LM λ a LM λ LMμ LM μ LMκ
0.0 0.0 0.047 0.062 0.061 0.035 0.053 0.057 0.050 0.053 0.049 0.050 0.057 0.053 0.047 0.049 0.058 0.061 0.066 0.048
0.1 0.0 0.068 0.058 0.055 0.116 0.097 0.090 0.086 0.089 0.103 0.100 0.049 0.050 0.156 0.108 0.102 0.118 0.111 0.108
0.3 0.0 0.390 0.061 0.060 0.661 0.412 0.377 0.551 0.530 0.502 0.659 0.053 0.050 0.850 0.531 0.504 0.778 0.758 0.752
0.5 0.0 0.846 0.029 0.038 0.982 0.779 0.742 0.961 0.957 0.943 0.985 0.040 0.035 1.000 0.917 0.889 0.996 0.995 0.997
0.0 0.1 0.058 0.065 0.070 0.064 0.055 0.062 0.064 0.069 0.072 0.090 0.073 0.072 0.103 0.061 0.055 0.092 0.090 0.085
0.1 0.1 0.175 0.063 0.060 0.198 0.094 0.087 0.179 0.173 0.161 0.302 0.079 0.079 0.337 0.101 0.096 0.285 0.277 0.251
0.3 0.1 0.570 0.055 0.050 0.751 0.390 0.384 0.698 0.675 0.621 0.875 0.095 0.094 0.937 0.497 0.464 0.910 0.903 0.880
0.5 0.1 0.932 0.037 0.043 0.986 0.748 0.720 0.983 0.974 0.965 0.998 0.072 0.069 1.000 0.873 0.839 0.999 0.998 0.999
0.0 0.3 0.386 0.188 0.195 0.274 0.070 0.069 0.337 0.335 0.308 0.628 0.314 0.307 0.455 0.074 0.078 0.537 0.535 0.520
0.1 0.3 0.595 0.178 0.185 0.541 0.107 0.115 0.539 0.532 0.506 0.879 0.326 0.317 0.799 0.136 0.135 0.786 0.790 0.796
0.3 0.3 0.907 0.125 0.124 0.943 0.351 0.337 0.930 0.927 0.902 0.995 0.257 0.250 0.997 0.461 0.429 0.994 0.992 0.988
0.5 0.3 0.988 0.064 0.070 0.998 0.687 0.649 0.997 0.995 0.996 1.000 0.202 0.188 1.000 0.797 0.765 1.000 1.000 1.000
0.0 0.5 0.845 0.429 0.398 0.695 0.097 0.100 0.787 0.788 0.753 0.986 0.723 0.681 0.925 0.107 0.125 0.966 0.965 0.958
0.1 0.5 0.911 0.384 0.378 0.866 0.127 0.133 0.897 0.893 0.866 0.996 0.666 0.633 0.987 0.151 0.154 0.993 0.992 0.985
0.3 0.5 0.981 0.291 0.289 0.985 0.310 0.312 0.985 0.983 0.986 1.000 0.563 0.525 1.000 0.390 0.393 1.000 1.000 1.000
0.5 0.5 0.999 0.185 0.170 0.999 0.514 0.482 1.000 1.000 0.999 1.000 0.402 0.362 1.000 0.643 0.628 1.000 1.000 1.000
WC
WA
0.0 0.0 0.048 0.056 0.048 0.046 0.051 0.047 0.039 0.039 0.053 0.053 0.049 0.048 0.062 0.056 0.053 0.052 0.046 0.046
0.1 0.0 0.468 0.054 0.055 0.609 0.226 0.231 0.491 0.494 0.456 0.323 0.060 0.063 0.464 0.213 0.191 0.369 0.367 0.327
0.3 0.0 1.000 0.046 0.051 1.000 0.968 0.959 1.000 1.000 1.000 1.000 0.060 0.063 1.000 0.922 0.898 1.000 1.000 0.999
0.5 0.0 1.000 0.041 0.057 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.047 0.049 1.000 1.000 1.000 1.000 1.000 1.000
0.0 0.1 0.488 0.184 0.176 0.391 0.073 0.078 0.377 0.373 0.349 0.337 0.164 0.159 0.236 0.062 0.060 0.271 0.261 0.241
0.1 0.1 0.955 0.209 0.207 0.963 0.223 0.217 0.958 0.955 0.932 0.865 0.130 0.121 0.886 0.193 0.191 0.846 0.847 0.808
0.3 0.1 1.000 0.152 0.150 1.000 0.945 0.949 1.000 1.000 1.000 1.000 0.132 0.130 1.000 0.909 0.891 1.000 1.000 1.000
0.5 0.1 1.000 0.048 0.052 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.108 0.104 1.000 0.997 0.993 1.000 1.000 1.000
0.0 0.3 1.000 0.882 0.874 0.998 0.084 0.086 1.000 1.000 0.998 0.997 0.788 0.730 0.977 0.061 0.063 0.991 0.991 0.989
0.1 0.3 1.000 0.878 0.873 1.000 0.243 0.252 1.000 1.000 1.000 1.000 0.757 0.749 1.000 0.193 0.174 1.000 1.000 1.000
0.3 0.3 1.000 0.750 0.726 1.000 0.858 0.851 1.000 1.000 1.000 1.000 0.689 0.631 1.000 0.825 0.802 1.000 1.000 1.000
0.5 0.3 1.000 0.185 0.172 1.000 0.997 0.997 1.000 1.000 1.000 1.000 0.524 0.466 1.000 0.988 0.984 1.000 1.000 1.000
0.0 0.5 1.000 1.000 1.000 1.000 0.131 0.133 1.000 1.000 1.000 1.000 0.994 0.989 1.000 0.107 0.115 1.000 1.000 1.000
0.1 0.5 1.000 0.993 0.990 1.000 0.227 0.235 1.000 1.000 1.000 1.000 0.992 0.979 1.000 0.208 0.218 1.000 1.000 1.000
0.3 0.5 1.000 0.914 0.894 1.000 0.697 0.680 1.000 1.000 1.000 1.000 0.968 0.946 1.000 0.676 0.646 1.000 1.000 1.000
0.5 0.5 1.000 0.343 0.311 1.000 0.942 0.936 1.000 1.000 1.000 1.000 0.794 0.727 1.000 0.941 0.922 1.000 1.000 1.000
Table 4:

LM Tests (Bivariate Normal Distribution): δ0 = 0.25.

WS
WO
λ 0 ρ 0 LMρ LM ρ a LM ρ LMλ LM λ a LM λ LMμ LM μ LMκ LMρ LM ρ a LM ρ LMλ LM λ a LM λ LMμ LM μ LMκ
0.0 0.0 0.054 0.066 0.043 0.056 0.078 0.044 0.062 0.043 0.269 0.047 0.102 0.060 0.073 0.126 0.053 0.086 0.041 0.539
0.1 0.0 0.079 0.064 0.059 0.192 0.200 0.092 0.177 0.091 0.372 0.114 0.081 0.057 0.294 0.278 0.093 0.267 0.127 0.701
0.3 0.0 0.370 0.059 0.042 0.730 0.544 0.346 0.671 0.512 0.745 0.659 0.085 0.050 0.917 0.738 0.428 0.888 0.754 0.952
0.5 0.0 0.843 0.056 0.029 0.983 0.861 0.709 0.971 0.937 0.978 0.984 0.072 0.049 1.000 0.956 0.837 0.999 0.995 1.000
0.0 0.1 0.068 0.063 0.084 0.095 0.074 0.044 0.097 0.067 0.303 0.129 0.066 0.095 0.196 0.134 0.048 0.147 0.101 0.599
0.1 0.1 0.173 0.059 0.071 0.287 0.177 0.075 0.230 0.162 0.445 0.340 0.068 0.094 0.504 0.256 0.073 0.460 0.300 0.736
0.3 0.1 0.594 0.040 0.055 0.842 0.564 0.348 0.782 0.664 0.851 0.846 0.061 0.113 0.968 0.705 0.428 0.954 0.887 0.977
0.5 0.1 0.924 0.042 0.038 0.992 0.823 0.667 0.985 0.970 0.994 0.995 0.036 0.074 1.000 0.945 0.790 1.000 0.999 1.000
0.0 0.3 0.407 0.127 0.199 0.382 0.102 0.074 0.351 0.304 0.529 0.654 0.171 0.319 0.625 0.140 0.061 0.607 0.563 0.836
0.1 0.3 0.593 0.127 0.209 0.632 0.189 0.102 0.591 0.528 0.729 0.875 0.180 0.338 0.888 0.288 0.106 0.863 0.799 0.942
0.3 0.3 0.883 0.094 0.154 0.946 0.500 0.312 0.933 0.900 0.955 0.987 0.156 0.321 0.996 0.616 0.336 0.997 0.993 0.998
0.5 0.3 0.989 0.049 0.084 0.998 0.740 0.568 0.998 0.995 0.998 1.000 0.106 0.230 1.000 0.879 0.667 1.000 1.000 1.000
0.0 0.5 0.837 0.349 0.450 0.748 0.127 0.097 0.821 0.810 0.863 0.981 0.525 0.695 0.958 0.149 0.116 0.966 0.964 0.981
0.1 0.5 0.917 0.291 0.404 0.876 0.178 0.123 0.898 0.879 0.914 0.997 0.519 0.685 0.994 0.263 0.130 0.995 0.995 0.999
0.3 0.5 0.992 0.202 0.302 0.995 0.403 0.255 0.992 0.989 0.996 1.000 0.409 0.609 1.000 0.543 0.321 1.000 1.000 1.000
0.5 0.5 0.996 0.098 0.162 0.999 0.627 0.463 0.998 0.998 0.999 1.000 0.267 0.435 1.000 0.755 0.555 1.000 1.000 1.000
WC
WA
0.0 0.0 0.057 0.096 0.045 0.088 0.146 0.040 0.124 0.041 0.995 0.055 0.191 0.060 0.154 0.292 0.054 0.217 0.052 0.994
0.1 0.0 0.527 0.108 0.058 0.792 0.511 0.200 0.742 0.537 1.000 0.437 0.164 0.051 0.805 0.686 0.166 0.773 0.430 0.998
0.3 0.0 1.000 0.100 0.046 1.000 0.992 0.953 1.000 1.000 1.000 0.996 0.172 0.068 1.000 0.990 0.877 1.000 1.000 1.000
0.5 0.0 1.000 0.138 0.045 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.120 0.059 1.000 1.000 0.997 1.000 1.000 1.000
0.0 0.1 0.549 0.084 0.218 0.603 0.138 0.054 0.511 0.429 0.999 0.439 0.058 0.202 0.603 0.257 0.049 0.509 0.345 0.997
0.1 0.1 0.979 0.074 0.217 0.995 0.550 0.228 0.986 0.956 1.000 0.929 0.055 0.203 0.990 0.676 0.168 0.969 0.890 1.000
0.3 0.1 1.000 0.058 0.188 1.000 0.986 0.933 1.000 1.000 1.000 1.000 0.067 0.219 1.000 0.991 0.813 1.000 1.000 1.000
0.5 0.1 1.000 0.054 0.071 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.042 0.151 1.000 1.000 0.998 1.000 1.000 1.000
0.0 0.3 1.000 0.722 0.901 1.000 0.154 0.069 1.000 1.000 1.000 0.999 0.463 0.838 0.998 0.255 0.063 0.998 0.993 1.000
0.1 0.3 1.000 0.703 0.894 1.000 0.472 0.183 1.000 1.000 1.000 1.000 0.427 0.827 1.000 0.614 0.127 1.000 1.000 1.000
0.3 0.3 1.000 0.524 0.778 1.000 0.953 0.788 1.000 1.000 1.000 1.000 0.367 0.763 1.000 0.969 0.705 1.000 1.000 1.000
0.5 0.3 1.000 0.097 0.262 1.000 1.000 0.994 1.000 1.000 1.000 1.000 0.219 0.586 1.000 0.999 0.978 1.000 1.000 1.000
0.0 0.5 1.000 0.997 0.999 1.000 0.176 0.130 1.000 1.000 1.000 1.000 0.949 0.992 1.000 0.275 0.128 1.000 1.000 1.000
0.1 0.5 1.000 0.980 0.997 1.000 0.349 0.158 1.000 1.000 1.000 1.000 0.941 0.996 1.000 0.509 0.119 1.000 1.000 1.000
0.3 0.5 1.000 0.821 0.944 1.000 0.816 0.607 1.000 1.000 1.000 1.000 0.847 0.975 1.000 0.908 0.550 1.000 1.000 1.000
0.5 0.5 1.000 0.234 0.460 1.000 0.969 0.887 1.000 1.000 1.000 1.000 0.569 0.887 1.000 0.981 0.883 1.000 1.000 1.000
Table 5:

LM Tests (Bivariate Normal Distribution): δ0 = 0.5.

WS
WO
λ 0 ρ 0 LMρ LM ρ a LM ρ LMλ LM λ a LM λ LMμ LM μ LMκ LMρ LM ρ a LM ρ LMλ LM λ a LM λ LMμ LM μ LMκ
0.0 0.0 0.037 0.097 0.034 0.101 0.161 0.018 0.113 0.029 0.883 0.070 0.138 0.052 0.234 0.334 0.028 0.259 0.047 0.997
0.1 0.0 0.093 0.138 0.043 0.331 0.371 0.053 0.286 0.085 0.935 0.200 0.165 0.056 0.586 0.537 0.056 0.563 0.160 0.998
0.3 0.0 0.391 0.117 0.042 0.839 0.726 0.297 0.785 0.518 0.989 0.738 0.154 0.049 0.982 0.905 0.370 0.977 0.815 1.000
0.5 0.0 0.835 0.113 0.027 0.993 0.917 0.657 0.992 0.948 0.998 0.981 0.126 0.038 1.000 0.982 0.801 1.000 0.999 1.000
0.0 0.1 0.090 0.055 0.061 0.190 0.199 0.026 0.176 0.052 0.914 0.201 0.080 0.110 0.426 0.318 0.029 0.373 0.162 0.999
0.1 0.1 0.215 0.069 0.072 0.449 0.319 0.055 0.412 0.169 0.944 0.460 0.069 0.129 0.774 0.489 0.051 0.732 0.368 1.000
0.3 0.1 0.626 0.061 0.047 0.911 0.695 0.290 0.858 0.649 0.990 0.897 0.071 0.119 0.993 0.862 0.324 0.989 0.923 1.000
0.5 0.1 0.913 0.060 0.035 0.997 0.896 0.658 0.993 0.972 1.000 0.997 0.065 0.084 1.000 0.968 0.741 1.000 0.999 1.000
0.0 0.3 0.471 0.094 0.250 0.509 0.166 0.050 0.445 0.363 0.957 0.777 0.109 0.445 0.853 0.279 0.046 0.788 0.684 1.000
0.1 0.3 0.630 0.103 0.220 0.758 0.315 0.060 0.702 0.559 0.975 0.906 0.109 0.413 0.974 0.491 0.060 0.952 0.885 1.000
0.3 0.3 0.899 0.064 0.164 0.980 0.611 0.233 0.941 0.896 0.997 0.995 0.091 0.399 1.000 0.794 0.243 0.998 0.992 1.000
0.5 0.3 0.979 0.044 0.082 1.000 0.811 0.512 0.995 0.989 1.000 1.000 0.065 0.277 1.000 0.935 0.623 1.000 1.000 1.000
0.0 0.5 0.859 0.253 0.493 0.848 0.201 0.082 0.850 0.816 0.983 0.992 0.436 0.800 0.989 0.292 0.082 0.984 0.976 1.000
0.1 0.5 0.935 0.223 0.457 0.945 0.274 0.086 0.923 0.889 0.994 0.999 0.370 0.786 0.999 0.437 0.084 1.000 0.999 1.000
0.3 0.5 0.986 0.142 0.334 0.996 0.502 0.202 0.999 0.991 1.000 1.000 0.281 0.690 1.000 0.693 0.240 1.000 1.000 1.000
0.5 0.5 1.000 0.062 0.181 0.999 0.680 0.389 0.998 0.998 1.000 1.000 0.182 0.528 1.000 0.823 0.451 1.000 1.000 1.000
WC
WA
0.0 0.0 0.095 0.210 0.049 0.356 0.456 0.020 0.416 0.074 1.000 0.237 0.361 0.091 0.754 0.796 0.025 0.792 0.142 1.000
0.1 0.0 0.693 0.223 0.052 0.964 0.867 0.184 0.940 0.698 1.000 0.753 0.377 0.099 0.993 0.966 0.120 0.992 0.683 1.000
0.3 0.0 1.000 0.240 0.053 1.000 1.000 0.948 1.000 1.000 1.000 0.999 0.359 0.088 1.000 1.000 0.841 1.000 1.000 1.000
0.5 0.0 1.000 0.302 0.031 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.301 0.090 1.000 1.000 0.998 1.000 1.000 1.000
0.0 0.1 0.717 0.051 0.292 0.889 0.429 0.021 0.823 0.619 1.000 0.788 0.104 0.363 0.966 0.746 0.033 0.945 0.689 1.000
0.1 0.1 0.988 0.058 0.296 1.000 0.797 0.133 1.000 0.989 1.000 0.987 0.096 0.390 1.000 0.936 0.069 0.999 0.984 1.000
0.3 0.1 1.000 0.044 0.243 1.000 0.996 0.917 1.000 1.000 1.000 1.000 0.088 0.349 1.000 1.000 0.764 1.000 1.000 1.000
0.5 0.1 1.000 0.105 0.065 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.106 0.267 1.000 1.000 0.997 1.000 1.000 1.000
0.0 0.3 1.000 0.556 0.950 1.000 0.363 0.062 1.000 1.000 1.000 1.000 0.272 0.954 1.000 0.661 0.060 1.000 1.000 1.000
0.1 0.3 1.000 0.534 0.949 1.000 0.681 0.101 1.000 1.000 1.000 1.000 0.238 0.941 1.000 0.896 0.074 1.000 1.000 1.000
0.3 0.3 1.000 0.330 0.866 1.000 0.979 0.771 1.000 1.000 1.000 1.000 0.166 0.889 1.000 0.996 0.595 1.000 1.000 1.000
0.5 0.3 1.000 0.057 0.391 1.000 1.000 0.988 1.000 1.000 1.000 1.000 0.075 0.773 1.000 1.000 0.946 1.000 1.000 1.000
0.0 0.5 1.000 0.980 1.000 1.000 0.281 0.105 1.000 1.000 1.000 1.000 0.845 0.999 1.000 0.635 0.094 1.000 1.000 1.000
0.1 0.5 1.000 0.951 1.000 1.000 0.544 0.082 1.000 1.000 1.000 1.000 0.818 0.999 1.000 0.798 0.065 1.000 1.000 1.000
0.3 0.5 1.000 0.741 0.984 1.000 0.868 0.494 1.000 1.000 1.000 1.000 0.652 0.996 1.000 0.964 0.366 1.000 1.000 1.000
0.5 0.5 1.000 0.156 0.604 1.000 0.974 0.869 1.000 1.000 1.000 1.000 0.343 0.954 1.000 0.998 0.798 1.000 1.000 1.000
Table 6:

Robust LM Tests for Endogeneity in Weights: δ0 = 0.

WS
WO
WC
WA
λ 0 ρ 0 LM δ SAR LM δ LM δ SAR LM δ LM δ SAR LM δ LM δ SAR LM δ
0.0 0.0 0.050 0.058 0.052 0.048 0.054 0.048 0.051 0.052
0.1 0.0 0.069 0.071 0.074 0.075 0.067 0.070 0.053 0.049
0.3 0.0 0.074 0.065 0.050 0.054 0.058 0.061 0.073 0.072
0.5 0.0 0.054 0.057 0.050 0.059 0.071 0.084 0.082 0.090
0.0 0.1 0.063 0.075 0.062 0.067 0.060 0.054 0.071 0.057
0.1 0.1 0.056 0.055 0.065 0.062 0.060 0.061 0.069 0.073
0.3 0.1 0.071 0.070 0.075 0.070 0.065 0.065 0.092 0.086
0.5 0.1 0.048 0.060 0.078 0.081 0.082 0.088 0.099 0.091
0.0 0.3 0.067 0.067 0.092 0.089 0.087 0.062 0.138 0.075
0.1 0.3 0.082 0.075 0.082 0.061 0.111 0.060 0.123 0.070
0.3 0.3 0.066 0.061 0.101 0.092 0.104 0.064 0.145 0.091
0.5 0.3 0.067 0.079 0.101 0.093 0.088 0.073 0.123 0.101
0.0 0.5 0.105 0.085 0.137 0.089 0.178 0.078 0.245 0.092
0.1 0.5 0.087 0.080 0.170 0.102 0.154 0.072 0.247 0.103
0.3 0.5 0.092 0.089 0.158 0.114 0.135 0.093 0.218 0.114
0.5 0.5 0.102 0.089 0.133 0.114 0.102 0.077 0.177 0.085
Table 7:

Robust LM Tests for Endogeneity in Weights: δ0 = 0.25.

WS
WO
WC
WA
λ 0 ρ 0 LM δ SAR LM δ LM δ SAR LM δ LM δ SAR LM δ LM δ SAR LM δ
0.0 0.0 0.427 0.392 0.713 0.678 0.998 0.997 1.000 0.999
0.1 0.0 0.401 0.383 0.702 0.657 0.997 0.994 0.998 0.997
0.3 0.0 0.401 0.370 0.649 0.621 0.996 0.995 0.996 0.996
0.5 0.0 0.322 0.293 0.599 0.560 0.960 0.952 0.988 0.980
0.0 0.1 0.391 0.393 0.699 0.705 0.997 0.995 0.996 0.998
0.1 0.1 0.383 0.394 0.659 0.659 0.990 0.994 0.995 0.996
0.3 0.1 0.357 0.360 0.630 0.642 0.991 0.993 0.996 0.997
0.5 0.1 0.308 0.284 0.530 0.552 0.962 0.956 0.979 0.977
0.0 0.3 0.319 0.391 0.595 0.695 0.992 0.997 0.994 0.999
0.1 0.3 0.331 0.401 0.572 0.677 0.971 0.993 0.984 0.996
0.3 0.3 0.308 0.358 0.553 0.644 0.969 0.990 0.980 0.997
0.5 0.3 0.247 0.284 0.488 0.570 0.919 0.929 0.957 0.982
0.0 0.5 0.262 0.407 0.464 0.672 0.954 0.996 0.946 0.997
0.1 0.5 0.249 0.391 0.438 0.663 0.949 0.988 0.942 0.995
0.3 0.5 0.255 0.362 0.434 0.635 0.921 0.976 0.952 0.991
0.5 0.5 0.211 0.293 0.363 0.503 0.850 0.895 0.904 0.968
Table 8:

Robust LM Tests for Endogeneity in Weights: δ0 = 0.5.

WS
WO
WC
WA
λ 0 ρ 0 LM δ SAR LM δ LM δ SAR LM δ LM δ SAR LM δ LM δ SAR LM δ
0.0 0.0 0.956 0.938 1.000 0.997 1.000 1.000 1.000 1.000
0.1 0.0 0.965 0.946 1.000 1.000 1.000 1.000 1.000 1.000
0.3 0.0 0.929 0.893 0.999 0.999 1.000 1.000 1.000 1.000
0.5 0.0 0.891 0.835 0.994 0.991 1.000 1.000 1.000 1.000
0.0 0.1 0.961 0.959 0.999 0.998 1.000 1.000 1.000 1.000
0.1 0.1 0.947 0.932 1.000 1.000 1.000 1.000 1.000 1.000
0.3 0.1 0.939 0.926 0.996 0.992 1.000 1.000 1.000 1.000
0.5 0.1 0.858 0.809 0.997 0.995 1.000 1.000 1.000 1.000
0.0 0.3 0.935 0.954 0.998 0.998 1.000 1.000 1.000 1.000
0.1 0.3 0.909 0.925 0.997 0.998 1.000 1.000 1.000 1.000
0.3 0.3 0.884 0.903 0.996 0.999 1.000 1.000 1.000 1.000
0.5 0.3 0.795 0.798 0.986 0.990 1.000 1.000 1.000 1.000
0.0 0.5 0.858 0.931 0.993 0.998 1.000 1.000 1.000 1.000
0.1 0.5 0.848 0.919 0.984 0.998 1.000 1.000 1.000 1.000
0.3 0.5 0.822 0.872 0.982 0.992 1.000 1.000 1.000 1.000
0.5 0.5 0.731 0.756 0.956 0.976 1.000 1.000 1.000 1.000
Table 9:

LM Tests (Conditional Moment Assumptions Hold Without Normality): δ0 = 0.

WS
WO
λ 0 ρ 0 LMρ LM ρ a LM ρ LMλ LM λ a LM λ LMμ LM μ LMκ LMρ LM ρ a LM ρ LMλ LM λ a LM λ LMμ LM μ LMκ
0.0 0.0 0.051 0.056 0.062 0.053 0.063 0.061 0.063 0.067 0.059 0.052 0.053 0.047 0.048 0.046 0.043 0.047 0.040 0.047
0.1 0.0 0.064 0.053 0.051 0.102 0.090 0.093 0.084 0.083 0.083 0.113 0.058 0.050 0.157 0.104 0.095 0.131 0.123 0.127
0.3 0.0 0.413 0.059 0.061 0.675 0.403 0.381 0.594 0.578 0.517 0.654 0.045 0.050 0.876 0.535 0.517 0.800 0.783 0.754
0.5 0.0 0.825 0.047 0.046 0.979 0.780 0.747 0.960 0.950 0.937 0.990 0.027 0.038 0.999 0.907 0.881 0.999 0.999 0.999
0.0 0.1 0.077 0.060 0.057 0.067 0.063 0.063 0.073 0.075 0.063 0.092 0.053 0.063 0.086 0.051 0.060 0.073 0.077 0.077
0.1 0.1 0.155 0.072 0.078 0.213 0.118 0.114 0.183 0.174 0.157 0.323 0.068 0.069 0.350 0.125 0.134 0.301 0.299 0.260
0.3 0.1 0.600 0.056 0.058 0.778 0.392 0.370 0.707 0.686 0.645 0.857 0.068 0.073 0.937 0.492 0.447 0.896 0.881 0.867
0.5 0.1 0.931 0.042 0.041 0.992 0.762 0.714 0.982 0.976 0.970 0.997 0.065 0.063 0.999 0.876 0.846 1.000 1.000 1.000
0.0 0.3 0.361 0.185 0.179 0.269 0.086 0.091 0.316 0.321 0.290 0.633 0.288 0.280 0.459 0.070 0.075 0.538 0.535 0.500
0.1 0.3 0.607 0.176 0.179 0.533 0.118 0.117 0.562 0.551 0.490 0.831 0.288 0.276 0.772 0.127 0.126 0.781 0.780 0.743
0.3 0.3 0.905 0.143 0.137 0.938 0.331 0.319 0.920 0.914 0.884 0.992 0.281 0.265 0.994 0.466 0.463 0.994 0.994 0.992
0.5 0.3 0.986 0.075 0.074 0.996 0.629 0.601 0.996 0.995 0.992 1.000 0.171 0.166 1.000 0.797 0.770 1.000 1.000 1.000
0.0 0.5 0.844 0.447 0.420 0.684 0.119 0.127 0.797 0.802 0.767 0.978 0.679 0.648 0.923 0.110 0.118 0.970 0.967 0.951
0.1 0.5 0.934 0.402 0.382 0.876 0.125 0.133 0.905 0.900 0.880 0.992 0.645 0.617 0.980 0.153 0.169 0.987 0.989 0.986
0.3 0.5 0.984 0.263 0.255 0.980 0.308 0.284 0.982 0.980 0.978 0.999 0.568 0.520 1.000 0.417 0.408 1.000 0.999 0.998
0.5 0.5 0.998 0.138 0.152 0.999 0.533 0.516 0.999 0.999 0.998 1.000 0.393 0.379 1.000 0.611 0.580 1.000 1.000 1.000
WC
WA
0.0 0.0 0.054 0.055 0.053 0.051 0.054 0.049 0.053 0.050 0.047 0.042 0.037 0.035 0.052 0.050 0.050 0.049 0.048 0.052
0.1 0.0 0.499 0.050 0.048 0.615 0.209 0.192 0.506 0.505 0.460 0.345 0.052 0.053 0.476 0.200 0.196 0.382 0.388 0.326
0.3 0.0 1.000 0.043 0.043 1.000 0.968 0.969 1.000 1.000 1.000 0.996 0.046 0.047 1.000 0.911 0.885 0.999 0.999 0.997
0.5 0.0 1.000 0.045 0.059 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.028 0.033 1.000 1.000 1.000 1.000 1.000 1.000
0.0 0.1 0.482 0.190 0.190 0.377 0.061 0.058 0.408 0.411 0.364 0.324 0.150 0.143 0.231 0.058 0.057 0.269 0.268 0.247
0.1 0.1 0.965 0.165 0.167 0.973 0.246 0.235 0.952 0.952 0.927 0.870 0.141 0.143 0.868 0.186 0.181 0.840 0.836 0.793
0.3 0.1 1.000 0.172 0.166 1.000 0.951 0.939 1.000 1.000 1.000 1.000 0.144 0.140 1.000 0.898 0.867 1.000 1.000 1.000
0.5 0.1 1.000 0.042 0.047 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.128 0.122 1.000 0.998 0.997 1.000 1.000 1.000
0.0 0.3 1.000 0.865 0.845 1.000 0.082 0.082 1.000 1.000 0.999 0.998 0.744 0.726 0.984 0.061 0.062 0.995 0.995 0.989
0.1 0.3 1.000 0.866 0.861 1.000 0.241 0.243 1.000 1.000 1.000 1.000 0.761 0.715 1.000 0.201 0.204 1.000 1.000 1.000
0.3 0.3 1.000 0.722 0.703 1.000 0.862 0.854 1.000 1.000 1.000 1.000 0.707 0.655 1.000 0.830 0.807 1.000 1.000 1.000
0.5 0.3 1.000 0.199 0.187 1.000 0.991 0.992 1.000 1.000 1.000 1.000 0.517 0.480 1.000 0.989 0.980 1.000 1.000 1.000
0.0 0.5 1.000 0.996 0.994 1.000 0.134 0.148 1.000 1.000 1.000 1.000 0.985 0.978 1.000 0.107 0.117 1.000 1.000 1.000
0.1 0.5 1.000 0.999 0.998 1.000 0.206 0.213 1.000 1.000 1.000 1.000 0.990 0.983 1.000 0.220 0.206 1.000 1.000 1.000
0.3 0.5 1.000 0.911 0.894 1.000 0.687 0.677 1.000 1.000 1.000 1.000 0.962 0.937 1.000 0.657 0.629 1.000 1.000 1.000
0.5 0.5 1.000 0.360 0.345 1.000 0.927 0.923 1.000 1.000 1.000 1.000 0.794 0.729 1.000 0.940 0.931 1.000 1.000 1.000
Table 10:

LM Tests (Conditional Moment Assumptions Hold Without Normality): δ0 = 0.25.

WS
WO
λ 0 ρ 0 LMρ LM ρ a LM ρ LMλ LM λ a LM λ LMμ LM μ LMκ LMρ LM ρ a LM ρ LMλ LM λ a LM λ LMμ LM μ LMκ
0.0 0.0 0.050 0.076 0.044 0.050 0.076 0.046 0.063 0.038 0.254 0.044 0.092 0.048 0.068 0.099 0.046 0.087 0.046 0.486
0.1 0.0 0.064 0.075 0.055 0.146 0.162 0.080 0.128 0.069 0.298 0.119 0.084 0.044 0.269 0.215 0.072 0.229 0.109 0.633
0.3 0.0 0.375 0.066 0.045 0.710 0.542 0.324 0.641 0.521 0.756 0.648 0.082 0.053 0.897 0.690 0.398 0.859 0.739 0.941
0.5 0.0 0.852 0.063 0.050 0.989 0.862 0.704 0.977 0.945 0.984 0.981 0.068 0.064 1.000 0.934 0.829 1.000 0.997 1.000
0.0 0.1 0.066 0.064 0.073 0.094 0.079 0.055 0.084 0.060 0.259 0.125 0.073 0.097 0.152 0.109 0.051 0.151 0.101 0.567
0.1 0.1 0.165 0.055 0.062 0.292 0.172 0.096 0.231 0.168 0.418 0.337 0.059 0.091 0.511 0.287 0.091 0.434 0.278 0.742
0.3 0.1 0.558 0.059 0.064 0.820 0.522 0.311 0.743 0.643 0.809 0.842 0.055 0.089 0.962 0.671 0.384 0.944 0.862 0.983
0.5 0.1 0.918 0.041 0.029 0.993 0.812 0.641 0.980 0.962 0.984 0.994 0.045 0.075 0.999 0.927 0.778 0.998 0.997 1.000
0.0 0.3 0.373 0.102 0.181 0.335 0.101 0.074 0.298 0.288 0.476 0.668 0.196 0.341 0.637 0.133 0.085 0.621 0.601 0.841
0.1 0.3 0.600 0.125 0.186 0.640 0.179 0.097 0.586 0.521 0.715 0.857 0.131 0.280 0.890 0.276 0.115 0.857 0.822 0.945
0.3 0.3 0.881 0.082 0.133 0.942 0.452 0.277 0.916 0.875 0.930 0.995 0.147 0.297 0.999 0.622 0.365 0.998 0.995 0.999
0.5 0.3 0.990 0.041 0.083 0.997 0.704 0.540 0.995 0.993 0.995 1.000 0.128 0.230 1.000 0.848 0.692 1.000 1.000 1.000
0.0 0.5 0.842 0.324 0.448 0.753 0.126 0.113 0.806 0.799 0.851 0.983 0.504 0.682 0.966 0.153 0.114 0.971 0.965 0.988
0.1 0.5 0.933 0.303 0.415 0.899 0.180 0.123 0.906 0.896 0.933 0.997 0.517 0.677 0.993 0.238 0.125 0.996 0.993 0.998
0.3 0.5 0.981 0.182 0.267 0.989 0.413 0.276 0.988 0.983 0.990 1.000 0.400 0.583 1.000 0.514 0.317 1.000 1.000 1.000
0.5 0.5 1.000 0.087 0.143 1.000 0.601 0.448 1.000 0.999 1.000 1.000 0.261 0.410 1.000 0.730 0.533 1.000 1.000 1.000
WC
WA
0.0 0.0 0.052 0.109 0.058 0.078 0.122 0.046 0.101 0.049 0.981 0.051 0.160 0.063 0.128 0.237 0.048 0.176 0.060 0.990
0.1 0.0 0.512 0.110 0.061 0.758 0.517 0.222 0.700 0.525 0.998 0.408 0.148 0.050 0.765 0.608 0.144 0.732 0.384 0.997
0.3 0.0 1.000 0.107 0.048 1.000 0.990 0.943 1.000 1.000 1.000 0.998 0.133 0.062 1.000 0.992 0.847 1.000 1.000 1.000
0.5 0.0 1.000 0.114 0.038 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.120 0.047 1.000 1.000 1.000 1.000 1.000 1.000
0.0 0.1 0.497 0.075 0.178 0.572 0.139 0.061 0.471 0.425 0.996 0.382 0.055 0.168 0.540 0.262 0.054 0.461 0.302 0.991
0.1 0.1 0.963 0.078 0.208 0.992 0.475 0.206 0.979 0.960 1.000 0.902 0.051 0.181 0.976 0.603 0.148 0.950 0.877 1.000
0.3 0.1 1.000 0.066 0.168 1.000 0.987 0.916 1.000 1.000 1.000 1.000 0.051 0.167 1.000 0.979 0.825 1.000 1.000 1.000
0.5 0.1 1.000 0.048 0.059 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.034 0.123 1.000 1.000 1.000 1.000 1.000 1.000
0.0 0.3 1.000 0.686 0.885 1.000 0.155 0.062 1.000 1.000 1.000 0.999 0.434 0.780 0.998 0.252 0.087 0.998 0.997 1.000
0.1 0.3 1.000 0.659 0.873 1.000 0.453 0.195 1.000 1.000 1.000 1.000 0.413 0.784 1.000 0.542 0.134 1.000 1.000 1.000
0.3 0.3 1.000 0.517 0.723 1.000 0.916 0.777 1.000 1.000 1.000 1.000 0.349 0.716 1.000 0.957 0.685 1.000 1.000 1.000
0.5 0.3 1.000 0.099 0.252 1.000 0.999 0.996 1.000 1.000 1.000 1.000 0.214 0.538 1.000 0.998 0.979 1.000 1.000 1.000
0.0 0.5 1.000 0.984 0.999 1.000 0.152 0.108 1.000 1.000 1.000 1.000 0.933 0.989 1.000 0.260 0.118 1.000 1.000 1.000
0.1 0.5 1.000 0.974 0.997 1.000 0.359 0.184 1.000 1.000 1.000 1.000 0.917 0.993 1.000 0.456 0.140 1.000 1.000 1.000
0.3 0.5 1.000 0.823 0.925 1.000 0.764 0.563 1.000 1.000 1.000 1.000 0.818 0.967 1.000 0.880 0.565 1.000 1.000 1.000
0.5 0.5 1.000 0.244 0.435 1.000 0.954 0.895 1.000 1.000 1.000 1.000 0.557 0.829 1.000 0.979 0.888 1.000 1.000 1.000
Table 11:

LM Tests (Conditional Moment Assumptions Hold Without Normality): δ0 = 0.5.

WS
WO
λ 0 ρ 0 LMρ LM ρ a LM ρ LMλ LM λ a LM λ LMμ LM μ LMκ LMρ LM ρ a LM ρ LMλ LM λ a LM λ LMμ LM μ LMκ
0.0 0.0 0.036 0.100 0.034 0.061 0.120 0.022 0.097 0.025 0.797 0.044 0.151 0.046 0.126 0.236 0.030 0.179 0.029 0.993
0.1 0.0 0.099 0.119 0.060 0.244 0.272 0.070 0.236 0.076 0.875 0.145 0.150 0.035 0.405 0.440 0.048 0.394 0.111 0.995
0.3 0.0 0.380 0.138 0.049 0.765 0.612 0.263 0.714 0.470 0.966 0.686 0.152 0.036 0.967 0.815 0.321 0.944 0.739 1.000
0.5 0.0 0.824 0.114 0.037 0.984 0.862 0.604 0.975 0.926 0.999 0.980 0.120 0.043 1.000 0.972 0.746 1.000 0.996 1.000
0.0 0.1 0.074 0.072 0.064 0.154 0.145 0.039 0.134 0.065 0.808 0.145 0.093 0.081 0.325 0.267 0.040 0.280 0.100 0.991
0.1 0.1 0.190 0.062 0.063 0.366 0.259 0.063 0.314 0.156 0.878 0.365 0.083 0.083 0.657 0.427 0.059 0.567 0.297 0.998
0.3 0.1 0.572 0.078 0.043 0.855 0.584 0.238 0.794 0.607 0.972 0.864 0.076 0.077 0.982 0.793 0.302 0.971 0.883 1.000
0.5 0.1 0.911 0.061 0.041 0.994 0.833 0.587 0.983 0.952 1.000 0.996 0.071 0.078 1.000 0.952 0.727 1.000 0.999 1.000
0.0 0.3 0.394 0.085 0.204 0.454 0.157 0.056 0.391 0.340 0.886 0.716 0.110 0.346 0.774 0.206 0.055 0.713 0.613 0.998
0.1 0.3 0.630 0.086 0.194 0.712 0.265 0.080 0.658 0.541 0.961 0.881 0.099 0.377 0.937 0.391 0.062 0.901 0.829 1.000
0.3 0.3 0.893 0.059 0.121 0.950 0.529 0.226 0.934 0.875 0.995 0.989 0.083 0.313 0.999 0.706 0.269 0.998 0.989 1.000
0.5 0.3 0.985 0.053 0.094 0.995 0.723 0.450 0.993 0.986 0.999 1.000 0.048 0.235 1.000 0.891 0.561 1.000 1.000 1.000
0.0 0.5 0.874 0.225 0.442 0.849 0.176 0.091 0.848 0.824 0.984 0.988 0.346 0.702 0.990 0.252 0.090 0.986 0.981 1.000
0.1 0.5 0.927 0.208 0.407 0.932 0.230 0.084 0.926 0.898 0.987 0.996 0.326 0.692 0.996 0.350 0.090 0.998 0.995 1.000
0.3 0.5 0.990 0.126 0.270 0.988 0.441 0.185 0.992 0.987 0.998 1.000 0.279 0.586 1.000 0.600 0.237 1.000 1.000 1.000
0.5 0.5 0.999 0.067 0.157 1.000 0.599 0.360 1.000 0.999 1.000 1.000 0.185 0.442 1.000 0.759 0.443 1.000 1.000 1.000
WC
WA
0.0 0.0 0.057 0.204 0.038 0.167 0.325 0.030 0.263 0.040 1.000 0.106 0.367 0.050 0.444 0.658 0.026 0.599 0.062 1.000
0.1 0.0 0.595 0.200 0.044 0.888 0.746 0.158 0.877 0.582 1.000 0.564 0.374 0.047 0.956 0.900 0.114 0.951 0.527 1.000
0.3 0.0 1.000 0.178 0.054 1.000 0.996 0.887 1.000 1.000 1.000 0.999 0.343 0.061 1.000 0.997 0.764 1.000 1.000 1.000
0.5 0.0 1.000 0.293 0.041 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.328 0.040 1.000 1.000 1.000 1.000 1.000 1.000
0.0 0.1 0.611 0.065 0.217 0.757 0.312 0.036 0.672 0.497 1.000 0.605 0.134 0.213 0.874 0.629 0.037 0.835 0.495 1.000
0.1 0.1 0.976 0.062 0.199 0.996 0.679 0.125 0.989 0.960 1.000 0.954 0.124 0.240 1.000 0.870 0.090 0.999 0.944 1.000
0.3 0.1 1.000 0.052 0.195 1.000 0.987 0.837 1.000 1.000 1.000 1.000 0.126 0.221 1.000 0.999 0.710 1.000 1.000 1.000
0.5 0.1 1.000 0.107 0.053 1.000 1.000 0.997 1.000 1.000 1.000 1.000 0.110 0.185 1.000 1.000 0.988 1.000 1.000 1.000
0.0 0.3 1.000 0.450 0.882 1.000 0.283 0.062 1.000 1.000 1.000 1.000 0.158 0.814 1.000 0.576 0.053 1.000 1.000 1.000
0.1 0.3 1.000 0.468 0.886 1.000 0.565 0.112 1.000 1.000 1.000 1.000 0.157 0.821 1.000 0.809 0.086 1.000 1.000 1.000
0.3 0.3 1.000 0.311 0.764 1.000 0.944 0.675 1.000 1.000 1.000 1.000 0.113 0.753 1.000 0.982 0.571 1.000 1.000 1.000
0.5 0.3 1.000 0.045 0.285 1.000 0.997 0.972 1.000 1.000 1.000 1.000 0.095 0.644 1.000 1.000 0.930 1.000 1.000 1.000
0.0 0.5 1.000 0.922 0.998 1.000 0.261 0.097 1.000 1.000 1.000 1.000 0.753 0.997 1.000 0.482 0.094 1.000 1.000 1.000
0.1 0.5 1.000 0.917 0.996 1.000 0.449 0.102 1.000 1.000 1.000 1.000 0.701 0.989 1.000 0.710 0.108 1.000 1.000 1.000
0.3 0.5 1.000 0.633 0.934 1.000 0.802 0.473 1.000 1.000 1.000 1.000 0.581 0.981 1.000 0.921 0.418 1.000 1.000 1.000
0.5 0.5 1.000 0.142 0.465 1.000 0.953 0.834 1.000 1.000 1.000 1.000 0.289 0.884 1.000 0.983 0.810 1.000 1.000 1.000
Table 12:

LM Tests (Bivariate t5 Distribution): δ0 = 0.

WS
WO
λ 0 ρ 0 LMρ LM ρ a LM ρ LMλ LM λ a LM λ LMμ LM μ LMκ LMρ LM ρ a LM ρ LMλ LM λ a LM λ LMμ LM μ LMκ
0.0 0.0 0.031 0.041 0.040 0.037 0.061 0.049 0.042 0.036 0.093 0.038 0.048 0.051 0.044 0.056 0.060 0.044 0.039 0.109
0.1 0.0 0.061 0.052 0.050 0.084 0.085 0.081 0.072 0.064 0.138 0.088 0.041 0.045 0.120 0.078 0.085 0.109 0.106 0.168
0.3 0.0 0.367 0.051 0.039 0.572 0.328 0.304 0.477 0.479 0.494 0.588 0.056 0.065 0.769 0.400 0.376 0.689 0.672 0.684
0.5 0.0 0.809 0.061 0.066 0.938 0.648 0.618 0.902 0.888 0.896 0.974 0.051 0.059 0.998 0.776 0.759 0.987 0.985 0.986
0.0 0.1 0.052 0.063 0.063 0.065 0.074 0.073 0.078 0.073 0.131 0.082 0.064 0.064 0.080 0.060 0.065 0.077 0.071 0.141
0.1 0.1 0.152 0.062 0.060 0.176 0.092 0.087 0.151 0.135 0.202 0.249 0.060 0.060 0.288 0.092 0.091 0.231 0.221 0.292
0.3 0.1 0.570 0.064 0.069 0.715 0.284 0.277 0.636 0.628 0.630 0.801 0.068 0.075 0.885 0.373 0.361 0.833 0.831 0.845
0.5 0.1 0.919 0.053 0.050 0.971 0.607 0.568 0.956 0.952 0.949 0.993 0.048 0.054 0.999 0.759 0.735 0.995 0.994 0.996
0.0 0.3 0.348 0.154 0.156 0.289 0.090 0.087 0.312 0.316 0.370 0.580 0.229 0.220 0.463 0.072 0.082 0.491 0.501 0.526
0.1 0.3 0.541 0.141 0.126 0.531 0.122 0.115 0.514 0.507 0.507 0.823 0.228 0.233 0.783 0.115 0.120 0.766 0.767 0.759
0.3 0.3 0.864 0.113 0.113 0.901 0.277 0.273 0.864 0.856 0.852 0.983 0.194 0.188 0.983 0.339 0.356 0.978 0.980 0.977
0.5 0.3 0.979 0.072 0.071 0.993 0.540 0.517 0.986 0.982 0.986 1.000 0.171 0.164 1.000 0.637 0.604 1.000 1.000 1.000
0.0 0.5 0.820 0.333 0.311 0.694 0.100 0.127 0.743 0.750 0.751 0.957 0.505 0.470 0.906 0.109 0.113 0.937 0.935 0.929
0.1 0.5 0.893 0.283 0.276 0.843 0.126 0.138 0.849 0.861 0.843 0.983 0.447 0.433 0.972 0.161 0.158 0.972 0.973 0.973
0.3 0.5 0.980 0.217 0.216 0.979 0.255 0.253 0.978 0.979 0.976 1.000 0.425 0.411 1.000 0.311 0.320 1.000 1.000 0.999
0.5 0.5 0.994 0.132 0.133 0.995 0.443 0.409 0.992 0.992 0.994 1.000 0.272 0.269 1.000 0.506 0.489 1.000 1.000 1.000
WC
WA
0.0 0.0 0.035 0.037 0.044 0.039 0.044 0.043 0.033 0.032 0.138 0.047 0.033 0.037 0.034 0.033 0.040 0.033 0.038 0.131
0.1 0.0 0.459 0.056 0.059 0.561 0.182 0.179 0.456 0.453 0.486 0.286 0.058 0.068 0.367 0.150 0.150 0.293 0.285 0.358
0.3 0.0 1.000 0.043 0.042 1.000 0.875 0.865 1.000 1.000 1.000 0.994 0.046 0.061 0.998 0.771 0.748 0.994 0.995 0.997
0.5 0.0 1.000 0.070 0.082 1.000 0.997 0.997 1.000 1.000 1.000 1.000 0.055 0.069 1.000 0.992 0.989 1.000 1.000 1.000
0.0 0.1 0.413 0.145 0.140 0.338 0.064 0.064 0.332 0.334 0.388 0.278 0.087 0.092 0.221 0.054 0.057 0.212 0.218 0.294
0.1 0.1 0.960 0.149 0.150 0.967 0.157 0.158 0.944 0.942 0.921 0.819 0.100 0.098 0.849 0.146 0.164 0.771 0.769 0.766
0.3 0.1 1.000 0.106 0.111 1.000 0.829 0.814 1.000 1.000 1.000 1.000 0.115 0.119 1.000 0.696 0.671 1.000 1.000 1.000
0.5 0.1 1.000 0.046 0.053 1.000 0.996 0.994 1.000 1.000 1.000 1.000 0.068 0.077 1.000 0.986 0.977 1.000 1.000 1.000
0.0 0.3 0.999 0.723 0.702 0.998 0.078 0.090 0.998 0.998 0.998 0.993 0.558 0.545 0.981 0.077 0.071 0.986 0.990 0.985
0.1 0.3 1.000 0.653 0.642 1.000 0.194 0.197 1.000 1.000 1.000 1.000 0.521 0.502 1.000 0.140 0.139 1.000 1.000 1.000
0.3 0.3 1.000 0.478 0.475 1.000 0.719 0.711 1.000 1.000 1.000 1.000 0.496 0.455 1.000 0.652 0.629 1.000 1.000 1.000
0.5 0.3 1.000 0.145 0.135 1.000 0.959 0.962 1.000 1.000 1.000 1.000 0.310 0.300 1.000 0.948 0.932 1.000 1.000 1.000
0.0 0.5 1.000 0.954 0.948 1.000 0.122 0.126 1.000 1.000 1.000 1.000 0.931 0.907 1.000 0.090 0.100 1.000 1.000 1.000
0.1 0.5 1.000 0.936 0.927 1.000 0.191 0.186 1.000 1.000 1.000 1.000 0.911 0.890 1.000 0.159 0.163 1.000 1.000 1.000
0.3 0.5 1.000 0.754 0.731 1.000 0.541 0.528 1.000 1.000 1.000 1.000 0.801 0.782 1.000 0.553 0.538 1.000 1.000 1.000
0.5 0.5 1.000 0.240 0.234 1.000 0.829 0.826 1.000 1.000 1.000 1.000 0.593 0.560 1.000 0.834 0.805 1.000 1.000 1.000
Table 13:

LM Tests (Bivariate t5 Distribution): δ0 = 0.25.

WS
WO
λ 0 ρ 0 LMρ LM ρ a LM ρ LMλ LM λ a LM λ LMμ LM μ LMκ LMρ LM ρ a LM ρ LMλ LM λ a LM λ LMμ LM μ LMκ
0.0 0.0 0.037 0.068 0.037 0.040 0.084 0.040 0.056 0.031 0.331 0.043 0.086 0.053 0.059 0.101 0.052 0.081 0.051 0.536
0.1 0.0 0.058 0.082 0.051 0.129 0.157 0.079 0.134 0.077 0.384 0.110 0.088 0.064 0.237 0.214 0.083 0.211 0.128 0.635
0.3 0.0 0.347 0.080 0.059 0.620 0.426 0.248 0.531 0.418 0.698 0.597 0.109 0.064 0.861 0.605 0.322 0.809 0.671 0.916
0.5 0.0 0.799 0.078 0.048 0.961 0.699 0.518 0.932 0.891 0.949 0.974 0.090 0.058 0.997 0.862 0.685 0.993 0.987 0.997
0.0 0.1 0.063 0.065 0.060 0.094 0.088 0.056 0.084 0.064 0.354 0.110 0.066 0.064 0.149 0.115 0.067 0.133 0.080 0.571
0.1 0.1 0.138 0.054 0.062 0.232 0.167 0.080 0.201 0.146 0.430 0.271 0.047 0.073 0.414 0.216 0.084 0.338 0.247 0.685
0.3 0.1 0.562 0.061 0.057 0.760 0.437 0.233 0.711 0.606 0.785 0.800 0.072 0.073 0.935 0.571 0.298 0.892 0.819 0.952
0.5 0.1 0.883 0.074 0.055 0.972 0.679 0.519 0.956 0.926 0.974 0.989 0.067 0.080 0.999 0.817 0.646 0.999 0.997 1.000
0.0 0.3 0.351 0.107 0.168 0.346 0.091 0.066 0.326 0.302 0.575 0.607 0.138 0.258 0.607 0.110 0.062 0.534 0.507 0.789
0.1 0.3 0.530 0.096 0.141 0.587 0.166 0.087 0.535 0.485 0.693 0.811 0.139 0.249 0.863 0.234 0.097 0.806 0.752 0.921
0.3 0.3 0.861 0.067 0.127 0.919 0.386 0.246 0.887 0.853 0.930 0.985 0.106 0.237 0.992 0.521 0.284 0.988 0.982 0.998
0.5 0.3 0.983 0.067 0.092 0.994 0.602 0.446 0.993 0.985 0.996 1.000 0.088 0.168 1.000 0.743 0.558 1.000 0.999 1.000
0.0 0.5 0.802 0.255 0.350 0.740 0.103 0.089 0.749 0.740 0.833 0.963 0.353 0.520 0.950 0.151 0.100 0.945 0.933 0.979
0.1 0.5 0.889 0.220 0.311 0.881 0.173 0.112 0.878 0.858 0.923 0.991 0.354 0.525 0.986 0.240 0.140 0.986 0.981 0.996
0.3 0.5 0.979 0.136 0.208 0.984 0.346 0.237 0.975 0.969 0.988 0.999 0.269 0.426 0.999 0.465 0.291 0.998 0.997 0.999
0.5 0.5 0.997 0.083 0.121 0.998 0.526 0.381 0.997 0.997 0.999 1.000 0.176 0.318 1.000 0.638 0.467 1.000 1.000 1.000
WC
WA
0.0 0.0 0.038 0.090 0.039 0.064 0.125 0.029 0.085 0.037 0.926 0.043 0.162 0.067 0.119 0.237 0.057 0.170 0.051 0.939
0.1 0.0 0.464 0.119 0.058 0.703 0.447 0.190 0.628 0.473 0.984 0.354 0.140 0.047 0.664 0.517 0.114 0.632 0.330 0.975
0.3 0.0 1.000 0.133 0.062 1.000 0.942 0.821 1.000 1.000 1.000 0.995 0.162 0.054 1.000 0.959 0.733 0.999 0.999 1.000
0.5 0.0 1.000 0.169 0.062 1.000 1.000 0.997 1.000 1.000 1.000 1.000 0.174 0.050 1.000 1.000 0.985 1.000 1.000 1.000
0.0 0.1 0.498 0.061 0.150 0.561 0.157 0.070 0.463 0.415 0.971 0.362 0.045 0.145 0.517 0.191 0.047 0.407 0.285 0.967
0.1 0.1 0.948 0.072 0.153 0.974 0.419 0.146 0.953 0.922 0.998 0.879 0.066 0.154 0.956 0.463 0.104 0.926 0.830 0.998
0.3 0.1 1.000 0.058 0.125 1.000 0.932 0.788 1.000 1.000 1.000 1.000 0.077 0.120 1.000 0.944 0.661 1.000 1.000 1.000
0.5 0.1 1.000 0.046 0.039 1.000 0.998 0.989 1.000 1.000 1.000 1.000 0.063 0.107 1.000 1.000 0.967 1.000 1.000 1.000
0.0 0.3 1.000 0.504 0.747 0.999 0.127 0.075 0.998 1.000 1.000 0.998 0.250 0.621 0.996 0.216 0.064 0.995 0.995 0.999
0.1 0.3 1.000 0.451 0.731 1.000 0.357 0.140 1.000 1.000 1.000 1.000 0.249 0.610 1.000 0.477 0.149 1.000 1.000 1.000
0.3 0.3 1.000 0.338 0.571 1.000 0.852 0.642 1.000 1.000 1.000 1.000 0.211 0.562 1.000 0.893 0.532 1.000 1.000 1.000
0.5 0.3 1.000 0.092 0.198 1.000 0.981 0.938 1.000 1.000 1.000 1.000 0.124 0.395 1.000 0.987 0.916 1.000 1.000 1.000
0.0 0.5 1.000 0.925 0.979 1.000 0.146 0.114 1.000 1.000 1.000 1.000 0.763 0.949 1.000 0.233 0.107 1.000 1.000 1.000
0.1 0.5 1.000 0.872 0.955 1.000 0.292 0.159 1.000 1.000 1.000 1.000 0.736 0.932 1.000 0.396 0.137 1.000 1.000 1.000
0.3 0.5 1.000 0.632 0.813 1.000 0.662 0.455 1.000 1.000 1.000 1.000 0.596 0.861 1.000 0.789 0.442 1.000 1.000 1.000
0.5 0.5 1.000 0.148 0.306 1.000 0.903 0.774 1.000 1.000 1.000 1.000 0.360 0.671 1.000 0.948 0.779 1.000 1.000 1.000
Table 14:

LM Tests (Bivariate t5 Distribution): δ0 = 0.5.

WS
WO
λ 0 ρ 0 LMρ LM ρ a LM ρ LMλ LM λ a LM λ LMμ LM μ LMκ LMρ LM ρ a LM ρ LMλ LM λ a LM λ LMμ LM μ LMκ
0.0 0.0 0.027 0.099 0.039 0.092 0.161 0.033 0.106 0.030 0.835 0.061 0.126 0.035 0.162 0.247 0.024 0.189 0.042 0.972
0.1 0.0 0.079 0.106 0.039 0.225 0.281 0.058 0.239 0.078 0.870 0.182 0.138 0.036 0.457 0.424 0.058 0.446 0.141 0.984
0.3 0.0 0.349 0.117 0.035 0.724 0.598 0.219 0.687 0.404 0.969 0.701 0.154 0.025 0.944 0.777 0.273 0.925 0.709 0.996
0.5 0.0 0.779 0.130 0.034 0.964 0.820 0.509 0.946 0.880 0.995 0.975 0.148 0.047 0.997 0.938 0.642 0.997 0.986 1.000
0.0 0.1 0.086 0.070 0.057 0.165 0.146 0.038 0.136 0.055 0.848 0.186 0.071 0.095 0.366 0.237 0.038 0.300 0.146 0.978
0.1 0.1 0.182 0.082 0.045 0.365 0.291 0.059 0.309 0.144 0.902 0.406 0.083 0.084 0.669 0.395 0.058 0.577 0.320 0.988
0.3 0.1 0.554 0.065 0.046 0.818 0.552 0.183 0.758 0.560 0.966 0.847 0.100 0.092 0.968 0.729 0.215 0.948 0.826 0.999
0.5 0.1 0.891 0.095 0.033 0.982 0.798 0.491 0.969 0.939 0.998 0.993 0.074 0.073 0.998 0.925 0.600 0.998 0.996 1.000
0.0 0.3 0.378 0.079 0.169 0.466 0.170 0.046 0.396 0.282 0.880 0.716 0.069 0.293 0.804 0.244 0.046 0.711 0.618 0.997
0.1 0.3 0.591 0.071 0.157 0.698 0.258 0.060 0.614 0.491 0.961 0.856 0.086 0.285 0.927 0.381 0.055 0.889 0.796 0.995
0.3 0.3 0.859 0.050 0.110 0.943 0.491 0.176 0.903 0.835 0.988 0.987 0.078 0.263 0.997 0.640 0.213 0.993 0.976 0.999
0.5 0.3 0.978 0.050 0.068 0.998 0.709 0.397 0.994 0.985 0.999 0.999 0.060 0.199 1.000 0.835 0.509 1.000 1.000 1.000
0.0 0.5 0.839 0.172 0.377 0.848 0.186 0.081 0.804 0.777 0.973 0.979 0.254 0.613 0.982 0.231 0.077 0.969 0.955 1.000
0.1 0.5 0.904 0.158 0.356 0.918 0.262 0.083 0.891 0.855 0.986 0.994 0.260 0.612 0.995 0.329 0.090 0.994 0.988 1.000
0.3 0.5 0.971 0.091 0.216 0.986 0.455 0.176 0.974 0.962 0.996 0.998 0.183 0.506 1.000 0.592 0.214 0.999 0.999 1.000
0.5 0.5 0.999 0.072 0.156 0.999 0.576 0.323 0.999 0.999 1.000 1.000 0.105 0.358 1.000 0.729 0.404 1.000 1.000 1.000
WC
WA
0.0 0.0 0.071 0.212 0.049 0.225 0.370 0.036 0.296 0.059 1.000 0.160 0.360 0.050 0.549 0.662 0.029 0.639 0.113 0.999
0.1 0.0 0.602 0.217 0.040 0.876 0.686 0.121 0.854 0.545 1.000 0.673 0.360 0.063 0.964 0.880 0.086 0.965 0.574 1.000
0.3 0.0 0.998 0.235 0.039 1.000 0.989 0.802 1.000 1.000 1.000 1.000 0.386 0.049 1.000 0.996 0.639 1.000 1.000 1.000
0.5 0.0 1.000 0.318 0.036 1.000 1.000 0.996 1.000 1.000 1.000 1.000 0.409 0.062 1.000 0.999 0.986 1.000 1.000 1.000
0.0 0.1 0.657 0.061 0.169 0.802 0.327 0.027 0.708 0.530 0.999 0.703 0.145 0.198 0.915 0.656 0.029 0.883 0.554 1.000
0.1 0.1 0.981 0.064 0.182 0.998 0.651 0.125 0.991 0.965 1.000 0.967 0.131 0.210 0.999 0.845 0.074 0.999 0.932 1.000
0.3 0.1 1.000 0.097 0.118 1.000 0.972 0.773 1.000 1.000 1.000 1.000 0.168 0.184 1.000 0.988 0.574 1.000 1.000 1.000
0.5 0.1 1.000 0.163 0.047 1.000 1.000 0.989 1.000 1.000 1.000 1.000 0.173 0.137 1.000 1.000 0.969 1.000 1.000 1.000
0.0 0.3 1.000 0.312 0.828 1.000 0.296 0.050 1.000 1.000 1.000 0.997 0.104 0.799 1.000 0.571 0.050 0.999 0.996 1.000
0.1 0.3 1.000 0.301 0.799 1.000 0.571 0.099 1.000 1.000 1.000 1.000 0.094 0.743 1.000 0.821 0.060 1.000 1.000 1.000
0.3 0.3 1.000 0.195 0.646 1.000 0.911 0.586 1.000 1.000 1.000 1.000 0.085 0.699 1.000 0.975 0.428 1.000 1.000 1.000
0.5 0.3 1.000 0.054 0.226 1.000 0.990 0.934 1.000 1.000 1.000 1.000 0.063 0.509 1.000 0.998 0.882 1.000 1.000 1.000
0.0 0.5 1.000 0.816 0.986 1.000 0.273 0.084 1.000 1.000 1.000 1.000 0.540 0.983 1.000 0.512 0.085 1.000 1.000 1.000
0.1 0.5 1.000 0.751 0.980 1.000 0.461 0.091 1.000 1.000 1.000 1.000 0.486 0.973 1.000 0.696 0.078 1.000 0.999 1.000
0.3 0.5 1.000 0.456 0.889 1.000 0.776 0.392 1.000 1.000 1.000 1.000 0.375 0.944 1.000 0.919 0.341 1.000 1.000 1.000
0.5 0.5 1.000 0.110 0.415 1.000 0.923 0.731 1.000 1.000 1.000 1.000 0.155 0.795 1.000 0.987 0.745 1.000 1.000 1.000

References

Anderson, J. E., and E. van Wincoop. 2003. “Gravity with Gravitas: A Solution to the Border Puzzle.” American Economic Review 93 (1): 170–192.10.3386/w8079Search in Google Scholar

Anselin, L. 1988. Spatial Econometrics: Methods and Models. New York: Springer.10.1007/978-94-015-7799-1Search in Google Scholar

Anselin, L., A. K. Bera, R. Florax, and M. J. Yoon. 1996. “Simple Diagnostic Tests for Spatial Dependence.” Regional Science and Urban Economics 26 (1): 77–104.10.1016/0166-0462(95)02111-6Search in Google Scholar

Baltagi, B. H., and D. Li. 2001. “LM Tests for Functional Form and Spatial Error Correlation.” International Regional Science Review 24 (2): 194–225.10.1177/016001760102400202Search in Google Scholar

Baltagi, B. H., and Z. Yang. 2013a. “Heteroskedasticity and Non-normality Robust LM Tests for Spatial Dependence.” Regional Science and Urban Economics 43 (5): 725–739.10.1016/j.regsciurbeco.2013.05.001Search in Google Scholar

Baltagi, B. H., and Z. Yang. 2013b. “Standardized LM Tests for Spatial Error Dependence in Linear or Panel Regressions.” The Econometrics Journal 16 (1): 103–134.10.1111/j.1368-423X.2012.00385.xSearch in Google Scholar

Behrens, K., C. Ertur, and W. Koch. 2012. “‘Dual’ Gravity: Using Spatial Econometrics to Control for Multilateral Resistance.” Journal of Applied Econometrics 27 (5): 773–794.10.1002/jae.1231Search in Google Scholar

Bera, A. K., Y. Bilias, M. Yoon, S. Taşpınar, and O. Doğan. 2017. “Adjustments of Rao’s Score Test for Distributional and Local Parametric Misspecifications,” Working Paper.10.2139/ssrn.3074781Search in Google Scholar

Bera, A. K., O. Doğan, and S. Taşpınar. 2018. “Simple Tests for Endogeneity of Spatial Weights Matrices.” Regional Science and Urban Economics 69: 130–142.10.1016/j.regsciurbeco.2018.01.007Search in Google Scholar

Bera, A. K., and M. J. Yoon. 1993. “Specification Testing with Locally Misspecified Alternatives.” Econometric Theory 9(4): 649–658.10.1017/S0266466600008021Search in Google Scholar

Born, B., and J. Breitung. 2011. “Simple Regression-Based Tests for Spatial Dependence.” The Econometrics Journal 14 (2): 330–342.10.1111/j.1368-423X.2010.00338.xSearch in Google Scholar

Brueckner, J. K. 1998. “Testing for Strategic Interaction Among Local Governments: The Case of Growth Controls.” Journal of Urban Economics 44 (3): 438–467.10.1006/juec.1997.2078Search in Google Scholar

Brueckner, J. K., and L. A. Saavedra. 2001. “Do Local Governments Engage in Strategic Property-Tax Competition?” National Tax Journal 54 (2): 203–230.10.17310/ntj.2001.2.02Search in Google Scholar

Burridge, P. 1980. “On the Cliff-Ord Test for Spatial Correlation.” Journal of the Royal Statistical Society, Series B: Methodological 42: 107–108.10.1111/j.2517-6161.1980.tb01108.xSearch in Google Scholar

Case, A. C., H. S. Rosen, and J. R. Hines. 1993. “Budget Spillovers and Fiscal Policy Interdependence.” Journal of Public Economics 52 (3): 285–307.10.1016/0047-2727(93)90036-SSearch in Google Scholar

Cheng, W., and L.-F. Lee. 2017. “Testing Endogeneity of Spatial and Social Networks.” Regional Science and Urban Economics 64: 81–97.10.1016/j.regsciurbeco.2017.03.005Search in Google Scholar

Cliff, A., and K. Ord. 1972. “Testing for Spatial Autocorrelation Among Regression Residuals.” Geographical Analysis 4 (3): 267–284.10.1111/j.1538-4632.1972.tb00475.xSearch in Google Scholar

Davidson, R., and J. G. MacKinnon. 1987. “Implicit Alternatives and the Local Power of Test Statistics.” Econometrica 55 (6): 1305–1329.10.2307/1913558Search in Google Scholar

Doğan, O., S. Taşpınar, and A. K. Bera. 2018. “Simple Tests for Social Interaction Models with Network Structures.” Spatial Economic Analysis 13 (2): 212–246.10.1080/17421772.2017.1374550Search in Google Scholar

Elhorst, J. P. 2010. “Applied Spatial Econometrics: Raising the Bar.” Spatial Economic Analysis 5 (1): 9–28.10.1080/17421770903541772Search in Google Scholar

Elhorst, J. P. 2014. Spatial Econometrics: From Cross-Sectional Data to Spatial Panels. Springer Briefs in Regional Science. New York: Springer Berlin Heidelberg.10.1007/978-3-642-40340-8Search in Google Scholar

Feenstra, R. C. 2004. Advanced International Trade. Princeton, NJ: Princeton University Press.Search in Google Scholar

Fuller, W. A. 1996. Introduction to Statistical Time Series. Wiley Series in Probability and Statistics. New York: Wiley.10.1002/9780470316917Search in Google Scholar

Goldsmith-Pinkham, P., and G. W. Imbens. 2013. “Social Networks and the Identification of Peer Effects.” Journal of Business & Economic Statistics 31 (3): 253–264.10.1080/07350015.2013.801251Search in Google Scholar

Hsieh, C.-S., and L. F. Lee. 2016. “A Social Interactions Model with Endogenous Friendship Formation and Selectivity.” Journal of Applied Econometrics 31 (2): 301–319.10.1002/jae.2426Search in Google Scholar

Jackson, M. 2010. Social and Economic Networks. Princeton University Press. Princeton University Press.10.2307/j.ctvcm4gh1Search in Google Scholar

Jenish, N., and I. R. Prucha. 2009. “Central Limit Theorems and Uniform Laws of Large Numbers for Arrays of Random Fields.” Journal of Econometrics 150 (1): 86–98.10.1016/j.jeconom.2009.02.009Search in Google Scholar PubMed PubMed Central

Jenish, N., and I. R. Prucha. 2012. “On Spatial Processes and Asymptotic Inference Under Near-Epoch Dependence.” Journal of Econometrics 170 (1): 178–190.10.1016/j.jeconom.2012.05.022Search in Google Scholar PubMed PubMed Central

Kelejian, H. H., and I. R. Prucha. 2010. “Specification and Estimation of Spatial Autoregressive Models with Autoregressive and Heteroskedastic Disturbances.” Journal of Econometrics 157: 53–67.10.1016/j.jeconom.2009.10.025Search in Google Scholar PubMed PubMed Central

Lee, L.-f. 2004. “Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for Spatial Autoregressive Models.” Econometrica 72 (6): 1899–1925.10.1111/j.1468-0262.2004.00558.xSearch in Google Scholar

Lee, L.-f., and J. Yu. 2010. “A Spatial Dynamic Panel Data Model with both Time and Individual Fixed Effects.” Econometric Theory 26: 564–597.10.1017/S0266466609100099Search in Google Scholar

LeSage, J., and R. K. Pace. 2007. “A Matrix Exponential Spatial Specification.” Journal of Econometrics 140: 190–214.10.1016/j.jeconom.2006.09.007Search in Google Scholar

LeSage, J., and R. K. Pace. 2009. Introduction to Spatial Econometrics (Statistics: A Series of Textbooks and Monographs. London: Chapman and Hall/CRC.10.1201/9781420064254Search in Google Scholar

McCallum, J. 1995. “National Borders Matter: Canada-U.S. Regional Trade Patterns.” The American Economic Review 85 (3): 615–623.Search in Google Scholar

Moran, P. A. P. 1950. “A Test for the Serial Independence of Residuals.” Biometrika 37 (1/2): 178–181.10.1093/biomet/37.1-2.178Search in Google Scholar

Qu, X., L. fei Lee, and J. Yu. 2017. “QML Estimation of Spatial Dynamic Panel Data Models with Endogenous Time Varying Spatial Weights Matrices.” Journal of Econometrics 197 (2): 173–201.10.1016/j.jeconom.2016.11.004Search in Google Scholar

Qu, X., and L.-f. Lee. 2013. “Locally Most Powerful Tests for Spatial Interactions in the Simultaneous SAR Tobit Model.” Regional Science and Urban Economics 43 (2): 307–321.10.1016/j.regsciurbeco.2012.07.010Search in Google Scholar

Qu, X., and L.-f. Lee. 2015. “Estimating a Spatial Autoregressive Model with an Endogenous Spatial Weight Matrix.” Journal of Econometrics 184 (2): 209–232.10.1016/j.jeconom.2014.08.008Search in Google Scholar

Qu, X., X. Wang, and L.-f. Lee. 2016. “Instrumental Variable Estimation of a Spatial Dynamic Panel Model with Endogenous Spatial Weights When T is Small.” The Econometrics Journal 19 (3): 261–290.10.1111/ectj.12069Search in Google Scholar

Robinson, P. 2008. “Correlation Testing in Time Series, Spatial and Cross-sectional Data.” Journal of Econometrics 147 (1): 5–16.10.1920/wp.cem.2007.0107Search in Google Scholar

Robinson, P. M., and F. Rossi. 2014. “Improved Lagrange Multiplier Tests in Spatial Autoregressions.” The Econometrics Journal 17 (1): 139–164.10.1111/ectj.12025Search in Google Scholar

Robinson, P. M., and F. Rossi. 2015a. “Refined Tests for Spatial Correlation.” Econometric Theory 31 (6): 1249–1280.10.1017/S0266466614000498Search in Google Scholar

Robinson, P. M., and F. Rossi. 2015b. “Refinements in Maximum Likelihood Inference on Spatial Autocorrelation in Panel Data.” Journal of Econometrics 189 (2): 447–456. Frontiers in Time Series and Financial Econometrics.10.1016/j.jeconom.2015.03.036Search in Google Scholar

Saikkonen, P. 1989. “Asymptotic Relative Efficiency of the Classical Test Statistics Under Misspecification.” Journal of Econometrics 42 (3): 351–369.10.1016/0304-4076(89)90058-4Search in Google Scholar

Su, L., and Z. Yang. 2015. “QML estimation of dynamic panel data models with spatial errors.” Journal of Econometrics 185 (1): 230–258.10.1016/j.jeconom.2014.11.002Search in Google Scholar

Taşpınar, S., O. Doğan, and W. P. M. Vijverberg. 2016. . 2016. “GMM Inference in Spatial Autoregressive Models.“ Econometric Reviews 37(9): 931–954.10.1080/00927872.2016.1178885Search in Google Scholar

Taşpınar, S., O. Doğan, and A. K. Bera. 2017. “GMM Gradient Tests for Spatial Dynamic Panel Data Models.” Regional Science and Urban Economics 65: 65–88.10.1016/j.regsciurbeco.2017.04.008Search in Google Scholar

Wasserman, S., and K. Faust. 1994. Social Network Analysis: Methods and Applications,,Structural Analysis in the Social Sciences. Cambridge UK: Cambridge University Press.10.1017/CBO9780511815478Search in Google Scholar

Weinberg, B. A. 2007. Social Interactions with Endogenous Associations. Working Paper 13038, National Bureau of Economic Research.10.3386/w13038Search in Google Scholar

White, H. 1994. Estimation, Inference and Specification Analysis. Cambridge.10.1017/CCOL0521252806Search in Google Scholar

Yang, Z. 2015. “LM Tests of Spatial Dependence Based on Bootstrap Critical Values.” Journal of Econometrics 185 (1): 33–59.10.1016/j.jeconom.2014.10.005Search in Google Scholar

Yu, J., R. de Jong, and L. fei Lee. 2008. “Quasi-maximum Likelihood Estimators for Spatial Dynamic Panel Data with Fixed Effects when both n and T are Large.” Journal of Econometrics 146 (1): 118–134.10.1016/j.jeconom.2008.08.002Search in Google Scholar

Published Online: 2018-10-09

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/jem-2017-0015/html
Scroll to top button