Abstract
In this study, we propose simple test statistics for identifying the source of spatial dependence in spatial autoregressive models with endogenous weights matrices. Elements of the weights matrices are modelled in such a way that endogenity arises when the unobserved factors that affect elements of the weights matrices are correlated with the unobserved factors in the outcome equation. The proposed test statistics are robust to the presence of endogeneity in the weights and can be used to detect spatial dependence in the dependent variable and/or the disturbance terms. The robust test statistics are easy to calculate as computationally simple estimations are needed for their calculations. Our Monte Carlo results indicate that these tests have good size and power properties in finite samples. We also provide an empirical illustration to demonstrate the usefulness of the robust tests in identifying the source of spatial dependence.
Acknowledgment
We are grateful to a co-editor and two anonymous referees for their constructive comments.
-
Funding
This research was supported, in part, by a grant of computer time from the City University of New York High Performance Computing Center under NSF Grants CNS-0855217 and CNS-0958379.
A First and Second Order Derivatives
From (9), the first order derivatives are
Note that
The derivation of the first order derivative with respect to Γ requires some well-known properties. Let A, B and C be matrices with appropriate dimensions, then
vec(AB) = (I ⊗ A)vec(B) = (B′ ⊗ I)vec(A),
vec′(B′)vec(A) = tr(BA) = tr(AB) = vec′(A′)vec(B),
where I is an identity matrix that has appropriate dimension. Using these properties, it can be shown that
Also, vec(XΓ) = (Ip2 + p3 ⊗ X)vec(Γ) and vec′(XΓ) = vec′(Γ)(Ip2 + p3 ⊗ X′). Thus,
The second order derivatives are listed as follows:
Note that above we used the fact that in the first order derivative with respect to vec(Γ), only the first term involves
Note that
For notational simplicity, denote H = MR−1, G = WS−1, and
where kp = (k2 + k3)(p2 + p3),
B Detailed Expressions for Test Statistics
Let
Similarly,
where kp = (k2 + k3)(p2 + p3),
C Proofs of Propositions
Proof of Proposition 1
We first discuss the identification conditions stated in Assumption 5 and then give the asymptotic arguments for the consistency and asymptotic normality of the MLE.
Recall that
where ωi is the
There are two cases that lead to
Since Σε0 is positive definite by assumption,
In the second case, the rank condition for
The asymptotic analysis will involve evaluation of the terms in the log-likelihood such as
To prove consistency of the MLE
For the asymptotic normality of the MLE
Proof of Proposition 2
The Taylor expansions of
Using the fact that
Using the asymptotic normality of score functions from Proposition 1, we can show that
where
Note that the adjusted score function in Proposition 2 can be written as
Thus, we need to consider both (51) and (52) for the the last two results of Proposition 2. The combined system can be written as
Then, using the asymptotic normality of score functions from Proposition 1, we get
Using (56) in (54), we get the following result under
Thus,
Then, the last result in Proposition 2 directly follows from the above result, namely
where
□
D Simulation Results
The simulation results are based on the following weight matrices: (i) WS is the 49 × 49 contiguity weights matrix of 48 US states, (ii) WO is the 98 × 98 contiguity weights matrix corresponding to five nearest neighbors of each census tract in Toledo, Ohio, (iii) WC is the 361 × 361 weights matrix corresponding to whether the school districts are in the same county in Iowa in 2009, and (iv) WA is the 361 × 361 matrix corresponding to adjacency of 361 school districts in Iowa in 2009.
LM Tests (Bivariate Normal Distribution): δ0 = 0.
WS
|
WO
|
||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
λ 0 | ρ 0 | LMρ |
|
|
LMλ |
|
|
LMμ |
|
LMκ | LMρ |
|
|
LMλ |
|
|
LMμ |
|
LMκ |
0.0 | 0.0 | 0.047 | 0.062 | 0.061 | 0.035 | 0.053 | 0.057 | 0.050 | 0.053 | 0.049 | 0.050 | 0.057 | 0.053 | 0.047 | 0.049 | 0.058 | 0.061 | 0.066 | 0.048 |
0.1 | 0.0 | 0.068 | 0.058 | 0.055 | 0.116 | 0.097 | 0.090 | 0.086 | 0.089 | 0.103 | 0.100 | 0.049 | 0.050 | 0.156 | 0.108 | 0.102 | 0.118 | 0.111 | 0.108 |
0.3 | 0.0 | 0.390 | 0.061 | 0.060 | 0.661 | 0.412 | 0.377 | 0.551 | 0.530 | 0.502 | 0.659 | 0.053 | 0.050 | 0.850 | 0.531 | 0.504 | 0.778 | 0.758 | 0.752 |
0.5 | 0.0 | 0.846 | 0.029 | 0.038 | 0.982 | 0.779 | 0.742 | 0.961 | 0.957 | 0.943 | 0.985 | 0.040 | 0.035 | 1.000 | 0.917 | 0.889 | 0.996 | 0.995 | 0.997 |
0.0 | 0.1 | 0.058 | 0.065 | 0.070 | 0.064 | 0.055 | 0.062 | 0.064 | 0.069 | 0.072 | 0.090 | 0.073 | 0.072 | 0.103 | 0.061 | 0.055 | 0.092 | 0.090 | 0.085 |
0.1 | 0.1 | 0.175 | 0.063 | 0.060 | 0.198 | 0.094 | 0.087 | 0.179 | 0.173 | 0.161 | 0.302 | 0.079 | 0.079 | 0.337 | 0.101 | 0.096 | 0.285 | 0.277 | 0.251 |
0.3 | 0.1 | 0.570 | 0.055 | 0.050 | 0.751 | 0.390 | 0.384 | 0.698 | 0.675 | 0.621 | 0.875 | 0.095 | 0.094 | 0.937 | 0.497 | 0.464 | 0.910 | 0.903 | 0.880 |
0.5 | 0.1 | 0.932 | 0.037 | 0.043 | 0.986 | 0.748 | 0.720 | 0.983 | 0.974 | 0.965 | 0.998 | 0.072 | 0.069 | 1.000 | 0.873 | 0.839 | 0.999 | 0.998 | 0.999 |
0.0 | 0.3 | 0.386 | 0.188 | 0.195 | 0.274 | 0.070 | 0.069 | 0.337 | 0.335 | 0.308 | 0.628 | 0.314 | 0.307 | 0.455 | 0.074 | 0.078 | 0.537 | 0.535 | 0.520 |
0.1 | 0.3 | 0.595 | 0.178 | 0.185 | 0.541 | 0.107 | 0.115 | 0.539 | 0.532 | 0.506 | 0.879 | 0.326 | 0.317 | 0.799 | 0.136 | 0.135 | 0.786 | 0.790 | 0.796 |
0.3 | 0.3 | 0.907 | 0.125 | 0.124 | 0.943 | 0.351 | 0.337 | 0.930 | 0.927 | 0.902 | 0.995 | 0.257 | 0.250 | 0.997 | 0.461 | 0.429 | 0.994 | 0.992 | 0.988 |
0.5 | 0.3 | 0.988 | 0.064 | 0.070 | 0.998 | 0.687 | 0.649 | 0.997 | 0.995 | 0.996 | 1.000 | 0.202 | 0.188 | 1.000 | 0.797 | 0.765 | 1.000 | 1.000 | 1.000 |
0.0 | 0.5 | 0.845 | 0.429 | 0.398 | 0.695 | 0.097 | 0.100 | 0.787 | 0.788 | 0.753 | 0.986 | 0.723 | 0.681 | 0.925 | 0.107 | 0.125 | 0.966 | 0.965 | 0.958 |
0.1 | 0.5 | 0.911 | 0.384 | 0.378 | 0.866 | 0.127 | 0.133 | 0.897 | 0.893 | 0.866 | 0.996 | 0.666 | 0.633 | 0.987 | 0.151 | 0.154 | 0.993 | 0.992 | 0.985 |
0.3 | 0.5 | 0.981 | 0.291 | 0.289 | 0.985 | 0.310 | 0.312 | 0.985 | 0.983 | 0.986 | 1.000 | 0.563 | 0.525 | 1.000 | 0.390 | 0.393 | 1.000 | 1.000 | 1.000 |
0.5 | 0.5 | 0.999 | 0.185 | 0.170 | 0.999 | 0.514 | 0.482 | 1.000 | 1.000 | 0.999 | 1.000 | 0.402 | 0.362 | 1.000 | 0.643 | 0.628 | 1.000 | 1.000 | 1.000 |
WC
|
WA
|
||||||||||||||||||
0.0 | 0.0 | 0.048 | 0.056 | 0.048 | 0.046 | 0.051 | 0.047 | 0.039 | 0.039 | 0.053 | 0.053 | 0.049 | 0.048 | 0.062 | 0.056 | 0.053 | 0.052 | 0.046 | 0.046 |
0.1 | 0.0 | 0.468 | 0.054 | 0.055 | 0.609 | 0.226 | 0.231 | 0.491 | 0.494 | 0.456 | 0.323 | 0.060 | 0.063 | 0.464 | 0.213 | 0.191 | 0.369 | 0.367 | 0.327 |
0.3 | 0.0 | 1.000 | 0.046 | 0.051 | 1.000 | 0.968 | 0.959 | 1.000 | 1.000 | 1.000 | 1.000 | 0.060 | 0.063 | 1.000 | 0.922 | 0.898 | 1.000 | 1.000 | 0.999 |
0.5 | 0.0 | 1.000 | 0.041 | 0.057 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.047 | 0.049 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
0.0 | 0.1 | 0.488 | 0.184 | 0.176 | 0.391 | 0.073 | 0.078 | 0.377 | 0.373 | 0.349 | 0.337 | 0.164 | 0.159 | 0.236 | 0.062 | 0.060 | 0.271 | 0.261 | 0.241 |
0.1 | 0.1 | 0.955 | 0.209 | 0.207 | 0.963 | 0.223 | 0.217 | 0.958 | 0.955 | 0.932 | 0.865 | 0.130 | 0.121 | 0.886 | 0.193 | 0.191 | 0.846 | 0.847 | 0.808 |
0.3 | 0.1 | 1.000 | 0.152 | 0.150 | 1.000 | 0.945 | 0.949 | 1.000 | 1.000 | 1.000 | 1.000 | 0.132 | 0.130 | 1.000 | 0.909 | 0.891 | 1.000 | 1.000 | 1.000 |
0.5 | 0.1 | 1.000 | 0.048 | 0.052 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.108 | 0.104 | 1.000 | 0.997 | 0.993 | 1.000 | 1.000 | 1.000 |
0.0 | 0.3 | 1.000 | 0.882 | 0.874 | 0.998 | 0.084 | 0.086 | 1.000 | 1.000 | 0.998 | 0.997 | 0.788 | 0.730 | 0.977 | 0.061 | 0.063 | 0.991 | 0.991 | 0.989 |
0.1 | 0.3 | 1.000 | 0.878 | 0.873 | 1.000 | 0.243 | 0.252 | 1.000 | 1.000 | 1.000 | 1.000 | 0.757 | 0.749 | 1.000 | 0.193 | 0.174 | 1.000 | 1.000 | 1.000 |
0.3 | 0.3 | 1.000 | 0.750 | 0.726 | 1.000 | 0.858 | 0.851 | 1.000 | 1.000 | 1.000 | 1.000 | 0.689 | 0.631 | 1.000 | 0.825 | 0.802 | 1.000 | 1.000 | 1.000 |
0.5 | 0.3 | 1.000 | 0.185 | 0.172 | 1.000 | 0.997 | 0.997 | 1.000 | 1.000 | 1.000 | 1.000 | 0.524 | 0.466 | 1.000 | 0.988 | 0.984 | 1.000 | 1.000 | 1.000 |
0.0 | 0.5 | 1.000 | 1.000 | 1.000 | 1.000 | 0.131 | 0.133 | 1.000 | 1.000 | 1.000 | 1.000 | 0.994 | 0.989 | 1.000 | 0.107 | 0.115 | 1.000 | 1.000 | 1.000 |
0.1 | 0.5 | 1.000 | 0.993 | 0.990 | 1.000 | 0.227 | 0.235 | 1.000 | 1.000 | 1.000 | 1.000 | 0.992 | 0.979 | 1.000 | 0.208 | 0.218 | 1.000 | 1.000 | 1.000 |
0.3 | 0.5 | 1.000 | 0.914 | 0.894 | 1.000 | 0.697 | 0.680 | 1.000 | 1.000 | 1.000 | 1.000 | 0.968 | 0.946 | 1.000 | 0.676 | 0.646 | 1.000 | 1.000 | 1.000 |
0.5 | 0.5 | 1.000 | 0.343 | 0.311 | 1.000 | 0.942 | 0.936 | 1.000 | 1.000 | 1.000 | 1.000 | 0.794 | 0.727 | 1.000 | 0.941 | 0.922 | 1.000 | 1.000 | 1.000 |
LM Tests (Bivariate Normal Distribution): δ0 = 0.25.
WS
|
WO
|
||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
λ 0 | ρ 0 | LMρ |
|
|
LMλ |
|
|
LMμ |
|
LMκ | LMρ |
|
|
LMλ |
|
|
LMμ |
|
LMκ |
0.0 | 0.0 | 0.054 | 0.066 | 0.043 | 0.056 | 0.078 | 0.044 | 0.062 | 0.043 | 0.269 | 0.047 | 0.102 | 0.060 | 0.073 | 0.126 | 0.053 | 0.086 | 0.041 | 0.539 |
0.1 | 0.0 | 0.079 | 0.064 | 0.059 | 0.192 | 0.200 | 0.092 | 0.177 | 0.091 | 0.372 | 0.114 | 0.081 | 0.057 | 0.294 | 0.278 | 0.093 | 0.267 | 0.127 | 0.701 |
0.3 | 0.0 | 0.370 | 0.059 | 0.042 | 0.730 | 0.544 | 0.346 | 0.671 | 0.512 | 0.745 | 0.659 | 0.085 | 0.050 | 0.917 | 0.738 | 0.428 | 0.888 | 0.754 | 0.952 |
0.5 | 0.0 | 0.843 | 0.056 | 0.029 | 0.983 | 0.861 | 0.709 | 0.971 | 0.937 | 0.978 | 0.984 | 0.072 | 0.049 | 1.000 | 0.956 | 0.837 | 0.999 | 0.995 | 1.000 |
0.0 | 0.1 | 0.068 | 0.063 | 0.084 | 0.095 | 0.074 | 0.044 | 0.097 | 0.067 | 0.303 | 0.129 | 0.066 | 0.095 | 0.196 | 0.134 | 0.048 | 0.147 | 0.101 | 0.599 |
0.1 | 0.1 | 0.173 | 0.059 | 0.071 | 0.287 | 0.177 | 0.075 | 0.230 | 0.162 | 0.445 | 0.340 | 0.068 | 0.094 | 0.504 | 0.256 | 0.073 | 0.460 | 0.300 | 0.736 |
0.3 | 0.1 | 0.594 | 0.040 | 0.055 | 0.842 | 0.564 | 0.348 | 0.782 | 0.664 | 0.851 | 0.846 | 0.061 | 0.113 | 0.968 | 0.705 | 0.428 | 0.954 | 0.887 | 0.977 |
0.5 | 0.1 | 0.924 | 0.042 | 0.038 | 0.992 | 0.823 | 0.667 | 0.985 | 0.970 | 0.994 | 0.995 | 0.036 | 0.074 | 1.000 | 0.945 | 0.790 | 1.000 | 0.999 | 1.000 |
0.0 | 0.3 | 0.407 | 0.127 | 0.199 | 0.382 | 0.102 | 0.074 | 0.351 | 0.304 | 0.529 | 0.654 | 0.171 | 0.319 | 0.625 | 0.140 | 0.061 | 0.607 | 0.563 | 0.836 |
0.1 | 0.3 | 0.593 | 0.127 | 0.209 | 0.632 | 0.189 | 0.102 | 0.591 | 0.528 | 0.729 | 0.875 | 0.180 | 0.338 | 0.888 | 0.288 | 0.106 | 0.863 | 0.799 | 0.942 |
0.3 | 0.3 | 0.883 | 0.094 | 0.154 | 0.946 | 0.500 | 0.312 | 0.933 | 0.900 | 0.955 | 0.987 | 0.156 | 0.321 | 0.996 | 0.616 | 0.336 | 0.997 | 0.993 | 0.998 |
0.5 | 0.3 | 0.989 | 0.049 | 0.084 | 0.998 | 0.740 | 0.568 | 0.998 | 0.995 | 0.998 | 1.000 | 0.106 | 0.230 | 1.000 | 0.879 | 0.667 | 1.000 | 1.000 | 1.000 |
0.0 | 0.5 | 0.837 | 0.349 | 0.450 | 0.748 | 0.127 | 0.097 | 0.821 | 0.810 | 0.863 | 0.981 | 0.525 | 0.695 | 0.958 | 0.149 | 0.116 | 0.966 | 0.964 | 0.981 |
0.1 | 0.5 | 0.917 | 0.291 | 0.404 | 0.876 | 0.178 | 0.123 | 0.898 | 0.879 | 0.914 | 0.997 | 0.519 | 0.685 | 0.994 | 0.263 | 0.130 | 0.995 | 0.995 | 0.999 |
0.3 | 0.5 | 0.992 | 0.202 | 0.302 | 0.995 | 0.403 | 0.255 | 0.992 | 0.989 | 0.996 | 1.000 | 0.409 | 0.609 | 1.000 | 0.543 | 0.321 | 1.000 | 1.000 | 1.000 |
0.5 | 0.5 | 0.996 | 0.098 | 0.162 | 0.999 | 0.627 | 0.463 | 0.998 | 0.998 | 0.999 | 1.000 | 0.267 | 0.435 | 1.000 | 0.755 | 0.555 | 1.000 | 1.000 | 1.000 |
WC
|
WA
|
||||||||||||||||||
0.0 | 0.0 | 0.057 | 0.096 | 0.045 | 0.088 | 0.146 | 0.040 | 0.124 | 0.041 | 0.995 | 0.055 | 0.191 | 0.060 | 0.154 | 0.292 | 0.054 | 0.217 | 0.052 | 0.994 |
0.1 | 0.0 | 0.527 | 0.108 | 0.058 | 0.792 | 0.511 | 0.200 | 0.742 | 0.537 | 1.000 | 0.437 | 0.164 | 0.051 | 0.805 | 0.686 | 0.166 | 0.773 | 0.430 | 0.998 |
0.3 | 0.0 | 1.000 | 0.100 | 0.046 | 1.000 | 0.992 | 0.953 | 1.000 | 1.000 | 1.000 | 0.996 | 0.172 | 0.068 | 1.000 | 0.990 | 0.877 | 1.000 | 1.000 | 1.000 |
0.5 | 0.0 | 1.000 | 0.138 | 0.045 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.120 | 0.059 | 1.000 | 1.000 | 0.997 | 1.000 | 1.000 | 1.000 |
0.0 | 0.1 | 0.549 | 0.084 | 0.218 | 0.603 | 0.138 | 0.054 | 0.511 | 0.429 | 0.999 | 0.439 | 0.058 | 0.202 | 0.603 | 0.257 | 0.049 | 0.509 | 0.345 | 0.997 |
0.1 | 0.1 | 0.979 | 0.074 | 0.217 | 0.995 | 0.550 | 0.228 | 0.986 | 0.956 | 1.000 | 0.929 | 0.055 | 0.203 | 0.990 | 0.676 | 0.168 | 0.969 | 0.890 | 1.000 |
0.3 | 0.1 | 1.000 | 0.058 | 0.188 | 1.000 | 0.986 | 0.933 | 1.000 | 1.000 | 1.000 | 1.000 | 0.067 | 0.219 | 1.000 | 0.991 | 0.813 | 1.000 | 1.000 | 1.000 |
0.5 | 0.1 | 1.000 | 0.054 | 0.071 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.042 | 0.151 | 1.000 | 1.000 | 0.998 | 1.000 | 1.000 | 1.000 |
0.0 | 0.3 | 1.000 | 0.722 | 0.901 | 1.000 | 0.154 | 0.069 | 1.000 | 1.000 | 1.000 | 0.999 | 0.463 | 0.838 | 0.998 | 0.255 | 0.063 | 0.998 | 0.993 | 1.000 |
0.1 | 0.3 | 1.000 | 0.703 | 0.894 | 1.000 | 0.472 | 0.183 | 1.000 | 1.000 | 1.000 | 1.000 | 0.427 | 0.827 | 1.000 | 0.614 | 0.127 | 1.000 | 1.000 | 1.000 |
0.3 | 0.3 | 1.000 | 0.524 | 0.778 | 1.000 | 0.953 | 0.788 | 1.000 | 1.000 | 1.000 | 1.000 | 0.367 | 0.763 | 1.000 | 0.969 | 0.705 | 1.000 | 1.000 | 1.000 |
0.5 | 0.3 | 1.000 | 0.097 | 0.262 | 1.000 | 1.000 | 0.994 | 1.000 | 1.000 | 1.000 | 1.000 | 0.219 | 0.586 | 1.000 | 0.999 | 0.978 | 1.000 | 1.000 | 1.000 |
0.0 | 0.5 | 1.000 | 0.997 | 0.999 | 1.000 | 0.176 | 0.130 | 1.000 | 1.000 | 1.000 | 1.000 | 0.949 | 0.992 | 1.000 | 0.275 | 0.128 | 1.000 | 1.000 | 1.000 |
0.1 | 0.5 | 1.000 | 0.980 | 0.997 | 1.000 | 0.349 | 0.158 | 1.000 | 1.000 | 1.000 | 1.000 | 0.941 | 0.996 | 1.000 | 0.509 | 0.119 | 1.000 | 1.000 | 1.000 |
0.3 | 0.5 | 1.000 | 0.821 | 0.944 | 1.000 | 0.816 | 0.607 | 1.000 | 1.000 | 1.000 | 1.000 | 0.847 | 0.975 | 1.000 | 0.908 | 0.550 | 1.000 | 1.000 | 1.000 |
0.5 | 0.5 | 1.000 | 0.234 | 0.460 | 1.000 | 0.969 | 0.887 | 1.000 | 1.000 | 1.000 | 1.000 | 0.569 | 0.887 | 1.000 | 0.981 | 0.883 | 1.000 | 1.000 | 1.000 |
LM Tests (Bivariate Normal Distribution): δ0 = 0.5.
WS
|
WO
|
||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
λ 0 | ρ 0 | LMρ |
|
|
LMλ |
|
|
LMμ |
|
LMκ | LMρ |
|
|
LMλ |
|
|
LMμ |
|
LMκ |
0.0 | 0.0 | 0.037 | 0.097 | 0.034 | 0.101 | 0.161 | 0.018 | 0.113 | 0.029 | 0.883 | 0.070 | 0.138 | 0.052 | 0.234 | 0.334 | 0.028 | 0.259 | 0.047 | 0.997 |
0.1 | 0.0 | 0.093 | 0.138 | 0.043 | 0.331 | 0.371 | 0.053 | 0.286 | 0.085 | 0.935 | 0.200 | 0.165 | 0.056 | 0.586 | 0.537 | 0.056 | 0.563 | 0.160 | 0.998 |
0.3 | 0.0 | 0.391 | 0.117 | 0.042 | 0.839 | 0.726 | 0.297 | 0.785 | 0.518 | 0.989 | 0.738 | 0.154 | 0.049 | 0.982 | 0.905 | 0.370 | 0.977 | 0.815 | 1.000 |
0.5 | 0.0 | 0.835 | 0.113 | 0.027 | 0.993 | 0.917 | 0.657 | 0.992 | 0.948 | 0.998 | 0.981 | 0.126 | 0.038 | 1.000 | 0.982 | 0.801 | 1.000 | 0.999 | 1.000 |
0.0 | 0.1 | 0.090 | 0.055 | 0.061 | 0.190 | 0.199 | 0.026 | 0.176 | 0.052 | 0.914 | 0.201 | 0.080 | 0.110 | 0.426 | 0.318 | 0.029 | 0.373 | 0.162 | 0.999 |
0.1 | 0.1 | 0.215 | 0.069 | 0.072 | 0.449 | 0.319 | 0.055 | 0.412 | 0.169 | 0.944 | 0.460 | 0.069 | 0.129 | 0.774 | 0.489 | 0.051 | 0.732 | 0.368 | 1.000 |
0.3 | 0.1 | 0.626 | 0.061 | 0.047 | 0.911 | 0.695 | 0.290 | 0.858 | 0.649 | 0.990 | 0.897 | 0.071 | 0.119 | 0.993 | 0.862 | 0.324 | 0.989 | 0.923 | 1.000 |
0.5 | 0.1 | 0.913 | 0.060 | 0.035 | 0.997 | 0.896 | 0.658 | 0.993 | 0.972 | 1.000 | 0.997 | 0.065 | 0.084 | 1.000 | 0.968 | 0.741 | 1.000 | 0.999 | 1.000 |
0.0 | 0.3 | 0.471 | 0.094 | 0.250 | 0.509 | 0.166 | 0.050 | 0.445 | 0.363 | 0.957 | 0.777 | 0.109 | 0.445 | 0.853 | 0.279 | 0.046 | 0.788 | 0.684 | 1.000 |
0.1 | 0.3 | 0.630 | 0.103 | 0.220 | 0.758 | 0.315 | 0.060 | 0.702 | 0.559 | 0.975 | 0.906 | 0.109 | 0.413 | 0.974 | 0.491 | 0.060 | 0.952 | 0.885 | 1.000 |
0.3 | 0.3 | 0.899 | 0.064 | 0.164 | 0.980 | 0.611 | 0.233 | 0.941 | 0.896 | 0.997 | 0.995 | 0.091 | 0.399 | 1.000 | 0.794 | 0.243 | 0.998 | 0.992 | 1.000 |
0.5 | 0.3 | 0.979 | 0.044 | 0.082 | 1.000 | 0.811 | 0.512 | 0.995 | 0.989 | 1.000 | 1.000 | 0.065 | 0.277 | 1.000 | 0.935 | 0.623 | 1.000 | 1.000 | 1.000 |
0.0 | 0.5 | 0.859 | 0.253 | 0.493 | 0.848 | 0.201 | 0.082 | 0.850 | 0.816 | 0.983 | 0.992 | 0.436 | 0.800 | 0.989 | 0.292 | 0.082 | 0.984 | 0.976 | 1.000 |
0.1 | 0.5 | 0.935 | 0.223 | 0.457 | 0.945 | 0.274 | 0.086 | 0.923 | 0.889 | 0.994 | 0.999 | 0.370 | 0.786 | 0.999 | 0.437 | 0.084 | 1.000 | 0.999 | 1.000 |
0.3 | 0.5 | 0.986 | 0.142 | 0.334 | 0.996 | 0.502 | 0.202 | 0.999 | 0.991 | 1.000 | 1.000 | 0.281 | 0.690 | 1.000 | 0.693 | 0.240 | 1.000 | 1.000 | 1.000 |
0.5 | 0.5 | 1.000 | 0.062 | 0.181 | 0.999 | 0.680 | 0.389 | 0.998 | 0.998 | 1.000 | 1.000 | 0.182 | 0.528 | 1.000 | 0.823 | 0.451 | 1.000 | 1.000 | 1.000 |
WC
|
WA
|
||||||||||||||||||
0.0 | 0.0 | 0.095 | 0.210 | 0.049 | 0.356 | 0.456 | 0.020 | 0.416 | 0.074 | 1.000 | 0.237 | 0.361 | 0.091 | 0.754 | 0.796 | 0.025 | 0.792 | 0.142 | 1.000 |
0.1 | 0.0 | 0.693 | 0.223 | 0.052 | 0.964 | 0.867 | 0.184 | 0.940 | 0.698 | 1.000 | 0.753 | 0.377 | 0.099 | 0.993 | 0.966 | 0.120 | 0.992 | 0.683 | 1.000 |
0.3 | 0.0 | 1.000 | 0.240 | 0.053 | 1.000 | 1.000 | 0.948 | 1.000 | 1.000 | 1.000 | 0.999 | 0.359 | 0.088 | 1.000 | 1.000 | 0.841 | 1.000 | 1.000 | 1.000 |
0.5 | 0.0 | 1.000 | 0.302 | 0.031 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.301 | 0.090 | 1.000 | 1.000 | 0.998 | 1.000 | 1.000 | 1.000 |
0.0 | 0.1 | 0.717 | 0.051 | 0.292 | 0.889 | 0.429 | 0.021 | 0.823 | 0.619 | 1.000 | 0.788 | 0.104 | 0.363 | 0.966 | 0.746 | 0.033 | 0.945 | 0.689 | 1.000 |
0.1 | 0.1 | 0.988 | 0.058 | 0.296 | 1.000 | 0.797 | 0.133 | 1.000 | 0.989 | 1.000 | 0.987 | 0.096 | 0.390 | 1.000 | 0.936 | 0.069 | 0.999 | 0.984 | 1.000 |
0.3 | 0.1 | 1.000 | 0.044 | 0.243 | 1.000 | 0.996 | 0.917 | 1.000 | 1.000 | 1.000 | 1.000 | 0.088 | 0.349 | 1.000 | 1.000 | 0.764 | 1.000 | 1.000 | 1.000 |
0.5 | 0.1 | 1.000 | 0.105 | 0.065 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.106 | 0.267 | 1.000 | 1.000 | 0.997 | 1.000 | 1.000 | 1.000 |
0.0 | 0.3 | 1.000 | 0.556 | 0.950 | 1.000 | 0.363 | 0.062 | 1.000 | 1.000 | 1.000 | 1.000 | 0.272 | 0.954 | 1.000 | 0.661 | 0.060 | 1.000 | 1.000 | 1.000 |
0.1 | 0.3 | 1.000 | 0.534 | 0.949 | 1.000 | 0.681 | 0.101 | 1.000 | 1.000 | 1.000 | 1.000 | 0.238 | 0.941 | 1.000 | 0.896 | 0.074 | 1.000 | 1.000 | 1.000 |
0.3 | 0.3 | 1.000 | 0.330 | 0.866 | 1.000 | 0.979 | 0.771 | 1.000 | 1.000 | 1.000 | 1.000 | 0.166 | 0.889 | 1.000 | 0.996 | 0.595 | 1.000 | 1.000 | 1.000 |
0.5 | 0.3 | 1.000 | 0.057 | 0.391 | 1.000 | 1.000 | 0.988 | 1.000 | 1.000 | 1.000 | 1.000 | 0.075 | 0.773 | 1.000 | 1.000 | 0.946 | 1.000 | 1.000 | 1.000 |
0.0 | 0.5 | 1.000 | 0.980 | 1.000 | 1.000 | 0.281 | 0.105 | 1.000 | 1.000 | 1.000 | 1.000 | 0.845 | 0.999 | 1.000 | 0.635 | 0.094 | 1.000 | 1.000 | 1.000 |
0.1 | 0.5 | 1.000 | 0.951 | 1.000 | 1.000 | 0.544 | 0.082 | 1.000 | 1.000 | 1.000 | 1.000 | 0.818 | 0.999 | 1.000 | 0.798 | 0.065 | 1.000 | 1.000 | 1.000 |
0.3 | 0.5 | 1.000 | 0.741 | 0.984 | 1.000 | 0.868 | 0.494 | 1.000 | 1.000 | 1.000 | 1.000 | 0.652 | 0.996 | 1.000 | 0.964 | 0.366 | 1.000 | 1.000 | 1.000 |
0.5 | 0.5 | 1.000 | 0.156 | 0.604 | 1.000 | 0.974 | 0.869 | 1.000 | 1.000 | 1.000 | 1.000 | 0.343 | 0.954 | 1.000 | 0.998 | 0.798 | 1.000 | 1.000 | 1.000 |
Robust LM Tests for Endogeneity in Weights: δ0 = 0.
WS
|
WO
|
WC
|
WA
|
||||||
---|---|---|---|---|---|---|---|---|---|
λ 0 | ρ 0 |
|
|
|
|
|
|
|
|
0.0 | 0.0 | 0.050 | 0.058 | 0.052 | 0.048 | 0.054 | 0.048 | 0.051 | 0.052 |
0.1 | 0.0 | 0.069 | 0.071 | 0.074 | 0.075 | 0.067 | 0.070 | 0.053 | 0.049 |
0.3 | 0.0 | 0.074 | 0.065 | 0.050 | 0.054 | 0.058 | 0.061 | 0.073 | 0.072 |
0.5 | 0.0 | 0.054 | 0.057 | 0.050 | 0.059 | 0.071 | 0.084 | 0.082 | 0.090 |
0.0 | 0.1 | 0.063 | 0.075 | 0.062 | 0.067 | 0.060 | 0.054 | 0.071 | 0.057 |
0.1 | 0.1 | 0.056 | 0.055 | 0.065 | 0.062 | 0.060 | 0.061 | 0.069 | 0.073 |
0.3 | 0.1 | 0.071 | 0.070 | 0.075 | 0.070 | 0.065 | 0.065 | 0.092 | 0.086 |
0.5 | 0.1 | 0.048 | 0.060 | 0.078 | 0.081 | 0.082 | 0.088 | 0.099 | 0.091 |
0.0 | 0.3 | 0.067 | 0.067 | 0.092 | 0.089 | 0.087 | 0.062 | 0.138 | 0.075 |
0.1 | 0.3 | 0.082 | 0.075 | 0.082 | 0.061 | 0.111 | 0.060 | 0.123 | 0.070 |
0.3 | 0.3 | 0.066 | 0.061 | 0.101 | 0.092 | 0.104 | 0.064 | 0.145 | 0.091 |
0.5 | 0.3 | 0.067 | 0.079 | 0.101 | 0.093 | 0.088 | 0.073 | 0.123 | 0.101 |
0.0 | 0.5 | 0.105 | 0.085 | 0.137 | 0.089 | 0.178 | 0.078 | 0.245 | 0.092 |
0.1 | 0.5 | 0.087 | 0.080 | 0.170 | 0.102 | 0.154 | 0.072 | 0.247 | 0.103 |
0.3 | 0.5 | 0.092 | 0.089 | 0.158 | 0.114 | 0.135 | 0.093 | 0.218 | 0.114 |
0.5 | 0.5 | 0.102 | 0.089 | 0.133 | 0.114 | 0.102 | 0.077 | 0.177 | 0.085 |
Robust LM Tests for Endogeneity in Weights: δ0 = 0.25.
WS
|
WO
|
WC
|
WA
|
||||||
---|---|---|---|---|---|---|---|---|---|
λ 0 | ρ 0 |
|
|
|
|
|
|
|
|
0.0 | 0.0 | 0.427 | 0.392 | 0.713 | 0.678 | 0.998 | 0.997 | 1.000 | 0.999 |
0.1 | 0.0 | 0.401 | 0.383 | 0.702 | 0.657 | 0.997 | 0.994 | 0.998 | 0.997 |
0.3 | 0.0 | 0.401 | 0.370 | 0.649 | 0.621 | 0.996 | 0.995 | 0.996 | 0.996 |
0.5 | 0.0 | 0.322 | 0.293 | 0.599 | 0.560 | 0.960 | 0.952 | 0.988 | 0.980 |
0.0 | 0.1 | 0.391 | 0.393 | 0.699 | 0.705 | 0.997 | 0.995 | 0.996 | 0.998 |
0.1 | 0.1 | 0.383 | 0.394 | 0.659 | 0.659 | 0.990 | 0.994 | 0.995 | 0.996 |
0.3 | 0.1 | 0.357 | 0.360 | 0.630 | 0.642 | 0.991 | 0.993 | 0.996 | 0.997 |
0.5 | 0.1 | 0.308 | 0.284 | 0.530 | 0.552 | 0.962 | 0.956 | 0.979 | 0.977 |
0.0 | 0.3 | 0.319 | 0.391 | 0.595 | 0.695 | 0.992 | 0.997 | 0.994 | 0.999 |
0.1 | 0.3 | 0.331 | 0.401 | 0.572 | 0.677 | 0.971 | 0.993 | 0.984 | 0.996 |
0.3 | 0.3 | 0.308 | 0.358 | 0.553 | 0.644 | 0.969 | 0.990 | 0.980 | 0.997 |
0.5 | 0.3 | 0.247 | 0.284 | 0.488 | 0.570 | 0.919 | 0.929 | 0.957 | 0.982 |
0.0 | 0.5 | 0.262 | 0.407 | 0.464 | 0.672 | 0.954 | 0.996 | 0.946 | 0.997 |
0.1 | 0.5 | 0.249 | 0.391 | 0.438 | 0.663 | 0.949 | 0.988 | 0.942 | 0.995 |
0.3 | 0.5 | 0.255 | 0.362 | 0.434 | 0.635 | 0.921 | 0.976 | 0.952 | 0.991 |
0.5 | 0.5 | 0.211 | 0.293 | 0.363 | 0.503 | 0.850 | 0.895 | 0.904 | 0.968 |
Robust LM Tests for Endogeneity in Weights: δ0 = 0.5.
WS
|
WO
|
WC
|
WA
|
||||||
---|---|---|---|---|---|---|---|---|---|
λ 0 | ρ 0 |
|
|
|
|
|
|
|
|
0.0 | 0.0 | 0.956 | 0.938 | 1.000 | 0.997 | 1.000 | 1.000 | 1.000 | 1.000 |
0.1 | 0.0 | 0.965 | 0.946 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
0.3 | 0.0 | 0.929 | 0.893 | 0.999 | 0.999 | 1.000 | 1.000 | 1.000 | 1.000 |
0.5 | 0.0 | 0.891 | 0.835 | 0.994 | 0.991 | 1.000 | 1.000 | 1.000 | 1.000 |
0.0 | 0.1 | 0.961 | 0.959 | 0.999 | 0.998 | 1.000 | 1.000 | 1.000 | 1.000 |
0.1 | 0.1 | 0.947 | 0.932 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
0.3 | 0.1 | 0.939 | 0.926 | 0.996 | 0.992 | 1.000 | 1.000 | 1.000 | 1.000 |
0.5 | 0.1 | 0.858 | 0.809 | 0.997 | 0.995 | 1.000 | 1.000 | 1.000 | 1.000 |
0.0 | 0.3 | 0.935 | 0.954 | 0.998 | 0.998 | 1.000 | 1.000 | 1.000 | 1.000 |
0.1 | 0.3 | 0.909 | 0.925 | 0.997 | 0.998 | 1.000 | 1.000 | 1.000 | 1.000 |
0.3 | 0.3 | 0.884 | 0.903 | 0.996 | 0.999 | 1.000 | 1.000 | 1.000 | 1.000 |
0.5 | 0.3 | 0.795 | 0.798 | 0.986 | 0.990 | 1.000 | 1.000 | 1.000 | 1.000 |
0.0 | 0.5 | 0.858 | 0.931 | 0.993 | 0.998 | 1.000 | 1.000 | 1.000 | 1.000 |
0.1 | 0.5 | 0.848 | 0.919 | 0.984 | 0.998 | 1.000 | 1.000 | 1.000 | 1.000 |
0.3 | 0.5 | 0.822 | 0.872 | 0.982 | 0.992 | 1.000 | 1.000 | 1.000 | 1.000 |
0.5 | 0.5 | 0.731 | 0.756 | 0.956 | 0.976 | 1.000 | 1.000 | 1.000 | 1.000 |
LM Tests (Conditional Moment Assumptions Hold Without Normality): δ0 = 0.
WS
|
WO
|
||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
λ 0 | ρ 0 | LMρ |
|
|
LMλ |
|
|
LMμ |
|
LMκ | LMρ |
|
|
LMλ |
|
|
LMμ |
|
LMκ |
0.0 | 0.0 | 0.051 | 0.056 | 0.062 | 0.053 | 0.063 | 0.061 | 0.063 | 0.067 | 0.059 | 0.052 | 0.053 | 0.047 | 0.048 | 0.046 | 0.043 | 0.047 | 0.040 | 0.047 |
0.1 | 0.0 | 0.064 | 0.053 | 0.051 | 0.102 | 0.090 | 0.093 | 0.084 | 0.083 | 0.083 | 0.113 | 0.058 | 0.050 | 0.157 | 0.104 | 0.095 | 0.131 | 0.123 | 0.127 |
0.3 | 0.0 | 0.413 | 0.059 | 0.061 | 0.675 | 0.403 | 0.381 | 0.594 | 0.578 | 0.517 | 0.654 | 0.045 | 0.050 | 0.876 | 0.535 | 0.517 | 0.800 | 0.783 | 0.754 |
0.5 | 0.0 | 0.825 | 0.047 | 0.046 | 0.979 | 0.780 | 0.747 | 0.960 | 0.950 | 0.937 | 0.990 | 0.027 | 0.038 | 0.999 | 0.907 | 0.881 | 0.999 | 0.999 | 0.999 |
0.0 | 0.1 | 0.077 | 0.060 | 0.057 | 0.067 | 0.063 | 0.063 | 0.073 | 0.075 | 0.063 | 0.092 | 0.053 | 0.063 | 0.086 | 0.051 | 0.060 | 0.073 | 0.077 | 0.077 |
0.1 | 0.1 | 0.155 | 0.072 | 0.078 | 0.213 | 0.118 | 0.114 | 0.183 | 0.174 | 0.157 | 0.323 | 0.068 | 0.069 | 0.350 | 0.125 | 0.134 | 0.301 | 0.299 | 0.260 |
0.3 | 0.1 | 0.600 | 0.056 | 0.058 | 0.778 | 0.392 | 0.370 | 0.707 | 0.686 | 0.645 | 0.857 | 0.068 | 0.073 | 0.937 | 0.492 | 0.447 | 0.896 | 0.881 | 0.867 |
0.5 | 0.1 | 0.931 | 0.042 | 0.041 | 0.992 | 0.762 | 0.714 | 0.982 | 0.976 | 0.970 | 0.997 | 0.065 | 0.063 | 0.999 | 0.876 | 0.846 | 1.000 | 1.000 | 1.000 |
0.0 | 0.3 | 0.361 | 0.185 | 0.179 | 0.269 | 0.086 | 0.091 | 0.316 | 0.321 | 0.290 | 0.633 | 0.288 | 0.280 | 0.459 | 0.070 | 0.075 | 0.538 | 0.535 | 0.500 |
0.1 | 0.3 | 0.607 | 0.176 | 0.179 | 0.533 | 0.118 | 0.117 | 0.562 | 0.551 | 0.490 | 0.831 | 0.288 | 0.276 | 0.772 | 0.127 | 0.126 | 0.781 | 0.780 | 0.743 |
0.3 | 0.3 | 0.905 | 0.143 | 0.137 | 0.938 | 0.331 | 0.319 | 0.920 | 0.914 | 0.884 | 0.992 | 0.281 | 0.265 | 0.994 | 0.466 | 0.463 | 0.994 | 0.994 | 0.992 |
0.5 | 0.3 | 0.986 | 0.075 | 0.074 | 0.996 | 0.629 | 0.601 | 0.996 | 0.995 | 0.992 | 1.000 | 0.171 | 0.166 | 1.000 | 0.797 | 0.770 | 1.000 | 1.000 | 1.000 |
0.0 | 0.5 | 0.844 | 0.447 | 0.420 | 0.684 | 0.119 | 0.127 | 0.797 | 0.802 | 0.767 | 0.978 | 0.679 | 0.648 | 0.923 | 0.110 | 0.118 | 0.970 | 0.967 | 0.951 |
0.1 | 0.5 | 0.934 | 0.402 | 0.382 | 0.876 | 0.125 | 0.133 | 0.905 | 0.900 | 0.880 | 0.992 | 0.645 | 0.617 | 0.980 | 0.153 | 0.169 | 0.987 | 0.989 | 0.986 |
0.3 | 0.5 | 0.984 | 0.263 | 0.255 | 0.980 | 0.308 | 0.284 | 0.982 | 0.980 | 0.978 | 0.999 | 0.568 | 0.520 | 1.000 | 0.417 | 0.408 | 1.000 | 0.999 | 0.998 |
0.5 | 0.5 | 0.998 | 0.138 | 0.152 | 0.999 | 0.533 | 0.516 | 0.999 | 0.999 | 0.998 | 1.000 | 0.393 | 0.379 | 1.000 | 0.611 | 0.580 | 1.000 | 1.000 | 1.000 |
WC
|
WA
|
||||||||||||||||||
0.0 | 0.0 | 0.054 | 0.055 | 0.053 | 0.051 | 0.054 | 0.049 | 0.053 | 0.050 | 0.047 | 0.042 | 0.037 | 0.035 | 0.052 | 0.050 | 0.050 | 0.049 | 0.048 | 0.052 |
0.1 | 0.0 | 0.499 | 0.050 | 0.048 | 0.615 | 0.209 | 0.192 | 0.506 | 0.505 | 0.460 | 0.345 | 0.052 | 0.053 | 0.476 | 0.200 | 0.196 | 0.382 | 0.388 | 0.326 |
0.3 | 0.0 | 1.000 | 0.043 | 0.043 | 1.000 | 0.968 | 0.969 | 1.000 | 1.000 | 1.000 | 0.996 | 0.046 | 0.047 | 1.000 | 0.911 | 0.885 | 0.999 | 0.999 | 0.997 |
0.5 | 0.0 | 1.000 | 0.045 | 0.059 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.028 | 0.033 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
0.0 | 0.1 | 0.482 | 0.190 | 0.190 | 0.377 | 0.061 | 0.058 | 0.408 | 0.411 | 0.364 | 0.324 | 0.150 | 0.143 | 0.231 | 0.058 | 0.057 | 0.269 | 0.268 | 0.247 |
0.1 | 0.1 | 0.965 | 0.165 | 0.167 | 0.973 | 0.246 | 0.235 | 0.952 | 0.952 | 0.927 | 0.870 | 0.141 | 0.143 | 0.868 | 0.186 | 0.181 | 0.840 | 0.836 | 0.793 |
0.3 | 0.1 | 1.000 | 0.172 | 0.166 | 1.000 | 0.951 | 0.939 | 1.000 | 1.000 | 1.000 | 1.000 | 0.144 | 0.140 | 1.000 | 0.898 | 0.867 | 1.000 | 1.000 | 1.000 |
0.5 | 0.1 | 1.000 | 0.042 | 0.047 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.128 | 0.122 | 1.000 | 0.998 | 0.997 | 1.000 | 1.000 | 1.000 |
0.0 | 0.3 | 1.000 | 0.865 | 0.845 | 1.000 | 0.082 | 0.082 | 1.000 | 1.000 | 0.999 | 0.998 | 0.744 | 0.726 | 0.984 | 0.061 | 0.062 | 0.995 | 0.995 | 0.989 |
0.1 | 0.3 | 1.000 | 0.866 | 0.861 | 1.000 | 0.241 | 0.243 | 1.000 | 1.000 | 1.000 | 1.000 | 0.761 | 0.715 | 1.000 | 0.201 | 0.204 | 1.000 | 1.000 | 1.000 |
0.3 | 0.3 | 1.000 | 0.722 | 0.703 | 1.000 | 0.862 | 0.854 | 1.000 | 1.000 | 1.000 | 1.000 | 0.707 | 0.655 | 1.000 | 0.830 | 0.807 | 1.000 | 1.000 | 1.000 |
0.5 | 0.3 | 1.000 | 0.199 | 0.187 | 1.000 | 0.991 | 0.992 | 1.000 | 1.000 | 1.000 | 1.000 | 0.517 | 0.480 | 1.000 | 0.989 | 0.980 | 1.000 | 1.000 | 1.000 |
0.0 | 0.5 | 1.000 | 0.996 | 0.994 | 1.000 | 0.134 | 0.148 | 1.000 | 1.000 | 1.000 | 1.000 | 0.985 | 0.978 | 1.000 | 0.107 | 0.117 | 1.000 | 1.000 | 1.000 |
0.1 | 0.5 | 1.000 | 0.999 | 0.998 | 1.000 | 0.206 | 0.213 | 1.000 | 1.000 | 1.000 | 1.000 | 0.990 | 0.983 | 1.000 | 0.220 | 0.206 | 1.000 | 1.000 | 1.000 |
0.3 | 0.5 | 1.000 | 0.911 | 0.894 | 1.000 | 0.687 | 0.677 | 1.000 | 1.000 | 1.000 | 1.000 | 0.962 | 0.937 | 1.000 | 0.657 | 0.629 | 1.000 | 1.000 | 1.000 |
0.5 | 0.5 | 1.000 | 0.360 | 0.345 | 1.000 | 0.927 | 0.923 | 1.000 | 1.000 | 1.000 | 1.000 | 0.794 | 0.729 | 1.000 | 0.940 | 0.931 | 1.000 | 1.000 | 1.000 |
LM Tests (Conditional Moment Assumptions Hold Without Normality): δ0 = 0.25.
WS
|
WO
|
||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
λ 0 | ρ 0 | LMρ |
|
|
LMλ |
|
|
LMμ |
|
LMκ | LMρ |
|
|
LMλ |
|
|
LMμ |
|
LMκ |
0.0 | 0.0 | 0.050 | 0.076 | 0.044 | 0.050 | 0.076 | 0.046 | 0.063 | 0.038 | 0.254 | 0.044 | 0.092 | 0.048 | 0.068 | 0.099 | 0.046 | 0.087 | 0.046 | 0.486 |
0.1 | 0.0 | 0.064 | 0.075 | 0.055 | 0.146 | 0.162 | 0.080 | 0.128 | 0.069 | 0.298 | 0.119 | 0.084 | 0.044 | 0.269 | 0.215 | 0.072 | 0.229 | 0.109 | 0.633 |
0.3 | 0.0 | 0.375 | 0.066 | 0.045 | 0.710 | 0.542 | 0.324 | 0.641 | 0.521 | 0.756 | 0.648 | 0.082 | 0.053 | 0.897 | 0.690 | 0.398 | 0.859 | 0.739 | 0.941 |
0.5 | 0.0 | 0.852 | 0.063 | 0.050 | 0.989 | 0.862 | 0.704 | 0.977 | 0.945 | 0.984 | 0.981 | 0.068 | 0.064 | 1.000 | 0.934 | 0.829 | 1.000 | 0.997 | 1.000 |
0.0 | 0.1 | 0.066 | 0.064 | 0.073 | 0.094 | 0.079 | 0.055 | 0.084 | 0.060 | 0.259 | 0.125 | 0.073 | 0.097 | 0.152 | 0.109 | 0.051 | 0.151 | 0.101 | 0.567 |
0.1 | 0.1 | 0.165 | 0.055 | 0.062 | 0.292 | 0.172 | 0.096 | 0.231 | 0.168 | 0.418 | 0.337 | 0.059 | 0.091 | 0.511 | 0.287 | 0.091 | 0.434 | 0.278 | 0.742 |
0.3 | 0.1 | 0.558 | 0.059 | 0.064 | 0.820 | 0.522 | 0.311 | 0.743 | 0.643 | 0.809 | 0.842 | 0.055 | 0.089 | 0.962 | 0.671 | 0.384 | 0.944 | 0.862 | 0.983 |
0.5 | 0.1 | 0.918 | 0.041 | 0.029 | 0.993 | 0.812 | 0.641 | 0.980 | 0.962 | 0.984 | 0.994 | 0.045 | 0.075 | 0.999 | 0.927 | 0.778 | 0.998 | 0.997 | 1.000 |
0.0 | 0.3 | 0.373 | 0.102 | 0.181 | 0.335 | 0.101 | 0.074 | 0.298 | 0.288 | 0.476 | 0.668 | 0.196 | 0.341 | 0.637 | 0.133 | 0.085 | 0.621 | 0.601 | 0.841 |
0.1 | 0.3 | 0.600 | 0.125 | 0.186 | 0.640 | 0.179 | 0.097 | 0.586 | 0.521 | 0.715 | 0.857 | 0.131 | 0.280 | 0.890 | 0.276 | 0.115 | 0.857 | 0.822 | 0.945 |
0.3 | 0.3 | 0.881 | 0.082 | 0.133 | 0.942 | 0.452 | 0.277 | 0.916 | 0.875 | 0.930 | 0.995 | 0.147 | 0.297 | 0.999 | 0.622 | 0.365 | 0.998 | 0.995 | 0.999 |
0.5 | 0.3 | 0.990 | 0.041 | 0.083 | 0.997 | 0.704 | 0.540 | 0.995 | 0.993 | 0.995 | 1.000 | 0.128 | 0.230 | 1.000 | 0.848 | 0.692 | 1.000 | 1.000 | 1.000 |
0.0 | 0.5 | 0.842 | 0.324 | 0.448 | 0.753 | 0.126 | 0.113 | 0.806 | 0.799 | 0.851 | 0.983 | 0.504 | 0.682 | 0.966 | 0.153 | 0.114 | 0.971 | 0.965 | 0.988 |
0.1 | 0.5 | 0.933 | 0.303 | 0.415 | 0.899 | 0.180 | 0.123 | 0.906 | 0.896 | 0.933 | 0.997 | 0.517 | 0.677 | 0.993 | 0.238 | 0.125 | 0.996 | 0.993 | 0.998 |
0.3 | 0.5 | 0.981 | 0.182 | 0.267 | 0.989 | 0.413 | 0.276 | 0.988 | 0.983 | 0.990 | 1.000 | 0.400 | 0.583 | 1.000 | 0.514 | 0.317 | 1.000 | 1.000 | 1.000 |
0.5 | 0.5 | 1.000 | 0.087 | 0.143 | 1.000 | 0.601 | 0.448 | 1.000 | 0.999 | 1.000 | 1.000 | 0.261 | 0.410 | 1.000 | 0.730 | 0.533 | 1.000 | 1.000 | 1.000 |
WC
|
WA
|
||||||||||||||||||
0.0 | 0.0 | 0.052 | 0.109 | 0.058 | 0.078 | 0.122 | 0.046 | 0.101 | 0.049 | 0.981 | 0.051 | 0.160 | 0.063 | 0.128 | 0.237 | 0.048 | 0.176 | 0.060 | 0.990 |
0.1 | 0.0 | 0.512 | 0.110 | 0.061 | 0.758 | 0.517 | 0.222 | 0.700 | 0.525 | 0.998 | 0.408 | 0.148 | 0.050 | 0.765 | 0.608 | 0.144 | 0.732 | 0.384 | 0.997 |
0.3 | 0.0 | 1.000 | 0.107 | 0.048 | 1.000 | 0.990 | 0.943 | 1.000 | 1.000 | 1.000 | 0.998 | 0.133 | 0.062 | 1.000 | 0.992 | 0.847 | 1.000 | 1.000 | 1.000 |
0.5 | 0.0 | 1.000 | 0.114 | 0.038 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.120 | 0.047 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
0.0 | 0.1 | 0.497 | 0.075 | 0.178 | 0.572 | 0.139 | 0.061 | 0.471 | 0.425 | 0.996 | 0.382 | 0.055 | 0.168 | 0.540 | 0.262 | 0.054 | 0.461 | 0.302 | 0.991 |
0.1 | 0.1 | 0.963 | 0.078 | 0.208 | 0.992 | 0.475 | 0.206 | 0.979 | 0.960 | 1.000 | 0.902 | 0.051 | 0.181 | 0.976 | 0.603 | 0.148 | 0.950 | 0.877 | 1.000 |
0.3 | 0.1 | 1.000 | 0.066 | 0.168 | 1.000 | 0.987 | 0.916 | 1.000 | 1.000 | 1.000 | 1.000 | 0.051 | 0.167 | 1.000 | 0.979 | 0.825 | 1.000 | 1.000 | 1.000 |
0.5 | 0.1 | 1.000 | 0.048 | 0.059 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.034 | 0.123 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
0.0 | 0.3 | 1.000 | 0.686 | 0.885 | 1.000 | 0.155 | 0.062 | 1.000 | 1.000 | 1.000 | 0.999 | 0.434 | 0.780 | 0.998 | 0.252 | 0.087 | 0.998 | 0.997 | 1.000 |
0.1 | 0.3 | 1.000 | 0.659 | 0.873 | 1.000 | 0.453 | 0.195 | 1.000 | 1.000 | 1.000 | 1.000 | 0.413 | 0.784 | 1.000 | 0.542 | 0.134 | 1.000 | 1.000 | 1.000 |
0.3 | 0.3 | 1.000 | 0.517 | 0.723 | 1.000 | 0.916 | 0.777 | 1.000 | 1.000 | 1.000 | 1.000 | 0.349 | 0.716 | 1.000 | 0.957 | 0.685 | 1.000 | 1.000 | 1.000 |
0.5 | 0.3 | 1.000 | 0.099 | 0.252 | 1.000 | 0.999 | 0.996 | 1.000 | 1.000 | 1.000 | 1.000 | 0.214 | 0.538 | 1.000 | 0.998 | 0.979 | 1.000 | 1.000 | 1.000 |
0.0 | 0.5 | 1.000 | 0.984 | 0.999 | 1.000 | 0.152 | 0.108 | 1.000 | 1.000 | 1.000 | 1.000 | 0.933 | 0.989 | 1.000 | 0.260 | 0.118 | 1.000 | 1.000 | 1.000 |
0.1 | 0.5 | 1.000 | 0.974 | 0.997 | 1.000 | 0.359 | 0.184 | 1.000 | 1.000 | 1.000 | 1.000 | 0.917 | 0.993 | 1.000 | 0.456 | 0.140 | 1.000 | 1.000 | 1.000 |
0.3 | 0.5 | 1.000 | 0.823 | 0.925 | 1.000 | 0.764 | 0.563 | 1.000 | 1.000 | 1.000 | 1.000 | 0.818 | 0.967 | 1.000 | 0.880 | 0.565 | 1.000 | 1.000 | 1.000 |
0.5 | 0.5 | 1.000 | 0.244 | 0.435 | 1.000 | 0.954 | 0.895 | 1.000 | 1.000 | 1.000 | 1.000 | 0.557 | 0.829 | 1.000 | 0.979 | 0.888 | 1.000 | 1.000 | 1.000 |
LM Tests (Conditional Moment Assumptions Hold Without Normality): δ0 = 0.5.
WS
|
WO
|
||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
λ 0 | ρ 0 | LMρ |
|
|
LMλ |
|
|
LMμ |
|
LMκ | LMρ |
|
|
LMλ |
|
|
LMμ |
|
LMκ |
0.0 | 0.0 | 0.036 | 0.100 | 0.034 | 0.061 | 0.120 | 0.022 | 0.097 | 0.025 | 0.797 | 0.044 | 0.151 | 0.046 | 0.126 | 0.236 | 0.030 | 0.179 | 0.029 | 0.993 |
0.1 | 0.0 | 0.099 | 0.119 | 0.060 | 0.244 | 0.272 | 0.070 | 0.236 | 0.076 | 0.875 | 0.145 | 0.150 | 0.035 | 0.405 | 0.440 | 0.048 | 0.394 | 0.111 | 0.995 |
0.3 | 0.0 | 0.380 | 0.138 | 0.049 | 0.765 | 0.612 | 0.263 | 0.714 | 0.470 | 0.966 | 0.686 | 0.152 | 0.036 | 0.967 | 0.815 | 0.321 | 0.944 | 0.739 | 1.000 |
0.5 | 0.0 | 0.824 | 0.114 | 0.037 | 0.984 | 0.862 | 0.604 | 0.975 | 0.926 | 0.999 | 0.980 | 0.120 | 0.043 | 1.000 | 0.972 | 0.746 | 1.000 | 0.996 | 1.000 |
0.0 | 0.1 | 0.074 | 0.072 | 0.064 | 0.154 | 0.145 | 0.039 | 0.134 | 0.065 | 0.808 | 0.145 | 0.093 | 0.081 | 0.325 | 0.267 | 0.040 | 0.280 | 0.100 | 0.991 |
0.1 | 0.1 | 0.190 | 0.062 | 0.063 | 0.366 | 0.259 | 0.063 | 0.314 | 0.156 | 0.878 | 0.365 | 0.083 | 0.083 | 0.657 | 0.427 | 0.059 | 0.567 | 0.297 | 0.998 |
0.3 | 0.1 | 0.572 | 0.078 | 0.043 | 0.855 | 0.584 | 0.238 | 0.794 | 0.607 | 0.972 | 0.864 | 0.076 | 0.077 | 0.982 | 0.793 | 0.302 | 0.971 | 0.883 | 1.000 |
0.5 | 0.1 | 0.911 | 0.061 | 0.041 | 0.994 | 0.833 | 0.587 | 0.983 | 0.952 | 1.000 | 0.996 | 0.071 | 0.078 | 1.000 | 0.952 | 0.727 | 1.000 | 0.999 | 1.000 |
0.0 | 0.3 | 0.394 | 0.085 | 0.204 | 0.454 | 0.157 | 0.056 | 0.391 | 0.340 | 0.886 | 0.716 | 0.110 | 0.346 | 0.774 | 0.206 | 0.055 | 0.713 | 0.613 | 0.998 |
0.1 | 0.3 | 0.630 | 0.086 | 0.194 | 0.712 | 0.265 | 0.080 | 0.658 | 0.541 | 0.961 | 0.881 | 0.099 | 0.377 | 0.937 | 0.391 | 0.062 | 0.901 | 0.829 | 1.000 |
0.3 | 0.3 | 0.893 | 0.059 | 0.121 | 0.950 | 0.529 | 0.226 | 0.934 | 0.875 | 0.995 | 0.989 | 0.083 | 0.313 | 0.999 | 0.706 | 0.269 | 0.998 | 0.989 | 1.000 |
0.5 | 0.3 | 0.985 | 0.053 | 0.094 | 0.995 | 0.723 | 0.450 | 0.993 | 0.986 | 0.999 | 1.000 | 0.048 | 0.235 | 1.000 | 0.891 | 0.561 | 1.000 | 1.000 | 1.000 |
0.0 | 0.5 | 0.874 | 0.225 | 0.442 | 0.849 | 0.176 | 0.091 | 0.848 | 0.824 | 0.984 | 0.988 | 0.346 | 0.702 | 0.990 | 0.252 | 0.090 | 0.986 | 0.981 | 1.000 |
0.1 | 0.5 | 0.927 | 0.208 | 0.407 | 0.932 | 0.230 | 0.084 | 0.926 | 0.898 | 0.987 | 0.996 | 0.326 | 0.692 | 0.996 | 0.350 | 0.090 | 0.998 | 0.995 | 1.000 |
0.3 | 0.5 | 0.990 | 0.126 | 0.270 | 0.988 | 0.441 | 0.185 | 0.992 | 0.987 | 0.998 | 1.000 | 0.279 | 0.586 | 1.000 | 0.600 | 0.237 | 1.000 | 1.000 | 1.000 |
0.5 | 0.5 | 0.999 | 0.067 | 0.157 | 1.000 | 0.599 | 0.360 | 1.000 | 0.999 | 1.000 | 1.000 | 0.185 | 0.442 | 1.000 | 0.759 | 0.443 | 1.000 | 1.000 | 1.000 |
WC
|
WA
|
||||||||||||||||||
0.0 | 0.0 | 0.057 | 0.204 | 0.038 | 0.167 | 0.325 | 0.030 | 0.263 | 0.040 | 1.000 | 0.106 | 0.367 | 0.050 | 0.444 | 0.658 | 0.026 | 0.599 | 0.062 | 1.000 |
0.1 | 0.0 | 0.595 | 0.200 | 0.044 | 0.888 | 0.746 | 0.158 | 0.877 | 0.582 | 1.000 | 0.564 | 0.374 | 0.047 | 0.956 | 0.900 | 0.114 | 0.951 | 0.527 | 1.000 |
0.3 | 0.0 | 1.000 | 0.178 | 0.054 | 1.000 | 0.996 | 0.887 | 1.000 | 1.000 | 1.000 | 0.999 | 0.343 | 0.061 | 1.000 | 0.997 | 0.764 | 1.000 | 1.000 | 1.000 |
0.5 | 0.0 | 1.000 | 0.293 | 0.041 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.328 | 0.040 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
0.0 | 0.1 | 0.611 | 0.065 | 0.217 | 0.757 | 0.312 | 0.036 | 0.672 | 0.497 | 1.000 | 0.605 | 0.134 | 0.213 | 0.874 | 0.629 | 0.037 | 0.835 | 0.495 | 1.000 |
0.1 | 0.1 | 0.976 | 0.062 | 0.199 | 0.996 | 0.679 | 0.125 | 0.989 | 0.960 | 1.000 | 0.954 | 0.124 | 0.240 | 1.000 | 0.870 | 0.090 | 0.999 | 0.944 | 1.000 |
0.3 | 0.1 | 1.000 | 0.052 | 0.195 | 1.000 | 0.987 | 0.837 | 1.000 | 1.000 | 1.000 | 1.000 | 0.126 | 0.221 | 1.000 | 0.999 | 0.710 | 1.000 | 1.000 | 1.000 |
0.5 | 0.1 | 1.000 | 0.107 | 0.053 | 1.000 | 1.000 | 0.997 | 1.000 | 1.000 | 1.000 | 1.000 | 0.110 | 0.185 | 1.000 | 1.000 | 0.988 | 1.000 | 1.000 | 1.000 |
0.0 | 0.3 | 1.000 | 0.450 | 0.882 | 1.000 | 0.283 | 0.062 | 1.000 | 1.000 | 1.000 | 1.000 | 0.158 | 0.814 | 1.000 | 0.576 | 0.053 | 1.000 | 1.000 | 1.000 |
0.1 | 0.3 | 1.000 | 0.468 | 0.886 | 1.000 | 0.565 | 0.112 | 1.000 | 1.000 | 1.000 | 1.000 | 0.157 | 0.821 | 1.000 | 0.809 | 0.086 | 1.000 | 1.000 | 1.000 |
0.3 | 0.3 | 1.000 | 0.311 | 0.764 | 1.000 | 0.944 | 0.675 | 1.000 | 1.000 | 1.000 | 1.000 | 0.113 | 0.753 | 1.000 | 0.982 | 0.571 | 1.000 | 1.000 | 1.000 |
0.5 | 0.3 | 1.000 | 0.045 | 0.285 | 1.000 | 0.997 | 0.972 | 1.000 | 1.000 | 1.000 | 1.000 | 0.095 | 0.644 | 1.000 | 1.000 | 0.930 | 1.000 | 1.000 | 1.000 |
0.0 | 0.5 | 1.000 | 0.922 | 0.998 | 1.000 | 0.261 | 0.097 | 1.000 | 1.000 | 1.000 | 1.000 | 0.753 | 0.997 | 1.000 | 0.482 | 0.094 | 1.000 | 1.000 | 1.000 |
0.1 | 0.5 | 1.000 | 0.917 | 0.996 | 1.000 | 0.449 | 0.102 | 1.000 | 1.000 | 1.000 | 1.000 | 0.701 | 0.989 | 1.000 | 0.710 | 0.108 | 1.000 | 1.000 | 1.000 |
0.3 | 0.5 | 1.000 | 0.633 | 0.934 | 1.000 | 0.802 | 0.473 | 1.000 | 1.000 | 1.000 | 1.000 | 0.581 | 0.981 | 1.000 | 0.921 | 0.418 | 1.000 | 1.000 | 1.000 |
0.5 | 0.5 | 1.000 | 0.142 | 0.465 | 1.000 | 0.953 | 0.834 | 1.000 | 1.000 | 1.000 | 1.000 | 0.289 | 0.884 | 1.000 | 0.983 | 0.810 | 1.000 | 1.000 | 1.000 |
LM Tests (Bivariate t5 Distribution): δ0 = 0.
WS
|
WO
|
||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
λ 0 | ρ 0 | LMρ |
|
|
LMλ |
|
|
LMμ |
|
LMκ | LMρ |
|
|
LMλ |
|
|
LMμ |
|
LMκ |
0.0 | 0.0 | 0.031 | 0.041 | 0.040 | 0.037 | 0.061 | 0.049 | 0.042 | 0.036 | 0.093 | 0.038 | 0.048 | 0.051 | 0.044 | 0.056 | 0.060 | 0.044 | 0.039 | 0.109 |
0.1 | 0.0 | 0.061 | 0.052 | 0.050 | 0.084 | 0.085 | 0.081 | 0.072 | 0.064 | 0.138 | 0.088 | 0.041 | 0.045 | 0.120 | 0.078 | 0.085 | 0.109 | 0.106 | 0.168 |
0.3 | 0.0 | 0.367 | 0.051 | 0.039 | 0.572 | 0.328 | 0.304 | 0.477 | 0.479 | 0.494 | 0.588 | 0.056 | 0.065 | 0.769 | 0.400 | 0.376 | 0.689 | 0.672 | 0.684 |
0.5 | 0.0 | 0.809 | 0.061 | 0.066 | 0.938 | 0.648 | 0.618 | 0.902 | 0.888 | 0.896 | 0.974 | 0.051 | 0.059 | 0.998 | 0.776 | 0.759 | 0.987 | 0.985 | 0.986 |
0.0 | 0.1 | 0.052 | 0.063 | 0.063 | 0.065 | 0.074 | 0.073 | 0.078 | 0.073 | 0.131 | 0.082 | 0.064 | 0.064 | 0.080 | 0.060 | 0.065 | 0.077 | 0.071 | 0.141 |
0.1 | 0.1 | 0.152 | 0.062 | 0.060 | 0.176 | 0.092 | 0.087 | 0.151 | 0.135 | 0.202 | 0.249 | 0.060 | 0.060 | 0.288 | 0.092 | 0.091 | 0.231 | 0.221 | 0.292 |
0.3 | 0.1 | 0.570 | 0.064 | 0.069 | 0.715 | 0.284 | 0.277 | 0.636 | 0.628 | 0.630 | 0.801 | 0.068 | 0.075 | 0.885 | 0.373 | 0.361 | 0.833 | 0.831 | 0.845 |
0.5 | 0.1 | 0.919 | 0.053 | 0.050 | 0.971 | 0.607 | 0.568 | 0.956 | 0.952 | 0.949 | 0.993 | 0.048 | 0.054 | 0.999 | 0.759 | 0.735 | 0.995 | 0.994 | 0.996 |
0.0 | 0.3 | 0.348 | 0.154 | 0.156 | 0.289 | 0.090 | 0.087 | 0.312 | 0.316 | 0.370 | 0.580 | 0.229 | 0.220 | 0.463 | 0.072 | 0.082 | 0.491 | 0.501 | 0.526 |
0.1 | 0.3 | 0.541 | 0.141 | 0.126 | 0.531 | 0.122 | 0.115 | 0.514 | 0.507 | 0.507 | 0.823 | 0.228 | 0.233 | 0.783 | 0.115 | 0.120 | 0.766 | 0.767 | 0.759 |
0.3 | 0.3 | 0.864 | 0.113 | 0.113 | 0.901 | 0.277 | 0.273 | 0.864 | 0.856 | 0.852 | 0.983 | 0.194 | 0.188 | 0.983 | 0.339 | 0.356 | 0.978 | 0.980 | 0.977 |
0.5 | 0.3 | 0.979 | 0.072 | 0.071 | 0.993 | 0.540 | 0.517 | 0.986 | 0.982 | 0.986 | 1.000 | 0.171 | 0.164 | 1.000 | 0.637 | 0.604 | 1.000 | 1.000 | 1.000 |
0.0 | 0.5 | 0.820 | 0.333 | 0.311 | 0.694 | 0.100 | 0.127 | 0.743 | 0.750 | 0.751 | 0.957 | 0.505 | 0.470 | 0.906 | 0.109 | 0.113 | 0.937 | 0.935 | 0.929 |
0.1 | 0.5 | 0.893 | 0.283 | 0.276 | 0.843 | 0.126 | 0.138 | 0.849 | 0.861 | 0.843 | 0.983 | 0.447 | 0.433 | 0.972 | 0.161 | 0.158 | 0.972 | 0.973 | 0.973 |
0.3 | 0.5 | 0.980 | 0.217 | 0.216 | 0.979 | 0.255 | 0.253 | 0.978 | 0.979 | 0.976 | 1.000 | 0.425 | 0.411 | 1.000 | 0.311 | 0.320 | 1.000 | 1.000 | 0.999 |
0.5 | 0.5 | 0.994 | 0.132 | 0.133 | 0.995 | 0.443 | 0.409 | 0.992 | 0.992 | 0.994 | 1.000 | 0.272 | 0.269 | 1.000 | 0.506 | 0.489 | 1.000 | 1.000 | 1.000 |
WC
|
WA
|
||||||||||||||||||
0.0 | 0.0 | 0.035 | 0.037 | 0.044 | 0.039 | 0.044 | 0.043 | 0.033 | 0.032 | 0.138 | 0.047 | 0.033 | 0.037 | 0.034 | 0.033 | 0.040 | 0.033 | 0.038 | 0.131 |
0.1 | 0.0 | 0.459 | 0.056 | 0.059 | 0.561 | 0.182 | 0.179 | 0.456 | 0.453 | 0.486 | 0.286 | 0.058 | 0.068 | 0.367 | 0.150 | 0.150 | 0.293 | 0.285 | 0.358 |
0.3 | 0.0 | 1.000 | 0.043 | 0.042 | 1.000 | 0.875 | 0.865 | 1.000 | 1.000 | 1.000 | 0.994 | 0.046 | 0.061 | 0.998 | 0.771 | 0.748 | 0.994 | 0.995 | 0.997 |
0.5 | 0.0 | 1.000 | 0.070 | 0.082 | 1.000 | 0.997 | 0.997 | 1.000 | 1.000 | 1.000 | 1.000 | 0.055 | 0.069 | 1.000 | 0.992 | 0.989 | 1.000 | 1.000 | 1.000 |
0.0 | 0.1 | 0.413 | 0.145 | 0.140 | 0.338 | 0.064 | 0.064 | 0.332 | 0.334 | 0.388 | 0.278 | 0.087 | 0.092 | 0.221 | 0.054 | 0.057 | 0.212 | 0.218 | 0.294 |
0.1 | 0.1 | 0.960 | 0.149 | 0.150 | 0.967 | 0.157 | 0.158 | 0.944 | 0.942 | 0.921 | 0.819 | 0.100 | 0.098 | 0.849 | 0.146 | 0.164 | 0.771 | 0.769 | 0.766 |
0.3 | 0.1 | 1.000 | 0.106 | 0.111 | 1.000 | 0.829 | 0.814 | 1.000 | 1.000 | 1.000 | 1.000 | 0.115 | 0.119 | 1.000 | 0.696 | 0.671 | 1.000 | 1.000 | 1.000 |
0.5 | 0.1 | 1.000 | 0.046 | 0.053 | 1.000 | 0.996 | 0.994 | 1.000 | 1.000 | 1.000 | 1.000 | 0.068 | 0.077 | 1.000 | 0.986 | 0.977 | 1.000 | 1.000 | 1.000 |
0.0 | 0.3 | 0.999 | 0.723 | 0.702 | 0.998 | 0.078 | 0.090 | 0.998 | 0.998 | 0.998 | 0.993 | 0.558 | 0.545 | 0.981 | 0.077 | 0.071 | 0.986 | 0.990 | 0.985 |
0.1 | 0.3 | 1.000 | 0.653 | 0.642 | 1.000 | 0.194 | 0.197 | 1.000 | 1.000 | 1.000 | 1.000 | 0.521 | 0.502 | 1.000 | 0.140 | 0.139 | 1.000 | 1.000 | 1.000 |
0.3 | 0.3 | 1.000 | 0.478 | 0.475 | 1.000 | 0.719 | 0.711 | 1.000 | 1.000 | 1.000 | 1.000 | 0.496 | 0.455 | 1.000 | 0.652 | 0.629 | 1.000 | 1.000 | 1.000 |
0.5 | 0.3 | 1.000 | 0.145 | 0.135 | 1.000 | 0.959 | 0.962 | 1.000 | 1.000 | 1.000 | 1.000 | 0.310 | 0.300 | 1.000 | 0.948 | 0.932 | 1.000 | 1.000 | 1.000 |
0.0 | 0.5 | 1.000 | 0.954 | 0.948 | 1.000 | 0.122 | 0.126 | 1.000 | 1.000 | 1.000 | 1.000 | 0.931 | 0.907 | 1.000 | 0.090 | 0.100 | 1.000 | 1.000 | 1.000 |
0.1 | 0.5 | 1.000 | 0.936 | 0.927 | 1.000 | 0.191 | 0.186 | 1.000 | 1.000 | 1.000 | 1.000 | 0.911 | 0.890 | 1.000 | 0.159 | 0.163 | 1.000 | 1.000 | 1.000 |
0.3 | 0.5 | 1.000 | 0.754 | 0.731 | 1.000 | 0.541 | 0.528 | 1.000 | 1.000 | 1.000 | 1.000 | 0.801 | 0.782 | 1.000 | 0.553 | 0.538 | 1.000 | 1.000 | 1.000 |
0.5 | 0.5 | 1.000 | 0.240 | 0.234 | 1.000 | 0.829 | 0.826 | 1.000 | 1.000 | 1.000 | 1.000 | 0.593 | 0.560 | 1.000 | 0.834 | 0.805 | 1.000 | 1.000 | 1.000 |
LM Tests (Bivariate t5 Distribution): δ0 = 0.25.
WS
|
WO
|
||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
λ 0 | ρ 0 | LMρ |
|
|
LMλ |
|
|
LMμ |
|
LMκ | LMρ |
|
|
LMλ |
|
|
LMμ |
|
LMκ |
0.0 | 0.0 | 0.037 | 0.068 | 0.037 | 0.040 | 0.084 | 0.040 | 0.056 | 0.031 | 0.331 | 0.043 | 0.086 | 0.053 | 0.059 | 0.101 | 0.052 | 0.081 | 0.051 | 0.536 |
0.1 | 0.0 | 0.058 | 0.082 | 0.051 | 0.129 | 0.157 | 0.079 | 0.134 | 0.077 | 0.384 | 0.110 | 0.088 | 0.064 | 0.237 | 0.214 | 0.083 | 0.211 | 0.128 | 0.635 |
0.3 | 0.0 | 0.347 | 0.080 | 0.059 | 0.620 | 0.426 | 0.248 | 0.531 | 0.418 | 0.698 | 0.597 | 0.109 | 0.064 | 0.861 | 0.605 | 0.322 | 0.809 | 0.671 | 0.916 |
0.5 | 0.0 | 0.799 | 0.078 | 0.048 | 0.961 | 0.699 | 0.518 | 0.932 | 0.891 | 0.949 | 0.974 | 0.090 | 0.058 | 0.997 | 0.862 | 0.685 | 0.993 | 0.987 | 0.997 |
0.0 | 0.1 | 0.063 | 0.065 | 0.060 | 0.094 | 0.088 | 0.056 | 0.084 | 0.064 | 0.354 | 0.110 | 0.066 | 0.064 | 0.149 | 0.115 | 0.067 | 0.133 | 0.080 | 0.571 |
0.1 | 0.1 | 0.138 | 0.054 | 0.062 | 0.232 | 0.167 | 0.080 | 0.201 | 0.146 | 0.430 | 0.271 | 0.047 | 0.073 | 0.414 | 0.216 | 0.084 | 0.338 | 0.247 | 0.685 |
0.3 | 0.1 | 0.562 | 0.061 | 0.057 | 0.760 | 0.437 | 0.233 | 0.711 | 0.606 | 0.785 | 0.800 | 0.072 | 0.073 | 0.935 | 0.571 | 0.298 | 0.892 | 0.819 | 0.952 |
0.5 | 0.1 | 0.883 | 0.074 | 0.055 | 0.972 | 0.679 | 0.519 | 0.956 | 0.926 | 0.974 | 0.989 | 0.067 | 0.080 | 0.999 | 0.817 | 0.646 | 0.999 | 0.997 | 1.000 |
0.0 | 0.3 | 0.351 | 0.107 | 0.168 | 0.346 | 0.091 | 0.066 | 0.326 | 0.302 | 0.575 | 0.607 | 0.138 | 0.258 | 0.607 | 0.110 | 0.062 | 0.534 | 0.507 | 0.789 |
0.1 | 0.3 | 0.530 | 0.096 | 0.141 | 0.587 | 0.166 | 0.087 | 0.535 | 0.485 | 0.693 | 0.811 | 0.139 | 0.249 | 0.863 | 0.234 | 0.097 | 0.806 | 0.752 | 0.921 |
0.3 | 0.3 | 0.861 | 0.067 | 0.127 | 0.919 | 0.386 | 0.246 | 0.887 | 0.853 | 0.930 | 0.985 | 0.106 | 0.237 | 0.992 | 0.521 | 0.284 | 0.988 | 0.982 | 0.998 |
0.5 | 0.3 | 0.983 | 0.067 | 0.092 | 0.994 | 0.602 | 0.446 | 0.993 | 0.985 | 0.996 | 1.000 | 0.088 | 0.168 | 1.000 | 0.743 | 0.558 | 1.000 | 0.999 | 1.000 |
0.0 | 0.5 | 0.802 | 0.255 | 0.350 | 0.740 | 0.103 | 0.089 | 0.749 | 0.740 | 0.833 | 0.963 | 0.353 | 0.520 | 0.950 | 0.151 | 0.100 | 0.945 | 0.933 | 0.979 |
0.1 | 0.5 | 0.889 | 0.220 | 0.311 | 0.881 | 0.173 | 0.112 | 0.878 | 0.858 | 0.923 | 0.991 | 0.354 | 0.525 | 0.986 | 0.240 | 0.140 | 0.986 | 0.981 | 0.996 |
0.3 | 0.5 | 0.979 | 0.136 | 0.208 | 0.984 | 0.346 | 0.237 | 0.975 | 0.969 | 0.988 | 0.999 | 0.269 | 0.426 | 0.999 | 0.465 | 0.291 | 0.998 | 0.997 | 0.999 |
0.5 | 0.5 | 0.997 | 0.083 | 0.121 | 0.998 | 0.526 | 0.381 | 0.997 | 0.997 | 0.999 | 1.000 | 0.176 | 0.318 | 1.000 | 0.638 | 0.467 | 1.000 | 1.000 | 1.000 |
WC
|
WA
|
||||||||||||||||||
0.0 | 0.0 | 0.038 | 0.090 | 0.039 | 0.064 | 0.125 | 0.029 | 0.085 | 0.037 | 0.926 | 0.043 | 0.162 | 0.067 | 0.119 | 0.237 | 0.057 | 0.170 | 0.051 | 0.939 |
0.1 | 0.0 | 0.464 | 0.119 | 0.058 | 0.703 | 0.447 | 0.190 | 0.628 | 0.473 | 0.984 | 0.354 | 0.140 | 0.047 | 0.664 | 0.517 | 0.114 | 0.632 | 0.330 | 0.975 |
0.3 | 0.0 | 1.000 | 0.133 | 0.062 | 1.000 | 0.942 | 0.821 | 1.000 | 1.000 | 1.000 | 0.995 | 0.162 | 0.054 | 1.000 | 0.959 | 0.733 | 0.999 | 0.999 | 1.000 |
0.5 | 0.0 | 1.000 | 0.169 | 0.062 | 1.000 | 1.000 | 0.997 | 1.000 | 1.000 | 1.000 | 1.000 | 0.174 | 0.050 | 1.000 | 1.000 | 0.985 | 1.000 | 1.000 | 1.000 |
0.0 | 0.1 | 0.498 | 0.061 | 0.150 | 0.561 | 0.157 | 0.070 | 0.463 | 0.415 | 0.971 | 0.362 | 0.045 | 0.145 | 0.517 | 0.191 | 0.047 | 0.407 | 0.285 | 0.967 |
0.1 | 0.1 | 0.948 | 0.072 | 0.153 | 0.974 | 0.419 | 0.146 | 0.953 | 0.922 | 0.998 | 0.879 | 0.066 | 0.154 | 0.956 | 0.463 | 0.104 | 0.926 | 0.830 | 0.998 |
0.3 | 0.1 | 1.000 | 0.058 | 0.125 | 1.000 | 0.932 | 0.788 | 1.000 | 1.000 | 1.000 | 1.000 | 0.077 | 0.120 | 1.000 | 0.944 | 0.661 | 1.000 | 1.000 | 1.000 |
0.5 | 0.1 | 1.000 | 0.046 | 0.039 | 1.000 | 0.998 | 0.989 | 1.000 | 1.000 | 1.000 | 1.000 | 0.063 | 0.107 | 1.000 | 1.000 | 0.967 | 1.000 | 1.000 | 1.000 |
0.0 | 0.3 | 1.000 | 0.504 | 0.747 | 0.999 | 0.127 | 0.075 | 0.998 | 1.000 | 1.000 | 0.998 | 0.250 | 0.621 | 0.996 | 0.216 | 0.064 | 0.995 | 0.995 | 0.999 |
0.1 | 0.3 | 1.000 | 0.451 | 0.731 | 1.000 | 0.357 | 0.140 | 1.000 | 1.000 | 1.000 | 1.000 | 0.249 | 0.610 | 1.000 | 0.477 | 0.149 | 1.000 | 1.000 | 1.000 |
0.3 | 0.3 | 1.000 | 0.338 | 0.571 | 1.000 | 0.852 | 0.642 | 1.000 | 1.000 | 1.000 | 1.000 | 0.211 | 0.562 | 1.000 | 0.893 | 0.532 | 1.000 | 1.000 | 1.000 |
0.5 | 0.3 | 1.000 | 0.092 | 0.198 | 1.000 | 0.981 | 0.938 | 1.000 | 1.000 | 1.000 | 1.000 | 0.124 | 0.395 | 1.000 | 0.987 | 0.916 | 1.000 | 1.000 | 1.000 |
0.0 | 0.5 | 1.000 | 0.925 | 0.979 | 1.000 | 0.146 | 0.114 | 1.000 | 1.000 | 1.000 | 1.000 | 0.763 | 0.949 | 1.000 | 0.233 | 0.107 | 1.000 | 1.000 | 1.000 |
0.1 | 0.5 | 1.000 | 0.872 | 0.955 | 1.000 | 0.292 | 0.159 | 1.000 | 1.000 | 1.000 | 1.000 | 0.736 | 0.932 | 1.000 | 0.396 | 0.137 | 1.000 | 1.000 | 1.000 |
0.3 | 0.5 | 1.000 | 0.632 | 0.813 | 1.000 | 0.662 | 0.455 | 1.000 | 1.000 | 1.000 | 1.000 | 0.596 | 0.861 | 1.000 | 0.789 | 0.442 | 1.000 | 1.000 | 1.000 |
0.5 | 0.5 | 1.000 | 0.148 | 0.306 | 1.000 | 0.903 | 0.774 | 1.000 | 1.000 | 1.000 | 1.000 | 0.360 | 0.671 | 1.000 | 0.948 | 0.779 | 1.000 | 1.000 | 1.000 |
LM Tests (Bivariate t5 Distribution): δ0 = 0.5.
WS
|
WO
|
||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
λ 0 | ρ 0 | LMρ |
|
|
LMλ |
|
|
LMμ |
|
LMκ | LMρ |
|
|
LMλ |
|
|
LMμ |
|
LMκ |
0.0 | 0.0 | 0.027 | 0.099 | 0.039 | 0.092 | 0.161 | 0.033 | 0.106 | 0.030 | 0.835 | 0.061 | 0.126 | 0.035 | 0.162 | 0.247 | 0.024 | 0.189 | 0.042 | 0.972 |
0.1 | 0.0 | 0.079 | 0.106 | 0.039 | 0.225 | 0.281 | 0.058 | 0.239 | 0.078 | 0.870 | 0.182 | 0.138 | 0.036 | 0.457 | 0.424 | 0.058 | 0.446 | 0.141 | 0.984 |
0.3 | 0.0 | 0.349 | 0.117 | 0.035 | 0.724 | 0.598 | 0.219 | 0.687 | 0.404 | 0.969 | 0.701 | 0.154 | 0.025 | 0.944 | 0.777 | 0.273 | 0.925 | 0.709 | 0.996 |
0.5 | 0.0 | 0.779 | 0.130 | 0.034 | 0.964 | 0.820 | 0.509 | 0.946 | 0.880 | 0.995 | 0.975 | 0.148 | 0.047 | 0.997 | 0.938 | 0.642 | 0.997 | 0.986 | 1.000 |
0.0 | 0.1 | 0.086 | 0.070 | 0.057 | 0.165 | 0.146 | 0.038 | 0.136 | 0.055 | 0.848 | 0.186 | 0.071 | 0.095 | 0.366 | 0.237 | 0.038 | 0.300 | 0.146 | 0.978 |
0.1 | 0.1 | 0.182 | 0.082 | 0.045 | 0.365 | 0.291 | 0.059 | 0.309 | 0.144 | 0.902 | 0.406 | 0.083 | 0.084 | 0.669 | 0.395 | 0.058 | 0.577 | 0.320 | 0.988 |
0.3 | 0.1 | 0.554 | 0.065 | 0.046 | 0.818 | 0.552 | 0.183 | 0.758 | 0.560 | 0.966 | 0.847 | 0.100 | 0.092 | 0.968 | 0.729 | 0.215 | 0.948 | 0.826 | 0.999 |
0.5 | 0.1 | 0.891 | 0.095 | 0.033 | 0.982 | 0.798 | 0.491 | 0.969 | 0.939 | 0.998 | 0.993 | 0.074 | 0.073 | 0.998 | 0.925 | 0.600 | 0.998 | 0.996 | 1.000 |
0.0 | 0.3 | 0.378 | 0.079 | 0.169 | 0.466 | 0.170 | 0.046 | 0.396 | 0.282 | 0.880 | 0.716 | 0.069 | 0.293 | 0.804 | 0.244 | 0.046 | 0.711 | 0.618 | 0.997 |
0.1 | 0.3 | 0.591 | 0.071 | 0.157 | 0.698 | 0.258 | 0.060 | 0.614 | 0.491 | 0.961 | 0.856 | 0.086 | 0.285 | 0.927 | 0.381 | 0.055 | 0.889 | 0.796 | 0.995 |
0.3 | 0.3 | 0.859 | 0.050 | 0.110 | 0.943 | 0.491 | 0.176 | 0.903 | 0.835 | 0.988 | 0.987 | 0.078 | 0.263 | 0.997 | 0.640 | 0.213 | 0.993 | 0.976 | 0.999 |
0.5 | 0.3 | 0.978 | 0.050 | 0.068 | 0.998 | 0.709 | 0.397 | 0.994 | 0.985 | 0.999 | 0.999 | 0.060 | 0.199 | 1.000 | 0.835 | 0.509 | 1.000 | 1.000 | 1.000 |
0.0 | 0.5 | 0.839 | 0.172 | 0.377 | 0.848 | 0.186 | 0.081 | 0.804 | 0.777 | 0.973 | 0.979 | 0.254 | 0.613 | 0.982 | 0.231 | 0.077 | 0.969 | 0.955 | 1.000 |
0.1 | 0.5 | 0.904 | 0.158 | 0.356 | 0.918 | 0.262 | 0.083 | 0.891 | 0.855 | 0.986 | 0.994 | 0.260 | 0.612 | 0.995 | 0.329 | 0.090 | 0.994 | 0.988 | 1.000 |
0.3 | 0.5 | 0.971 | 0.091 | 0.216 | 0.986 | 0.455 | 0.176 | 0.974 | 0.962 | 0.996 | 0.998 | 0.183 | 0.506 | 1.000 | 0.592 | 0.214 | 0.999 | 0.999 | 1.000 |
0.5 | 0.5 | 0.999 | 0.072 | 0.156 | 0.999 | 0.576 | 0.323 | 0.999 | 0.999 | 1.000 | 1.000 | 0.105 | 0.358 | 1.000 | 0.729 | 0.404 | 1.000 | 1.000 | 1.000 |
WC
|
WA
|
||||||||||||||||||
0.0 | 0.0 | 0.071 | 0.212 | 0.049 | 0.225 | 0.370 | 0.036 | 0.296 | 0.059 | 1.000 | 0.160 | 0.360 | 0.050 | 0.549 | 0.662 | 0.029 | 0.639 | 0.113 | 0.999 |
0.1 | 0.0 | 0.602 | 0.217 | 0.040 | 0.876 | 0.686 | 0.121 | 0.854 | 0.545 | 1.000 | 0.673 | 0.360 | 0.063 | 0.964 | 0.880 | 0.086 | 0.965 | 0.574 | 1.000 |
0.3 | 0.0 | 0.998 | 0.235 | 0.039 | 1.000 | 0.989 | 0.802 | 1.000 | 1.000 | 1.000 | 1.000 | 0.386 | 0.049 | 1.000 | 0.996 | 0.639 | 1.000 | 1.000 | 1.000 |
0.5 | 0.0 | 1.000 | 0.318 | 0.036 | 1.000 | 1.000 | 0.996 | 1.000 | 1.000 | 1.000 | 1.000 | 0.409 | 0.062 | 1.000 | 0.999 | 0.986 | 1.000 | 1.000 | 1.000 |
0.0 | 0.1 | 0.657 | 0.061 | 0.169 | 0.802 | 0.327 | 0.027 | 0.708 | 0.530 | 0.999 | 0.703 | 0.145 | 0.198 | 0.915 | 0.656 | 0.029 | 0.883 | 0.554 | 1.000 |
0.1 | 0.1 | 0.981 | 0.064 | 0.182 | 0.998 | 0.651 | 0.125 | 0.991 | 0.965 | 1.000 | 0.967 | 0.131 | 0.210 | 0.999 | 0.845 | 0.074 | 0.999 | 0.932 | 1.000 |
0.3 | 0.1 | 1.000 | 0.097 | 0.118 | 1.000 | 0.972 | 0.773 | 1.000 | 1.000 | 1.000 | 1.000 | 0.168 | 0.184 | 1.000 | 0.988 | 0.574 | 1.000 | 1.000 | 1.000 |
0.5 | 0.1 | 1.000 | 0.163 | 0.047 | 1.000 | 1.000 | 0.989 | 1.000 | 1.000 | 1.000 | 1.000 | 0.173 | 0.137 | 1.000 | 1.000 | 0.969 | 1.000 | 1.000 | 1.000 |
0.0 | 0.3 | 1.000 | 0.312 | 0.828 | 1.000 | 0.296 | 0.050 | 1.000 | 1.000 | 1.000 | 0.997 | 0.104 | 0.799 | 1.000 | 0.571 | 0.050 | 0.999 | 0.996 | 1.000 |
0.1 | 0.3 | 1.000 | 0.301 | 0.799 | 1.000 | 0.571 | 0.099 | 1.000 | 1.000 | 1.000 | 1.000 | 0.094 | 0.743 | 1.000 | 0.821 | 0.060 | 1.000 | 1.000 | 1.000 |
0.3 | 0.3 | 1.000 | 0.195 | 0.646 | 1.000 | 0.911 | 0.586 | 1.000 | 1.000 | 1.000 | 1.000 | 0.085 | 0.699 | 1.000 | 0.975 | 0.428 | 1.000 | 1.000 | 1.000 |
0.5 | 0.3 | 1.000 | 0.054 | 0.226 | 1.000 | 0.990 | 0.934 | 1.000 | 1.000 | 1.000 | 1.000 | 0.063 | 0.509 | 1.000 | 0.998 | 0.882 | 1.000 | 1.000 | 1.000 |
0.0 | 0.5 | 1.000 | 0.816 | 0.986 | 1.000 | 0.273 | 0.084 | 1.000 | 1.000 | 1.000 | 1.000 | 0.540 | 0.983 | 1.000 | 0.512 | 0.085 | 1.000 | 1.000 | 1.000 |
0.1 | 0.5 | 1.000 | 0.751 | 0.980 | 1.000 | 0.461 | 0.091 | 1.000 | 1.000 | 1.000 | 1.000 | 0.486 | 0.973 | 1.000 | 0.696 | 0.078 | 1.000 | 0.999 | 1.000 |
0.3 | 0.5 | 1.000 | 0.456 | 0.889 | 1.000 | 0.776 | 0.392 | 1.000 | 1.000 | 1.000 | 1.000 | 0.375 | 0.944 | 1.000 | 0.919 | 0.341 | 1.000 | 1.000 | 1.000 |
0.5 | 0.5 | 1.000 | 0.110 | 0.415 | 1.000 | 0.923 | 0.731 | 1.000 | 1.000 | 1.000 | 1.000 | 0.155 | 0.795 | 1.000 | 0.987 | 0.745 | 1.000 | 1.000 | 1.000 |
References
Anderson, J. E., and E. van Wincoop. 2003. “Gravity with Gravitas: A Solution to the Border Puzzle.” American Economic Review 93 (1): 170–192.10.3386/w8079Search in Google Scholar
Anselin, L. 1988. Spatial Econometrics: Methods and Models. New York: Springer.10.1007/978-94-015-7799-1Search in Google Scholar
Anselin, L., A. K. Bera, R. Florax, and M. J. Yoon. 1996. “Simple Diagnostic Tests for Spatial Dependence.” Regional Science and Urban Economics 26 (1): 77–104.10.1016/0166-0462(95)02111-6Search in Google Scholar
Baltagi, B. H., and D. Li. 2001. “LM Tests for Functional Form and Spatial Error Correlation.” International Regional Science Review 24 (2): 194–225.10.1177/016001760102400202Search in Google Scholar
Baltagi, B. H., and Z. Yang. 2013a. “Heteroskedasticity and Non-normality Robust LM Tests for Spatial Dependence.” Regional Science and Urban Economics 43 (5): 725–739.10.1016/j.regsciurbeco.2013.05.001Search in Google Scholar
Baltagi, B. H., and Z. Yang. 2013b. “Standardized LM Tests for Spatial Error Dependence in Linear or Panel Regressions.” The Econometrics Journal 16 (1): 103–134.10.1111/j.1368-423X.2012.00385.xSearch in Google Scholar
Behrens, K., C. Ertur, and W. Koch. 2012. “‘Dual’ Gravity: Using Spatial Econometrics to Control for Multilateral Resistance.” Journal of Applied Econometrics 27 (5): 773–794.10.1002/jae.1231Search in Google Scholar
Bera, A. K., Y. Bilias, M. Yoon, S. Taşpınar, and O. Doğan. 2017. “Adjustments of Rao’s Score Test for Distributional and Local Parametric Misspecifications,” Working Paper.10.2139/ssrn.3074781Search in Google Scholar
Bera, A. K., O. Doğan, and S. Taşpınar. 2018. “Simple Tests for Endogeneity of Spatial Weights Matrices.” Regional Science and Urban Economics 69: 130–142.10.1016/j.regsciurbeco.2018.01.007Search in Google Scholar
Bera, A. K., and M. J. Yoon. 1993. “Specification Testing with Locally Misspecified Alternatives.” Econometric Theory 9(4): 649–658.10.1017/S0266466600008021Search in Google Scholar
Born, B., and J. Breitung. 2011. “Simple Regression-Based Tests for Spatial Dependence.” The Econometrics Journal 14 (2): 330–342.10.1111/j.1368-423X.2010.00338.xSearch in Google Scholar
Brueckner, J. K. 1998. “Testing for Strategic Interaction Among Local Governments: The Case of Growth Controls.” Journal of Urban Economics 44 (3): 438–467.10.1006/juec.1997.2078Search in Google Scholar
Brueckner, J. K., and L. A. Saavedra. 2001. “Do Local Governments Engage in Strategic Property-Tax Competition?” National Tax Journal 54 (2): 203–230.10.17310/ntj.2001.2.02Search in Google Scholar
Burridge, P. 1980. “On the Cliff-Ord Test for Spatial Correlation.” Journal of the Royal Statistical Society, Series B: Methodological 42: 107–108.10.1111/j.2517-6161.1980.tb01108.xSearch in Google Scholar
Case, A. C., H. S. Rosen, and J. R. Hines. 1993. “Budget Spillovers and Fiscal Policy Interdependence.” Journal of Public Economics 52 (3): 285–307.10.1016/0047-2727(93)90036-SSearch in Google Scholar
Cheng, W., and L.-F. Lee. 2017. “Testing Endogeneity of Spatial and Social Networks.” Regional Science and Urban Economics 64: 81–97.10.1016/j.regsciurbeco.2017.03.005Search in Google Scholar
Cliff, A., and K. Ord. 1972. “Testing for Spatial Autocorrelation Among Regression Residuals.” Geographical Analysis 4 (3): 267–284.10.1111/j.1538-4632.1972.tb00475.xSearch in Google Scholar
Davidson, R., and J. G. MacKinnon. 1987. “Implicit Alternatives and the Local Power of Test Statistics.” Econometrica 55 (6): 1305–1329.10.2307/1913558Search in Google Scholar
Doğan, O., S. Taşpınar, and A. K. Bera. 2018. “Simple Tests for Social Interaction Models with Network Structures.” Spatial Economic Analysis 13 (2): 212–246.10.1080/17421772.2017.1374550Search in Google Scholar
Elhorst, J. P. 2010. “Applied Spatial Econometrics: Raising the Bar.” Spatial Economic Analysis 5 (1): 9–28.10.1080/17421770903541772Search in Google Scholar
Elhorst, J. P. 2014. Spatial Econometrics: From Cross-Sectional Data to Spatial Panels. Springer Briefs in Regional Science. New York: Springer Berlin Heidelberg.10.1007/978-3-642-40340-8Search in Google Scholar
Feenstra, R. C. 2004. Advanced International Trade. Princeton, NJ: Princeton University Press.Search in Google Scholar
Fuller, W. A. 1996. Introduction to Statistical Time Series. Wiley Series in Probability and Statistics. New York: Wiley.10.1002/9780470316917Search in Google Scholar
Goldsmith-Pinkham, P., and G. W. Imbens. 2013. “Social Networks and the Identification of Peer Effects.” Journal of Business & Economic Statistics 31 (3): 253–264.10.1080/07350015.2013.801251Search in Google Scholar
Hsieh, C.-S., and L. F. Lee. 2016. “A Social Interactions Model with Endogenous Friendship Formation and Selectivity.” Journal of Applied Econometrics 31 (2): 301–319.10.1002/jae.2426Search in Google Scholar
Jackson, M. 2010. Social and Economic Networks. Princeton University Press. Princeton University Press.10.2307/j.ctvcm4gh1Search in Google Scholar
Jenish, N., and I. R. Prucha. 2009. “Central Limit Theorems and Uniform Laws of Large Numbers for Arrays of Random Fields.” Journal of Econometrics 150 (1): 86–98.10.1016/j.jeconom.2009.02.009Search in Google Scholar PubMed PubMed Central
Jenish, N., and I. R. Prucha. 2012. “On Spatial Processes and Asymptotic Inference Under Near-Epoch Dependence.” Journal of Econometrics 170 (1): 178–190.10.1016/j.jeconom.2012.05.022Search in Google Scholar PubMed PubMed Central
Kelejian, H. H., and I. R. Prucha. 2010. “Specification and Estimation of Spatial Autoregressive Models with Autoregressive and Heteroskedastic Disturbances.” Journal of Econometrics 157: 53–67.10.1016/j.jeconom.2009.10.025Search in Google Scholar PubMed PubMed Central
Lee, L.-f. 2004. “Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for Spatial Autoregressive Models.” Econometrica 72 (6): 1899–1925.10.1111/j.1468-0262.2004.00558.xSearch in Google Scholar
Lee, L.-f., and J. Yu. 2010. “A Spatial Dynamic Panel Data Model with both Time and Individual Fixed Effects.” Econometric Theory 26: 564–597.10.1017/S0266466609100099Search in Google Scholar
LeSage, J., and R. K. Pace. 2007. “A Matrix Exponential Spatial Specification.” Journal of Econometrics 140: 190–214.10.1016/j.jeconom.2006.09.007Search in Google Scholar
LeSage, J., and R. K. Pace. 2009. Introduction to Spatial Econometrics (Statistics: A Series of Textbooks and Monographs. London: Chapman and Hall/CRC.10.1201/9781420064254Search in Google Scholar
McCallum, J. 1995. “National Borders Matter: Canada-U.S. Regional Trade Patterns.” The American Economic Review 85 (3): 615–623.Search in Google Scholar
Moran, P. A. P. 1950. “A Test for the Serial Independence of Residuals.” Biometrika 37 (1/2): 178–181.10.1093/biomet/37.1-2.178Search in Google Scholar
Qu, X., L. fei Lee, and J. Yu. 2017. “QML Estimation of Spatial Dynamic Panel Data Models with Endogenous Time Varying Spatial Weights Matrices.” Journal of Econometrics 197 (2): 173–201.10.1016/j.jeconom.2016.11.004Search in Google Scholar
Qu, X., and L.-f. Lee. 2013. “Locally Most Powerful Tests for Spatial Interactions in the Simultaneous SAR Tobit Model.” Regional Science and Urban Economics 43 (2): 307–321.10.1016/j.regsciurbeco.2012.07.010Search in Google Scholar
Qu, X., and L.-f. Lee. 2015. “Estimating a Spatial Autoregressive Model with an Endogenous Spatial Weight Matrix.” Journal of Econometrics 184 (2): 209–232.10.1016/j.jeconom.2014.08.008Search in Google Scholar
Qu, X., X. Wang, and L.-f. Lee. 2016. “Instrumental Variable Estimation of a Spatial Dynamic Panel Model with Endogenous Spatial Weights When T is Small.” The Econometrics Journal 19 (3): 261–290.10.1111/ectj.12069Search in Google Scholar
Robinson, P. 2008. “Correlation Testing in Time Series, Spatial and Cross-sectional Data.” Journal of Econometrics 147 (1): 5–16.10.1920/wp.cem.2007.0107Search in Google Scholar
Robinson, P. M., and F. Rossi. 2014. “Improved Lagrange Multiplier Tests in Spatial Autoregressions.” The Econometrics Journal 17 (1): 139–164.10.1111/ectj.12025Search in Google Scholar
Robinson, P. M., and F. Rossi. 2015a. “Refined Tests for Spatial Correlation.” Econometric Theory 31 (6): 1249–1280.10.1017/S0266466614000498Search in Google Scholar
Robinson, P. M., and F. Rossi. 2015b. “Refinements in Maximum Likelihood Inference on Spatial Autocorrelation in Panel Data.” Journal of Econometrics 189 (2): 447–456. Frontiers in Time Series and Financial Econometrics.10.1016/j.jeconom.2015.03.036Search in Google Scholar
Saikkonen, P. 1989. “Asymptotic Relative Efficiency of the Classical Test Statistics Under Misspecification.” Journal of Econometrics 42 (3): 351–369.10.1016/0304-4076(89)90058-4Search in Google Scholar
Su, L., and Z. Yang. 2015. “QML estimation of dynamic panel data models with spatial errors.” Journal of Econometrics 185 (1): 230–258.10.1016/j.jeconom.2014.11.002Search in Google Scholar
Taşpınar, S., O. Doğan, and W. P. M. Vijverberg. 2016. . 2016. “GMM Inference in Spatial Autoregressive Models.“ Econometric Reviews 37(9): 931–954.10.1080/00927872.2016.1178885Search in Google Scholar
Taşpınar, S., O. Doğan, and A. K. Bera. 2017. “GMM Gradient Tests for Spatial Dynamic Panel Data Models.” Regional Science and Urban Economics 65: 65–88.10.1016/j.regsciurbeco.2017.04.008Search in Google Scholar
Wasserman, S., and K. Faust. 1994. Social Network Analysis: Methods and Applications,,Structural Analysis in the Social Sciences. Cambridge UK: Cambridge University Press.10.1017/CBO9780511815478Search in Google Scholar
Weinberg, B. A. 2007. Social Interactions with Endogenous Associations. Working Paper 13038, National Bureau of Economic Research.10.3386/w13038Search in Google Scholar
White, H. 1994. Estimation, Inference and Specification Analysis. Cambridge.10.1017/CCOL0521252806Search in Google Scholar
Yang, Z. 2015. “LM Tests of Spatial Dependence Based on Bootstrap Critical Values.” Journal of Econometrics 185 (1): 33–59.10.1016/j.jeconom.2014.10.005Search in Google Scholar
Yu, J., R. de Jong, and L. fei Lee. 2008. “Quasi-maximum Likelihood Estimators for Spatial Dynamic Panel Data with Fixed Effects when both n and T are Large.” Journal of Econometrics 146 (1): 118–134.10.1016/j.jeconom.2008.08.002Search in Google Scholar
©2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Research Articles
- Testing Spatial Dependence in Spatial Models with Endogenous Weights Matrices
- Uniformity and the Delta Method
- On the Size Distortion of a Test for Equality between the ATE and FE Estimands
- Nonparametric estimation of natural direct and indirect effects based on inverse probability weighting
- Regression Discontinuity and Heteroskedasticity Robust Standard Errors: Evidence from a Fixed-Bandwidth Approximation
- Testing for a Functional Form of Mean Regression in a Fully Parametric Environment
- Dif-in-Dif Estimators of Multiplicative Treatment Effects
- Broken or Fixed Effects?
- Misspecified Discrete Choice Models and Huber-White Standard Errors
- Review Article
- Local Average and Quantile Treatment Effects Under Endogeneity: A Review
Articles in the same Issue
- Research Articles
- Testing Spatial Dependence in Spatial Models with Endogenous Weights Matrices
- Uniformity and the Delta Method
- On the Size Distortion of a Test for Equality between the ATE and FE Estimands
- Nonparametric estimation of natural direct and indirect effects based on inverse probability weighting
- Regression Discontinuity and Heteroskedasticity Robust Standard Errors: Evidence from a Fixed-Bandwidth Approximation
- Testing for a Functional Form of Mean Regression in a Fully Parametric Environment
- Dif-in-Dif Estimators of Multiplicative Treatment Effects
- Broken or Fixed Effects?
- Misspecified Discrete Choice Models and Huber-White Standard Errors
- Review Article
- Local Average and Quantile Treatment Effects Under Endogeneity: A Review