Abstract
This paper presents the design of two multi-band microstrip antennas. The antenna-1 gives Penta-Band and antenna-2 gives Hexa-band in the WLAN band. The frequency bands of the antenna-1 are Bluetooth 2.47 GHz (2.43 GHz–2.54 GHz), WiMax band 3.73 GHz (3.71 GHz–3.77 GHz), WLAN 5.1 GHz (4.99 GHz–5.13 GHz), upper WLAN 6.36 GHz (6.29 GHz–6.43 GHz), C band band 7.42 GHz (7.32 GHz–7.50 GHz) and the antenna-2 are WLAN band 2.6 GHz (2.56 GHz–2.63 GHz), 3.0 GHz (2.94 GHz–3.05 GHz), WiMax band 3.4 GHz (3.34 GHz–3.55 GHz), 4.85 GHz (4.81 GHz–4.92 GHz), WLAN 5.3 GHz (5.27 GHz–5.34 GHz) and upper WLAN 6.88 GHz. Both the antennas are fabricated and their measured results are presented to validate the simulated results. Proposed antennas have compact sizes and good radiation performances.
Acknowledgement
This work is supported by Delhi University Innovation Project 2015–2016.
References
[1] J. Anguera, A. Andújar, M. C. Huynh, C. Orlenius, C. Picher, and C. Puente, “Advances in antenna technology for wireless handheld devices,” Int. J. Antennas Propag., vol. 2013, Article ID838364, Nov. 2012.Search in Google Scholar
[2] K. L. Wong, Planar Antennas for Wireless Communications. Wiley Inter-Science, NY, U.S.A, 2003.Search in Google Scholar
[3] F. Croq and D. M. Pozar, “Multifrequency operation of microstrip antennas using aperture coupled parallel resonators,” IEEE Trans. Antennas Propag., vol. 40, no. 11, pp. 1367–1374, Nov. 1992.10.1109/8.202714Search in Google Scholar
[4] J. Anguera, G. Font, C. Puente, C. Borja, and J. Soler, “Multifrequency microstrip patch antenna using multiple stacked elements,” IEEE Microw. Wireless Compon. Lett., vol. 13, no. 3, pp. 123–124, Mar. 2003.10.1109/LMWC.2003.810126Search in Google Scholar
[5] J. M. J. W. Jayasinghe, J. Anguera, and D. N. Uduwawala, “A simple design of multi band microstrip patch antennas robust to fabrication tolerances for GSM, UMTS, LTE, and Bluetooth applications by using genetic algorithm optimization,” Prog. Electromagn. Res. M, vol. 27, pp. 255–269, 2012.10.2528/PIERM12102705Search in Google Scholar
[6] K. Srivastava, A. Kumar, R. Kumar, and A. K. Verma, “Reverse G-Shape Antenna for UWB Application with Notch,” 3rd IEEE Advance computing conference (IACC-2013), pp. 263–266, 22–23, Feb. 2013.10.1109/IAdCC.2013.6514232Search in Google Scholar
[7] F. Zhu, S. Gao, A. T. S. Ho, R. A. Abd-Alhameed, C. H. See, T. W. C. Brown, J. Li, G. Wei, and Xu. Jiadong, “Multiple band-notched UWB antenna with band-rejected elements integrated in the feed line,” IEEE Trans. Antennas Propag., vol. 61, no. 8, pp. 3952–3960, Aug. 2013.10.1109/TAP.2013.2260119Search in Google Scholar
[8] S. C. Pan and K. L. Wong, “Dual frequency triangular microstrip antenna with a shorting pin,” IEEE Trans. Antennas Propag., vol. 45, pp. 1889–1891, 1997.10.1109/8.650213Search in Google Scholar
[9] S. T. Fang and K. L. Wong, “A dual frequency equilateral-triangular microstrip antenna with a pair of narrow slots,” Microw. Opt. Technol. Lett, vol. 23, pp. 82–84, 1999.10.1002/(SICI)1098-2760(19991020)23:2<82::AID-MOP6>3.0.CO;2-TSearch in Google Scholar
[10] W. Chen, B. Li, and X. Tao, “Compact dual-frequency semi-circular microstrip antenna,” Microw. Opt. Technol. Lett., vol. 4, no. 5, pp. 430–432, 2004.10.1002/mop.20492Search in Google Scholar
[11] J. Anguera, E. Martínez, C. Puente, C. Borja, and J. Soler, “Broad band dual-frequency microstrip patch antenna with modified sierpinski fractal geometry,” IEEE Trans. Antennas Propag., vol. 52, no. 1, pp. 66–73, Jan. 2004.10.1109/TAP.2003.822433Search in Google Scholar
[12] J. Anguera, C. Puente, and C. Borja, “Dual frequency broadband microstrip antenna with a reactive loading and stacked elements,” Prog. Electromagn. Res. Lett., vol. 10, pp. 1–10, 2009.10.2528/PIERL09040704Search in Google Scholar
[13] A. Moleiro, J. Rosa, and R. Nunes, “Dual band microstrip patch antenna element with parasitic for GSM”, IEEE Antennas and Propagation International Symposium, vol. IV, pp. 2188–2191, Salt Lake City, Utah July 2000.Search in Google Scholar
[14] S. S. Zhong and J. H. Cui, “Compact Dual-Frequency Microstrip Antenna”, IEEE Antennas and Propagation International Symposium, vol. IV, pp. 2196–2199, Salt Lake City, Utah, July 2000.Search in Google Scholar
[15] S. V. Reddy, D. Sarkar, K. Saurav, and K. V. Srivastava, “A compact CRLH unit cell loaded triple-band monopole antenna,” Microw. Opt. Technol. Lett. vol. 57, no. 1, pp. 115–119, Jan. 2015.10.1002/mop.28789Search in Google Scholar
[16] K. Jhamb, L. Li, and K. Rambabu, “Novel-integrated patch antennas with multi-band characteristics,” IET Microw. Antennas Propag., vol. 5, no. 12, pp. 1393–1398, May 2011.10.1049/iet-map.2010.0515Search in Google Scholar
[17] M. Moosazadeh and S. Kharkovsky, “Compact and small planar monopole antenna with symmetrical L- and U-shaped slots for WLAN/WiMAX applications,” IEEE Antennas Wireless Propag. Lett., vol. 13, pp. 388–391, Mar. 2014.10.1109/LAWP.2014.2306962Search in Google Scholar
[18] W. X. Liu, Y. Z. Yin, and W. L. Xu, “Compact self-similar triple-band antenna for WLAN/WiMAX applications,” Microw. Opt. Technol. Lett., vol. 54, no. 4, pp. 1084–1087, April 2012.10.1002/mop.26732Search in Google Scholar
[19] H. Mopidevi, Y. Damgaci, D. Rodrigo, L. Jofre, and B. A. Cetiner, “A quad-band antenna for public safety applications,” IEEE Antennas Wireless Propag. Lett., vol. 13, pp. 1231–1234, July 2014.10.1109/LAWP.2014.2332614Search in Google Scholar
[20] T. Wu, R. Lin Li, S. Y. Eom, S. S. Myoung, K. Lim, J. Laskar, S. Ik. Jeon, and M. M. Tentzeris, “Switchable quad-band antennas for cognitive radio base station applications,” IEEE Trans. Antennas Propag., vol. 58, no. 5, pp. 1468–1476, May 2010.10.1109/TAP.2010.2044472Search in Google Scholar
[21] H. Malekpoor and S. Jam, “Design of a multi-band asymmetric patch antennal for wireless applications,” MOTL, vol. 55, no. 4, pp. 730–734, April 2013.10.1002/mop.27449Search in Google Scholar
[22] M. Gulam Nabi Alsath and M. Kanagasabai, “Planar pentaband antenna for vehicular communication application,” IEEE Antennas Wireless Propag. Lett., vol. 13, pp. 110–113, Jan. 2014.10.1109/LAWP.2013.2295631Search in Google Scholar
[23] Y. Li, Z. Zhang, Z. Feng, and M. F. Iskander, “Design of penta-band omnidirectional slot antenna with slender columnar structure,” IEEE Trans. Antennas Propag., vol. 62, no. 2, pp. 594–601, Feb. 2014.10.1109/TAP.2013.2292517Search in Google Scholar
[24] H. F. Abutarboush, R. Nilavalan, S. W. Cheung, and K. M. Nasr, “Compact printed multiband antenna with independent setting suitable for fixed and reconfigurable wireless communication systems,” IEEE Antennas Wireless Propag. Lett., vol. 60, no. 8, pp. 3867–3874, Aug. 2012.10.1109/TAP.2012.2201108Search in Google Scholar
[25] C. A. Balanis, Antenna Theory: Analysis and Design, 3rd ed. Wiley Inter-Science, NY, U.S.A, 2005.Search in Google Scholar
[26] R. C. Fenwick, "A new class of electrically small antennas," IEEE Trans. AP, pp. 379–383, 1965.10.1109/TAP.1965.1138444Search in Google Scholar
[27] C. L. Mak, Y. L. Chow, and K. M. Luk, “Finite ground plane effect of a microstrip patch antenna: A CAD formula of impedance perturbation by synthetic asymptote and GTD,” IEE Microwave Antenna Propag., vol. 150, no. 1, pp. 11–17, Feb. 2003.10.1049/ip-map:20030295Search in Google Scholar
©2016 by De Gruyter
Articles in the same Issue
- Frontmatter
- Hex-Sided Rounded Dipole Antenna (HSRDA) For UWB Applications
- Investigation on Ring/Split-Ring Loaded Bow-Tie Antenna for Compactness and Notched-Band
- Design of Compact Penta-Band and Hexa-Band Microstrip Antennas
- A Novel Triangular Shaped UWB Fractal Antenna Using Circular Slot
- Printed Notched Antenna with Long Meandered Line for Eight-Band LTE/GSM/UMTS Wireless USB Dongle Operation
- A Polarization Reconfigurable Aperture-Coupled Microstrip Antenna and Its Binary Array for MIMO
- Multi-Antenna Data Collector for Smart Metering Networks with Integrated Source Separation by Spatial Filtering
- Multistatic GNSS Receiver Array for Passive Air Surveillance
- Outage Probability and Ergodic Capacity of Spectrum-Sharing Systems with MRC Diversity
- Compact Diplexer with High Isolation based on Novel Symmetric Double Spiral Resonators
- Broadband Microwave Amplifier Design with Lumped Elements
- Erratum
- Articles with wrong DOI numbers
Articles in the same Issue
- Frontmatter
- Hex-Sided Rounded Dipole Antenna (HSRDA) For UWB Applications
- Investigation on Ring/Split-Ring Loaded Bow-Tie Antenna for Compactness and Notched-Band
- Design of Compact Penta-Band and Hexa-Band Microstrip Antennas
- A Novel Triangular Shaped UWB Fractal Antenna Using Circular Slot
- Printed Notched Antenna with Long Meandered Line for Eight-Band LTE/GSM/UMTS Wireless USB Dongle Operation
- A Polarization Reconfigurable Aperture-Coupled Microstrip Antenna and Its Binary Array for MIMO
- Multi-Antenna Data Collector for Smart Metering Networks with Integrated Source Separation by Spatial Filtering
- Multistatic GNSS Receiver Array for Passive Air Surveillance
- Outage Probability and Ergodic Capacity of Spectrum-Sharing Systems with MRC Diversity
- Compact Diplexer with High Isolation based on Novel Symmetric Double Spiral Resonators
- Broadband Microwave Amplifier Design with Lumped Elements
- Erratum
- Articles with wrong DOI numbers