The spliceosome: a ribozyme at heart?
-
Saba Valadkhan
Abstract
The spliceosome, the multi-megadalton molecular machine that performs splicing, consists of over 200 different proteins and five small nuclear RNAs (snRNAs). Extensive mechanistic and structural similarities to self-splicing group II introns, large ribozymes found in prokaryotes and lower eukaryotes that catalyze an identical reaction, strongly suggest that the spliceosomal RNAs are in fact the catalytic components of the spliceosome. Of the five spliceosomal RNAs, U2 and U6 are the only ones that are absolutely required for both steps of splicing. These two snRNAs form an elaborate base-paired complex that might in fact constitute the active site of the spliceosome.
©2007 by Walter de Gruyter Berlin New York
Articles in the same Issue
- 25 years of catalytic RNA: looking younger than ever!
- On the occasion of the 25th anniversary of the discovery of catalytic RNA
- An overview of the RNA world – for now
- Group II introns: structure, folding and splicing mechanism
- Expression of protein-coding genes embedded in ribosomal DNA
- Importance of tRNA interactions with 23S rRNA for peptide bond formation on the ribosome: studies with substrate analogs
- The spliceosome: a ribozyme at heart?
- A chemo-genetic approach for the study of nucleobase participation in nucleolytic ribozymes
- Long-range impact of peripheral joining elements on structure and function of the hepatitis delta virus ribozyme
- A 2′-methyl or 2′-methylene group at G+1 in precursor tRNA interferes with Mg2+ binding at the enzyme-substrate interface in E-S complexes of E. coli RNase P
- Morphing the minimal and full-length hammerhead ribozymes: implications for the cleavage mechanism
- Idiosyncratic cleavage and ligation activity of individual hammerhead ribozymes and core sequence variants thereof
- RNA self-processing towards changed topology and sequence oligomerization
- Plasminogen-dependent internalization of soluble melanotransferrin involves the low-density lipoprotein receptor-related protein and annexin II
- Could the effect of modeled microgravity on osteogenic differentiation of human mesenchymal stem cells be reversed by regulation of signaling pathways?
Articles in the same Issue
- 25 years of catalytic RNA: looking younger than ever!
- On the occasion of the 25th anniversary of the discovery of catalytic RNA
- An overview of the RNA world – for now
- Group II introns: structure, folding and splicing mechanism
- Expression of protein-coding genes embedded in ribosomal DNA
- Importance of tRNA interactions with 23S rRNA for peptide bond formation on the ribosome: studies with substrate analogs
- The spliceosome: a ribozyme at heart?
- A chemo-genetic approach for the study of nucleobase participation in nucleolytic ribozymes
- Long-range impact of peripheral joining elements on structure and function of the hepatitis delta virus ribozyme
- A 2′-methyl or 2′-methylene group at G+1 in precursor tRNA interferes with Mg2+ binding at the enzyme-substrate interface in E-S complexes of E. coli RNase P
- Morphing the minimal and full-length hammerhead ribozymes: implications for the cleavage mechanism
- Idiosyncratic cleavage and ligation activity of individual hammerhead ribozymes and core sequence variants thereof
- RNA self-processing towards changed topology and sequence oligomerization
- Plasminogen-dependent internalization of soluble melanotransferrin involves the low-density lipoprotein receptor-related protein and annexin II
- Could the effect of modeled microgravity on osteogenic differentiation of human mesenchymal stem cells be reversed by regulation of signaling pathways?