Home Functional Dissection of Trigger Factor and DnaK: Interactions with Nascent Polypeptides and Thermally Denatured Proteins
Article
Licensed
Unlicensed Requires Authentication

Functional Dissection of Trigger Factor and DnaK: Interactions with Nascent Polypeptides and Thermally Denatured Proteins

  • Elke Schaffitzel , Stefan Rüdiger , Bernd Bukau and Elke Deuerling
Published/Copyright: June 1, 2005
Biological Chemistry
From the journal Volume 382 Issue 8

Abstract

In Escherichia coli, the ribosomeassociated Trigger Factor (TF) cooperates with the DnaK system in the folding of newly synthesized cytosolic polypeptides. Here we investigated the functional relationship of TF and DnaK by comparing various functional properties of both chaperones. First, we analyzed the ability of TF and DnaK to associate with nascent polypeptides and fulllength proteins released from the ribosome. Toward this end, we established an E. coli based transcription/translation system containing physiological ratios of TF, DnaK and ribosomes. In this system, TF can be crosslinked to nascent polypeptides of σ32. No TF crosslink was found to fulllength σ32, which is known to be a DnaK substrate. In contrast, DnaK crosslinked to both nascent and fulllength σ32. DnaK crosslinks critically depended on the type of chemical crosslinker. Crosslinks represent specific substratechaperone interactions since they relied on the association of the nascent polypeptides with the substrate binding pocket of DnaK. While DnaK is known to be the major chaperone to prevent protein aggregation under heat shock conditions, we found that TF did not prevent aggregation of thermally unfolded proteins in vitro and was not able to complement the heatsensitive phenotype of a δnaK52 mutant in vivo. These data indicate that TF and DnaK show strong differences in their ability to prevent aggregation of denatured proteins and to associate with native like substrates, but share the ability to associate with nascent polypeptides.

:
Published Online: 2005-06-01
Published in Print: 2001-08-28

Copyright © 2001 by Walter de Gruyter GmbH & Co. KG

Articles in the same Issue

  1. Roger D. Kornberg Felix Hoppe-Seyler Lecturer 2001
  2. The Eukaryotic Gene Transcription Machinery
  3. Paper of the Year 2000: Award to Eva Estébanez-Perpiñá and Pablo Fuentes-Prior
  4. GABAC Receptors: A Molecular View
  5. Recent Advances in Plant MAP Kinase Signalling
  6. The Chemical Biology of Ras Lipidation
  7. This Is the End: Processing, Editing and Repair at the tRNA 3-Terminus
  8. Binding of IRE-BP to Its Cognate RNA Sequence: SFM Studies on a Universal RNA Backbone for the Analysis of RNA-Protein Interaction
  9. PAF67, a Novel Protein That Is Associated with the Initiation-Competent Form of RNA Polymerase I
  10. Characterization of RNase P Holoenzymes from Methanococcus jannaschii and Methanothermobacter thermoautotrophicus
  11. Identification of Functional Regions of Guanylate Cyclase-Activating Protein 1 (GCAP1) Using GCAP1/GCIP Chimeras
  12. Cooperativity of Binding Epitopes and Receptor Chains in the BMP/TGFß Superfamily
  13. Cyclo19,31[D-Cys19]-uPA19-31 Is a Potent Competitive Antagonist of the Interaction of Urokinase-Type Plasminogen Activator with Its Receptor (CD87)
  14. Functional Expression and Characterization of Odorant Receptors Using the Semliki Forest Virus System
  15. Biophysical Characterization of Lipopolysaccharide and Lipid A Inactivation by Lactoferrin
  16. Zinc Induces Apoptosis That Can Be Suppressed by Lanthanum in C6 Rat Glioma Cells
  17. Functional Dissection of Trigger Factor and DnaK: Interactions with Nascent Polypeptides and Thermally Denatured Proteins
  18. A Persulfurated Cysteine Promotes Active Site Reactivity in Azotobacter vinelandii Rhodanese
  19. The Catechol 1,2 Dioxygenase System of Acinetobacter radioresistens: Isoenzymes, Inductors and Gene Localisation
  20. A Structural Role for Asp83 in the Photoactivation of Rhodopsin
  21. Photo-CIDNP 13C Magic Angle Spinning NMR on Bacterial Reaction Centres: Exploring the Electronic Structure of the Special Pair and Its Surroundings
  22. Pyrimidine-2,4,6-Triones: A New Effective and Selective Class of Matrix Metalloproteinase Inhibitors
Downloaded on 5.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/BC.2001.154/html
Scroll to top button