

Kompendium der diskreten Mathematik

Bernd Baumgarten

ISBN: 978-3-486-75697-5

© 2014 Oldenbourg Wissenschaftsverlag GmbH, München

Abbildungsübersicht / List of Figures Tabellenübersicht / List of Tables

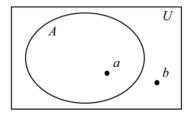


Abb. 2.1: Ein Mengendiagramm

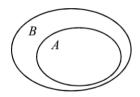
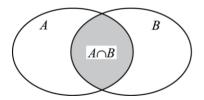


Abb. 2.2: A ⊆ B



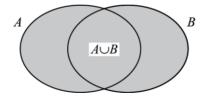


Abb. 2.3: Durchschnitt und Vereinigung

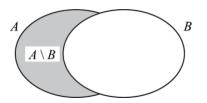


Abb. 2.4: Mengendifferenz

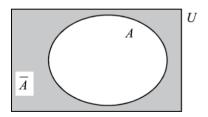
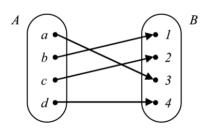


Abb. 2.5: Relatives Komplement



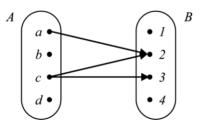


Abb. 3.1: Zwei Relationen mit unterschiedlichen Eigenschaften

Abb. 3.2: Vier Relationen mit je einer ausgewählten Eigenschaft

$A \setminus B$	1	2	3	4
а			Х	
b	Х			
c		Χ		
d				Х

$A \setminus B$	1	2	3	4
а		Χ		
b				
c		Х	Х	
d				

Tab. 3.1: Tabellarische Darstellung der beiden Relationen aus Abb. 3.1

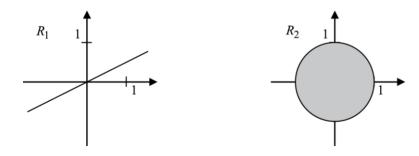


Abb. 3.3: Zwei Relationen auf den reellen Zahlen²⁷: $R_1(x, y) :\Leftrightarrow y = x/2$ (links) und $R_2(x, y) :\Leftrightarrow x^2 + y^2 \le 1$ (rechts)

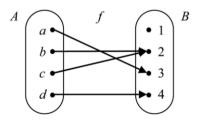


Abb. 3.4: Eine Abbildung $f: A \rightarrow B$

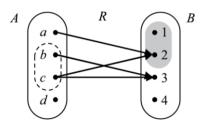


Abb. 3.5: Eine Relation R und exemplarische Teilmengen von A bzw. B

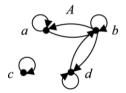


Abb. 3.6: Eine Äquivalenzrelation

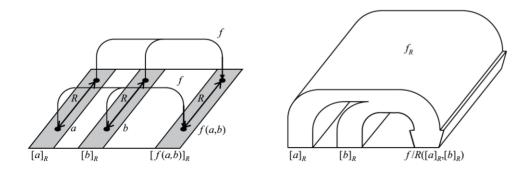


Abb. 3.7: Eine Kongruenz R bezüglich f und die Klassenabbildung f/R von f bezüglich der Kongruenz

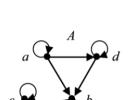


Abb. 3.8: Eine Halbordnung als Pfeil- und als Hasse-Diagramm

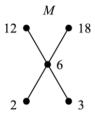


Abb. 3.9: Eine Halbordnung zur Illustration besonderer Elemente

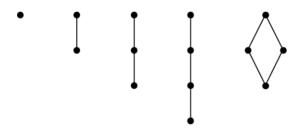
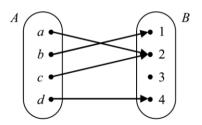


Abb. 3.10: Verbände mit 1, 2, 3 und 4 Elementen



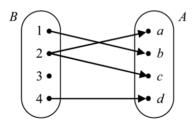


Abb. 3.11: Eine Relation (links) und ihr Inverses (rechts)

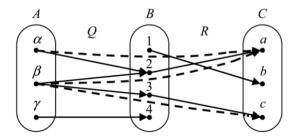


Abb. 3.12: Die Verkettung *QR* (gestrichelt) zweier Relationen (jeweils durchgezogen)

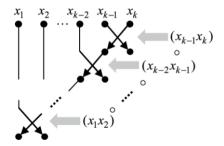


Abb. 3.13: Ein Zyklus als Produkt von Transpositionen

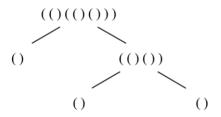


Abb. 3.14: Der Aufbau eines binären Klammerausdrucks

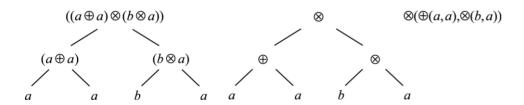


Abb. 3.15: Drei Darstellungsweisen der Induktionshistorie eines Terms

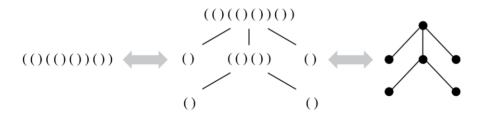


Abb. 3.16: Ein Baum als Klammerausdruck, als Aufbaubaum des Ausdrucks und als Graph

Funktion	Wortlänge w	Verkettung $v \circ w$
auf Basismenge	$\mid \varepsilon \mid := 0$	$v \circ \varepsilon \coloneqq 1$
bei Erweiterungsschritt	wa := w + 1	$v \circ (wa) := (v \circ w)a$

Tab. 3.2: Wortlänge und -verkettung als Beispiele rekursiv definierter Funktionen.

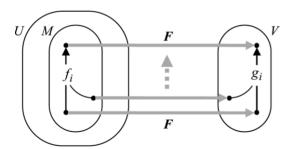


Abb. 3.17: Die Vertauschbarkeit von Abbildung und Erweiterungsschritten – das Prinzip der rekursiven Funktionsdefinition auf einer induktiv definierten Menge

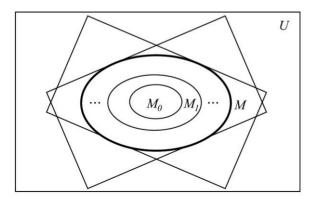


Abb. 3.18: "Annäherungsweisen" an eine induktiv definierte Menge

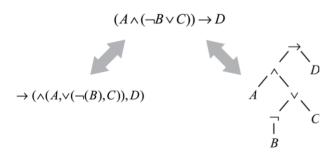


Abb. 4.1: Eine Formel (Mitte) und ihre Induktionshistorie als Funktionsterm (links) bzw. Syntaxbaum (rechts)

φ	$\neg \varphi$
W	F
F	W

φ	Ψ	$\varphi \wedge \psi$	$\varphi \lor \psi$	$\varphi \rightarrow \psi$	$\varphi \leftrightarrow \psi$
W	W	W	W	W	W
W	F	F	W	F	F
F	W	F	W	W	F
F	F	F	F	W	W

Tab. 4.1: Die Junktorensemantik

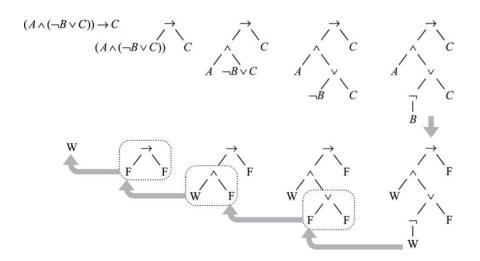


Abb. 4.2: Rekursive Berechnung eines Wahrheitswerts – bildlich

A	В	С	$\neg B$	$\neg B \lor C$	$A \wedge (\neg B \vee C)$	$(A \land (\neg B \lor C)) \to C$
W	W	W	F	W	W	W
W	W	F	F	F	F	W
W	F	W	W	W	W	W
W	F	F	W	W	W	F
F	W	W	F	W	F	W
F	W	F	F	F	F	W
F	F	W	W	W	F	W
F	F	F	W	W	F	W

Tab. 4.2: Rekursive Berechnung des Wahrheitswerteverlaufs – mittels einer Wahrheitstafel

(A	^	(¬	В	٧	C))	\rightarrow	C
W	W	F	W	W	W	W	W
W	F	F	W	F	F	W	F
W	W	W	F	W	W	W	W
W	\mathbf{W}	W	F	W	F	F	F
F	F	F	W	W	W	W	W
F	F	F	W	F	F	W	F
F	F	W	F	W	W	W	W
F	F	W	F	W	F	W	F

Tab. 4.3: Die In-situ-Form der gleichen Wahrheitstafel

φ ist	\Leftrightarrow	Im Wahrheitswerteverlauf von φ kommt vor
allgemeingültig		nur W
erfüllbar		W
kontingent		W und F
widerlegbar		F
unerfüllbar		nur F

Tab. 4.4: Semantische Eigenschaften und Wahrheitswerteverlauf

8				2	9	5		7
	5						8	
9		4			5	2		
1		3						
4				3				8
						7		6
		5	6			8		3
	7						9	
3		1	4	7				2

8	1	6	3	2	9	5	4	7
7	5	2	1	4	6	3	8	9
9	3	4	7	8	5	2	6	1
1	8	3	9	6	7	4	2	5
4	6	7	5	3	2	9	1	8
5	2	9	8	1	4	7	3	6
2	4	5	6	9	1	8	7	3
6	7	8	2	5	3	1	9	4
3	9	1	4	7	8	6	5	2

Abb. 4.3: Das Sudoku-Feld, eine Sudoku-Aufgabe und ihre Lösung

Aspekt	Substitution	Ersetzung
Was wird ersetzt?	Aussagevariablen	Teilformeln
Welche Vorkommen?	alle (aber evtl. alle ohne Änderung)	0, 1, mehrere oder alle
Wodurch?	beliebige Formeln, gleiche Formeln für gleiche Variable	äquivalente Formel für gleiche Teilformeln
Wirkung im Syntaxbaum	Alle gleichnamigen Blätter werden durch jeweils den gleichen Ast ersetzt.	Einige gleiche Äste werden durch je einen dazu äquivalenten Ast ersetzt.
Ergebnis äquivalent?	ja, falls Tautologie oder unerfüllbar	ja, immer

Tab. 4.5: Unterschiede zwischen Substitution und Ersetzung in der Aussagenlogik

φ	ψ	Т	V	\leftarrow	φ	\rightarrow	Ψ	\leftrightarrow	٨	↑	↔	$\neg \psi$	$\not\rightarrow$	$\neg \varphi$	₩	\downarrow	Τ
W	W	W	W	W	W	W	W	W	W	F	F	F	F	F	F	F	F
W	F	W	W	W	W	F	F	F	F	W	W	W	W	F	F	F	F
F	W	W	W	F	F	W	W	F	F	W	W	F	F	W	W	F	F
F	F	W	F	W	F	W	F	W	F	W	F	W	F	W	W	W	F

Tab. 4.6: Die 16 möglichen zweistelligen Junktoren

φ	Т	φ	$\neg \varphi$	Τ
W	W	W	F	F
F	W	F	W	F

Tab. 4.7: Die vier möglichen einstelligen Junktoren

A	В	С		φ
:	:	÷	:	÷
W	W	F		W
:	÷	÷	:	÷
F	W	W		F
:	:	:	:	:

Tab. 4.8: Zwei gewünschte Wahrheitswerte für gegebene Argumente

A	В	С	$(A \land (\neg B \lor C)) \to C$
W	W	W	W
W	W	F	W
W	F	W	W
W	F	F	F
F	W	W	W
F	W	F	W
F	F	W	W
F	F	F	W

Tab. 4.9 (links): Wahrheitswerteverlauf für eine Formel

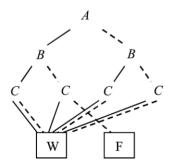


Abb. 4.4 (rechts): Entscheidungsbaum für diese Formel

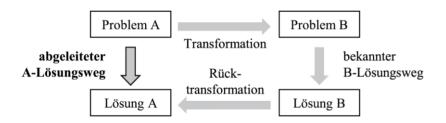


Abb. 4.5: Das Schema einer Problemreduktion

Klauseln↓	A	В	$\neg B$	$A \rightarrow \neg B$	$\neg (A \rightarrow \neg B)$	$A \wedge \neg B$	$\neg (A \rightarrow \neg B) \lor (A \land \neg B)$
	W	W	F	F	W	F	W
	W	F	W	W	F	W	W
$((A \lor \neg B) \land \longleftarrow$	F	W	F	W	F	F	F
$(A \vee B)$)	F	F	W	W	F	F	F

Tab. 4.10: KNF-Herleitung aus der Wahrheitstafel, Beispiel

Klauseln↓	A	В	$\neg B$	$A \rightarrow \neg B$	$\neg (A \rightarrow \neg B)$	$A \wedge \neg B$	$\neg (A \to \neg B) \lor (A \land \neg B)$
$(A \wedge B) \vee$	W	W	F	F	W	F	W
$(A \land \neg B))$	W	F	W	W	F	W	W
	F	W	F	W	F	F	F
	F	F	W	W	F	F	F

Tab. 4.11: DNF-Herleitung aus der Wahrheitstafel, Beispiel

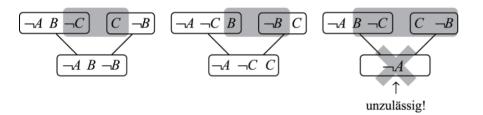


Abb. 4.6: Zwei gültige Resolutionsschritte ... und ein häufig auftretendes Missverständnis.

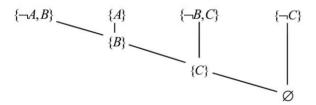


Abb. 4.7: Resolution zum Nachweis der Unerfüllbarkeit von $(\neg A \lor B) \land (\neg B \lor C) \land A \land \neg C$; gleichzeitig Nachweis der Allgemeingültigkeit von $(\neg A \land B) \lor (\neg B \land C) \lor A \lor \neg C$ per Dualresolution (siehe Folgetext)

1.	$\frac{\neg(\varphi \rightarrow \psi)}{\varphi}$ $\neg \psi$	5.	$\frac{\varphi \to \psi}{\neg \varphi \mid \psi}$
2.	$\dfrac{arphi \wedge \psi}{arphi} \ \psi$	6.	$\frac{\neg(\varphi \land \psi)}{\neg \varphi \mid \neg \psi}$
3.	$\frac{\neg(\varphi \lor \psi)}{\neg \varphi}$ $\neg \psi$	7.	$\frac{arphi \lor \psi}{arphi \mid \psi}$
4.	$ \frac{\varphi \leftrightarrow \psi}{\varphi \to \psi} \\ \psi \to \varphi $	8.	$\frac{\neg(\varphi \leftrightarrow \psi)}{\neg(\varphi \to \psi) \neg(\psi \to \varphi)}$
		9.	$\frac{\neg \neg \varphi}{\varphi}$

Tab. 4.12: Tableauregeln

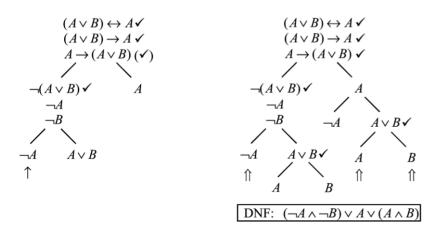


Abb. 4.8: Erfüllbarkeitsnachweis (links) und DNF-Umformung (rechts) mit Tableaubäumen

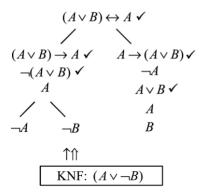


Abb. 4.9: Widerlegbarkeitsnachweis und KNF-Umformung mit Dualtableauverfahren

Oder-Einführungen, OE		Oder-Benutzungen, OB			
$\hspace{1cm} \hspace{1cm} \varphi \hspace{1cm} \hspace{1cm} \psi \hspace{1cm}$	$\varphi \lor \psi, \neg \varphi$	$\varphi \lor \psi, \ \neg \psi$	$\varphi \lor \psi, \ \varphi$	$\rightarrow \rho, \ \psi \rightarrow \rho$	
$\frac{\varphi}{\varphi \vee \psi}$ $\frac{\psi}{\varphi \vee \psi}$	Ψ	$\overline{\varphi}$		ο	
Und-Einführung, UE	Und-Benutz	ungen, UB	NegNeg-Eint	führung, NNE	
$\frac{\varphi, \ \psi}{\varphi \wedge \psi}$	$\varphi \wedge \psi$	$\varphi \wedge \psi$		<u>p</u>	
$\varphi \wedge \psi$	φ	Ψ		$\overline{\neg \neg \varphi}$	
NegNeg-Benutzung, NNB	Gdw-Einfül	nrung, GE	Gdw-Benutzungen, GB		
$ar{-}$	$\varphi \rightarrow \psi, \ \psi \rightarrow \varphi$		$\varphi \leftrightarrow \psi$	$\varphi \leftrightarrow \psi$	
arphi	$\varphi \leftrightarrow \psi$			$\psi \rightarrow \varphi$	
Widerspruch-Einführung, WE	Widerspruch-Benutzung, WB		Modus Po	onens, MP	
$\frac{arphi, eg arphi}{arphi}$	<u> </u>		$\varphi, \ \varphi \rightarrow \psi$		
T	φ			V	
Modus Tollens, MT	Neg-Und-Benutzungen, NUB		Neg-Oder-Be	nutzung, NOB	
$\varphi \rightarrow \psi, \ \neg \psi$	$\neg(\varphi \land \psi)$	$\neg(\varphi \land \psi)$	$\neg(\varphi \lor \psi)$	$\neg (\varphi \lor \psi)$	
$\neg \varphi$	$\psi \rightarrow \neg \varphi$	$\varphi \rightarrow \neg \psi$	eg arphi	$\neg \psi$	
Neg-Folg-Benutzung, NFB	Neg-Gdw-Benutzungen, NGB		Wiederholung, WDH		
$\overline{-(\varphi \rightarrow \psi)}$	$\neg(\varphi \leftrightarrow \psi)$	$-(\varphi \leftrightarrow \psi)$	<u> </u>	$\underline{\rho}$	
$\varphi \wedge \neg \psi$	$\neg \varphi \leftrightarrow \psi$			P	

Tab. 4.13: Schlussregeln des aussagenlogischen Werkzeugkastens

Direkter l	Beweis (DB)	Indirekter	r Beweis (IB)	Bedingter	Bedingter Beweis (BB)	
Zeige φ		Zeige φ		Zeige φ	ψ	
	:	$\mid \neg \varphi$	Ann	$\mid \varphi$	Ann	
φ		:		:		
φ	DB	⊥		$ \psi $		
		arphi	IB	$\varphi \rightarrow \psi$	BB	

Abb. 4.10: Werkzeugkasten – Beweisschemata für Blöcke

G G

	Zeige $A \vee \neg A$		1	$A \to (B \to C)$	Geg
1	$\neg (A \lor \neg A)$	Ann		Zeige $(A \to B) \to (A \to C)$	
2	$\neg A$	NOB, 1	2	$A \rightarrow B$	Ann
3		NOB, 1		Zeige $A \rightarrow C$	
4	⊥	WE, 2,3	3		Ann
6	$A \vee \neg A$	IB	4	$\mid \mid \mid B \mid$	MP, 2,3
			5	$ \begin{array}{c} B \\ B \rightarrow C \end{array} $	MP, 1,3
			6	I I C	MP, 4,5
			7	$A \rightarrow C$	BB
			8	$(A \to B) \to (A \to C)$	BB

Abb. 4.11: Werkzeugkasten – zwei Anwendungsbeispiele

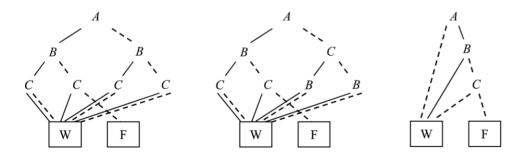


Abb. 4.12: Äquivalente OBDD, BDD und ROBDD

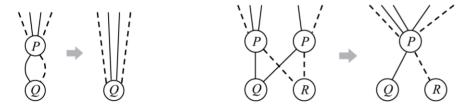


Abb. 4.13: Reduktionsschritte beim OBDD – links: Überspringen, rechts: Verschmelzen

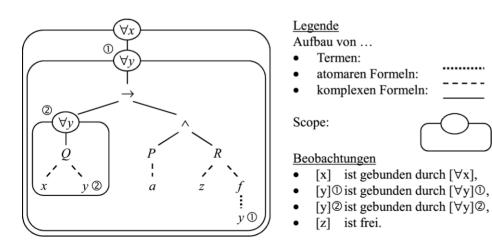


Abb. 4.14: Formelaufbau und syntaktische Begriffe an einem Beispiel

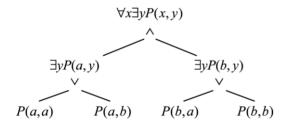


Abb. 4.15: Quantorenauswertung bei endlichem Universum $U = \{a,b\}$ als Konjunktion bzw. Disjunktion

All-Beweis (AB) Zeige $\forall x \varphi$ σ ist eine oberhalb Zeige $\varphi_{[x/\sigma]}$ im Beweis noch nicht verwendete $\varphi_{[x/\sigma]}$ $\forall x \varphi$ AB

Abb. 4.16: Das neue Beweisschema des PL1-Werkzeugkastens: der All-Beweis

Spezialisierung, Sp	Existenz-Benutzung, EB	Existenz-Einführung, EE
$\forall x \varphi$	$\exists x \varphi$	$oldsymbol{arphi}_{[x/ au]}$
$oldsymbol{arphi}_{[x/ au]}$	$oldsymbol{arphi}_{[x/\sigma]}$	$\exists x \varphi$
NegEx-Benutzung, NEB	NegAll-Benutzung, NAB	Hier ist jeweils $ au$ ein Term ohne
$\neg \exists x \varphi$	$\neg \forall x \varphi$	Variablennamen und σ ein neues
$\overline{\forall x \neg \varphi}$	$\exists x \neg \varphi$	Konstantensymbol.

Tab. 4.14: Neue Schlussregeln des PL1-Werkzeugkastens

	Zeige $\forall x P(f(a,x)) \rightarrow \exists x P(f(x,a))$	
1	$\forall x P(f(a,x))$	Ann
	Zeige $\exists x P(f(x,a))$	
2	$\neg \exists x P(f(x,a))$	Ann
3	$\forall x \neg P(f(x,a))$	NEB,2
4	$\neg P(f(a,a))$	Sp, 3
5	P(f(a,a))	Sp, 1
6		WE, 4,5
7	$\exists x P(f(x,a))$	IB
8	$\forall x P(f(a,x)) \to \exists x P(f(x,a))$	BB

Abb. 4.17: Ein Beweis, dass $\forall x P(f(a, x)) \rightarrow \exists x P(f(x, a))$ eine Tautologie ist

DE G

1	$\forall x (P(x))$	(x) —	$\rightarrow Q(x)$)	Geg			
2	$\forall x R($	Geg					
	Zeige	$\forall x ($	$P(x) \to \exists y (Q(y) \land R(f(x), y)))$				
		Zeige	$P(a) \to \exists y (Q(y) \land R(f(a), y))$				
3		1	P(a)	Ann			
		2	Zeige $\exists y (Q(y) \land R(f(a), y))$				
4			$P(a) \rightarrow Q(a)$	Sp, 1			
5			Q(a)	MP, 3,4			
6			R(f(a),a)	Sp, 2			
7			$Q(a) \wedge R(f(a), a)$	UE, 4,5			
8			$\exists y (Q(y) \land R(f(a), y))$	EE, 7			
9		=	$\exists y (Q(y) \land R(f(a), y))$	DB			
10	1	P(a)	$\rightarrow \exists y (Q(y) \land R(f(a), y))$	BB			
11	11 $\forall x (P(x) \to \exists y (Q(y) \land R(f(x), y)))$ AB						

Abb. 4.18: Beweis, dass $\forall x (P(x) \rightarrow \exists y (Q(y) \land R(f(x), y)))$ aus $\forall x (P(x) \rightarrow Q(x))$ und $\forall x R(f(x), x)$ folgt

D	Ε
[7
•	י

Nr.	Regelname	Regel	Begründung/Schlagwort
10.	Spezialisierung	$\frac{\neg \forall x \varphi}{\exists x \neg \varphi}$	Substitutionssatz (τ konstanter Term ⁷⁵)
11.	Negativ-Spezialisierung	$\frac{\neg \exists x \varphi}{\neg \varphi_{[x/\tau]}}$	Substitutionssatz, Dualität
12.	Existenzbenutzung	$\frac{\exists x \varphi}{\varphi_{[x/\sigma]}}$	"Nennen wir es c." (c <i>neue</i> Konstante)
13.	Negativ-Allbenutzung	$\frac{\neg \forall x \boldsymbol{\varphi}}{\neg \boldsymbol{\varphi}_{[x/c]}}$	"Nennen wir es c.", Dualität (c <i>neue</i> Konstante)

Tab. 4.15: Tableauregeln für Quantoren

1.	$\neg [\forall x (P(x) \lor Q(f(x))) \to (\exists x P(x) \lor \forall x Q(f(x)))] \checkmark$	
2.	$\forall x (P(x) \lor Q(f(x))) \checkmark$	TR1, 1
3.	$\neg (\exists x P(x) \lor \forall x Q(f(x))) \checkmark$	TR1, 1
4.	$\neg \exists x P(x)$	TR3, 3
5.	$\neg \forall x Q(f(x))$	TR3, 3
6.	$\neg Q(f(a))$	TR13, 5
7.	$\neg P(a)$	TR11, 4
8.	$P(a) \vee Q(f(a)) \checkmark$	TR10, 2
	9. $P(a)$ 10. $Q(f(a))$	TR2, 8

Abb. 4.19: Ein Unerfüllbarkeitsnachweis mit PL1-Tableaubaum (mit Regelnummern und Knotennummern als Begründungen)

 $\frac{\mathsf{DE}}{\mathsf{G}}$

Reflexivität von =, Rf=	Symmetrie von =, Sy=	Transitivität von =, Tr=			
$\overline{\tau = au}$	$\frac{\sigma = \tau}{\tau = \sigma}$	$\frac{\rho = \sigma, \ \sigma = \tau}{\rho = \tau}$			
Leibniz-Ersetzung, LE					
$rac{\sigma= au, oldsymbol{arphi}}{arphi_{\{\sigma/ au\}}}$					

Tab. 4.16: Neue Schlussregeln des PL1₌ -Werkzeugkastens

1	$\forall x (R(x,x) \to P(x))$	Geg		
1	$\forall \lambda(K(\lambda,\lambda) \to F(\lambda))$	deg		
2	$\neg P(f(a))$	Geg		
Zeige $\forall y (R(y, y) \rightarrow y \neq f(a))$				
3	$\neg \forall y (R(y, y) \to y \neq f(a))$	Ann		
4	$\exists y \neg (R(y, y) \rightarrow y \neq f(a))$	NAB, 3		
5	$\neg (R(b,b) \to b \neq f(a))$	EB, 4		
6	$R(b,b) \land \neg b \neq f(a)$	NFB, 5		
7	R(b,b)	UB, 6		
8	$R(b,b) \to P(b)$	AB, 1		
9	P(b)	MP, 7,8		
10	$\neg b \neq f(a)$	UB, 6		
11	b = f(a)	NNB, 10		
12	P(f(a))	LE, 9,11		
13		WE, 2,12		
14	$\forall y (R(y, y) \to y \neq f(a))$	IB		

Abb. 4.20: Ein PL1₌-Werkzeugkasten-Beweis einer Folgerung aus einer Menge von PL1-Formeln

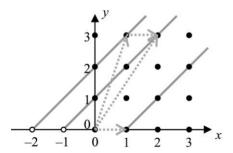


Abb. 5.1: Addition -2 + 1 = -1 über Repräsentanten der Äquivalenzklassen

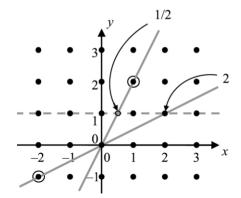


Abb. 5.2: Rationale Zahlen als Äquivalenzklassen

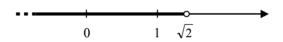


Abb. 5.3: Ein irrationaler Schnitt

$S_1 \cdot S_2 :=$		$0^*\!\leq\!S_1$	S ₁ < 0*
	$0 \le S_2$	$S_1^+ \otimes S_2 \ (= S_1 \otimes S_2^+)$	$-((-S_1)\cdot S_2)$
	$S_2 < 0$	$-(S_1\cdot(-S_2))$	$(-S_1)\cdot(-S_2)$

Tab. 5.1: Die Multiplikation von Schnitten

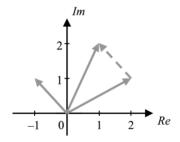


Abb. 5.4:
$$(2 + i) + (-1 + i) = 1 + 2 \cdot i$$

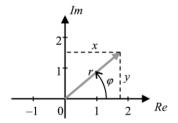


Abb. 5.5: Die Polardarstellung einer komplexen Zahl

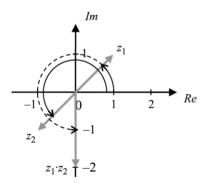


Abb. 5.6: $z_1 \cdot z_1 (1 + i) \cdot (-1 - i) -2i$

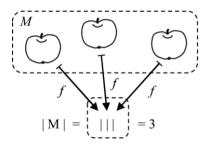


Abb. 5.7: Zählen mittels einer bijektiven Abbildung

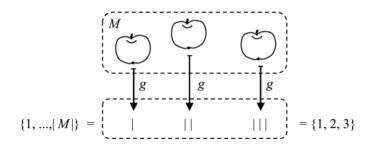
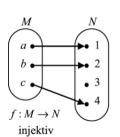
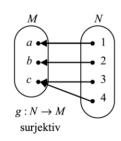


Abb. 5.8: Durchzählen mittels einer bijektiven Abbildung





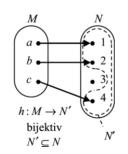
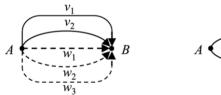


Abb. 5.9: Mächtigkeitsvergleich $M \leq N$ mittels Abbildungen



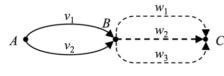


Abb. 5.10: Vereinigung und Verkettung von Auswahlmöglichkeiten

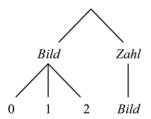


Abb. 5.11: Ein Baum von abhängigen Verkettungen von Auswahlen

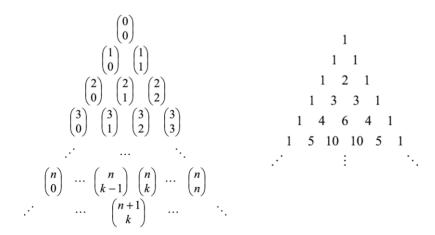


Abb. 5.12: Das Pascal'sche Dreieck – links als Formeln, rechts als Werte

Stichprobentyp	Тур	Anzahl (Name, Formel)	Alle möglichen Stichproben der Größe $k=2$ aus der Menge $\{a_1,a_2,a_3\}$, also mit $n=3$ (ggf. in mehreren Schreibweisen)
Geordnete Stichprobe mit Zurücklegen	Tupel, Wort	n^k	$(a_1,a_1),(a_1,a_2),(a_1,a_3),(a_2,a_1),(a_2,a_2),(a_2,a_3),$ $(a_3,a_1),(a_3,a_2),(a_3,a_3)$ $a_1a_1,a_1a_2, a_1a_3, a_2a_1, a_2a_2, a_2a_3, a_3a_1, a_3a_2, a_3a_3$
Geordnete Stichprobe ohne Zurücklegen	_	$\frac{P(n,k)}{\frac{n!}{(n-k)!}}$	$(a_1, a_2), (a_1, a_3), (a_2, a_1), (a_2, a_3), (a_3, a_1), (a_3, a_2)$ $a_1a_2, a_1a_3, a_2a_1, a_2a_3, a_3a_1, a_3a_2$
Ungeordnete Stichprobe mit Zurücklegen	Multi- menge	$\frac{(n+k-1)!}{k!(n-1)!}$	$\begin{aligned} &\{a_1,a_1\}_{\mu},\{a_1,a_2\}_{\mu},\{a_1,a_3\}_{\mu},\{a_2,a_2\}_{\mu},\{a_2,a_3\}_{\mu},\{a_3,a_3\}_{\mu} \\ &00 ,0 0 ,0 0, 00 , 0 0, 00 \end{aligned}$
Ungeordnete Stichprobe ohne Zurücklegen	Teilmenge, Kombina- tion	$C(n,k), \binom{n}{k}$ $\frac{n!}{k!(n-k)!}$	$\{a_1,a_2\},\{a_1,a_3\},\{a_2,a_3\}$

Tab. 5.2: Geordnete und ungeordnete Stichproben der Größe k aus einer Menge der Größe n – Übersicht

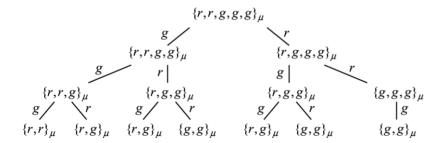


Abb. 5.13: Strukturbaum eines Experiments

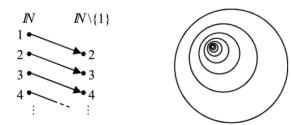


Abb. 5.14: Aspekte der Unendlichkeit: eine Bijektion auf eine echte Teilmenge (links), eine unbegrenzt absteigende Kette echter Teilmengen (rechts)

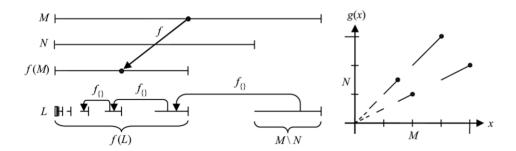


Abb. 5.15: Beispiel für Konstruktion der Bijektion auf die Zwischenmenge im Beweis von Satz 5.12

$$f(1) = 0, r_{11}r_{12}r_{13...}$$

$$f(2) = 0, r_{21}r_{22}r_{23...}$$

$$f(3) = 0, r_{31}r_{32}r_{33}r_{33}$$
:

Abb. 5.16: Die Ausgangssituation des Cantor'schen Diagonalverfahrens

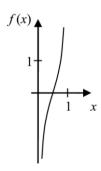


Abb. 5.17: $f(x) := \tan(\pi \cdot (x - 1/2))$, eine Bijektion von (0,1) auf IR

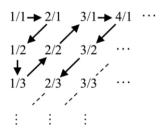


Abb. 5.18: Ein Durchzählen der positiven Brüche

Abb. 5.19: Addition 3 + 3 in \mathbb{Z}_5

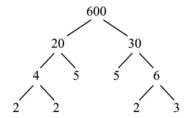
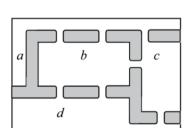


Abb. 5.20: Ein Teilerbaum einer natürlichen Zahl

$$A = \{a, b, c, d\}$$
 $R = \{A, \{(a, a), (b, c)\}\}$

Abb. 6.1: Mengentheoretische und bildliche Darstellung einer Relation auf einer Menge



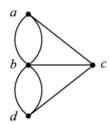


Abb. 6.2: Die Königsberger Brücken 1836 – kartographisch und als Graph

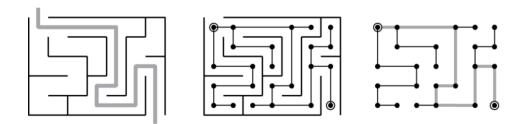
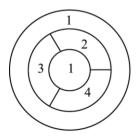


Abb. 6.3: Vom Labyrinth zum zugehörigen Graphen



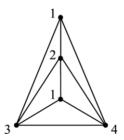


Abb. 6.4: Benachbarte gefärbte Gebiete – geometrisch und als Graph

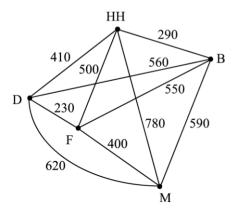


Abb. 6.5: Ein kleines Handlungsreisendenproblem

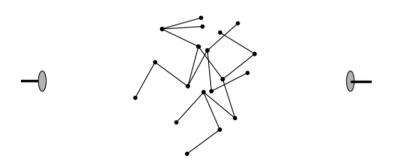
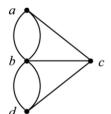


Abb. 6.6: Die Suche nach einem längsten Kantenzug

Abb. 6.7: Gleichwertige Darstellungen eines ungerichteten Graphen



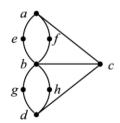


Abb. 6.8: Das Königsberger-Brücken-Problem mit und ohne Mehrfachkanten

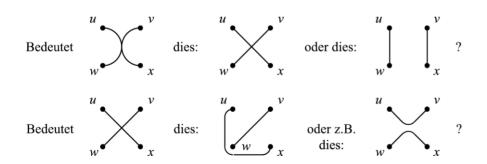


Abb. 6.9: Mehrdeutigkeiten, die durch Zeichenkonvention vermieden (oben) bzw. durch Interpretationskonvention entschieden (unten) werden

Abb. 6.10: Zwei planare (oben) und zwei nicht planare Graphen (unten)

Abb. 6.11: Knoteneinfügung (links) und Kantenkontraktion (rechts)

Abb. 6.12: Ein Beispiel zur Demonstration gleichwertiger Darstellungen eines Graphen, von links: Zeichnung, Nachbarschaftsmatrix, Inzidenzmatrix und Nachbarschaftsliste

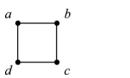


Abb. 6.13: Bilder desselben Graphen

Abb. 6.14: Isomorphie zweier Graphen

Abb. 6.15: Zwei Graphen, beide mit Zyklus *u v x u v x wu*, Pfad *u v x w* und Kreis *u v x wu*

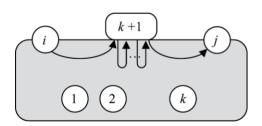


Abb. 6.16: Wege über Knoten $\leq k + 1$

Abstand von a nach b	$d(a,b) := \min\{n \in \mathbb{N}_0 \mid \exists \text{ Weg } v_1 v_2 v_{n+1} \text{ von } v_1 = a \text{ nach } v_{n+1} = b\}$	
Exzentrizität von a	$e(a) := \max\{d(a,b) \mid b \in V\}$	
Radius von G	$r(G) := \min\{\varepsilon(a) \mid a \in V\}$	
Durchmesser von G	$d(G) := \max\{d(a,b) \mid a,b \in V\} = \max\{\varepsilon(a) \mid a \in V\}$	
Taillenweite von G	$g(G) := \min\{n > 2 \mid \exists \ a \in V, \text{ Weg } v_1 v_2 \dots v_{n+1} \text{ von } v_1 = a \text{ nach } v_{n+1} = a\}$	

Tab. 6.1: Einige Begriffe rund um die Weglängen¹¹⁴

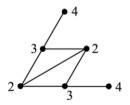
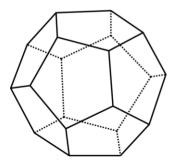


Abb. 6.17: Ein Beispiel für Weglängen-basierte Begriffe.

Abb. 6.18: Ein zusammenhängender (links) und ein unzusammenhängender ungerichteter Graph (rechts)

Abb. 6.19: Ein stark zusammenhängender (links) und ein schwach, aber nicht stark zusammenhängender gerichteter Graph (rechts)

Abb. 6.20: Zwei Beispiele für Eulerwege



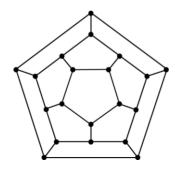


Abb. 6.21: Ein Dodekaeder – räumlich und eben

Abb. 6.22: Ein Baum (links) und seine gängige Darstellung (rechts)

Abb. 6.23: Ein zusammenhängender kreisfreier ungerichteter Graph – kurz: ein wurzelloser Baum

Abb. 6.24: Zwei Bäume – identisch, wenn ungeordnet, und unterschiedlich, wenn geordnet interpretiert

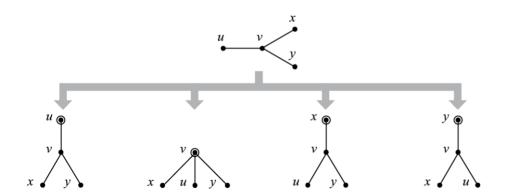
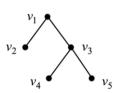


Abb. 6.25: Mögliche Auswahlen einer Wurzel in einem kreisfreien ungerichteten Graphen



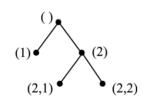


Abb. 6.26: Der geordnete Baum $(v_1,((v_2,()),(v_3,(\ (v_4,()),(v_5,(\))))))$ und sein **Adressenbaum**

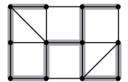


Abb. 6.27: Ein Graph und einer seiner Spannbäume

Abb. 6.28: Ein zu durchlaufender Baum (links), durchlaufen mit Tiefensuche (Mitte) und mit Breitensuche (rechts)

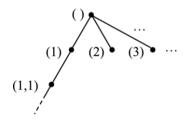


Abb. 6.29: Unendlichkeit in Bäumen

Abb. 6.30: Ein knoten- und kantenbeschrifteter gerichteter Graph

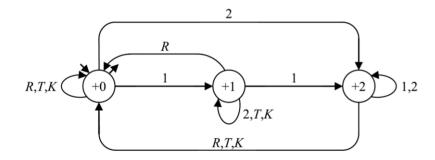


Abb. 6.31: Ein Verkaufsautomat als endlicher Automat

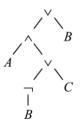


Abb. 6.32: Ein Syntaxbaum aus der Aussagenlogik

118

Abb. 6.33: Ein ungerichteter Graph und ein Spannwald für ihn

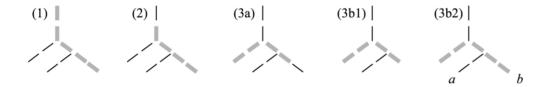


Abb. 6.34: Mögliche (1 und 3b2) und unmögliche Lagen eines Durchmesserpfads im Baum

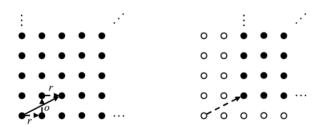


Abb. 7.1: Verschiebung ror eines nach rechts und oben unendlichen Gitters

$(\mathbb{Z}_5,+)$:	+	0	1	2	3	4
	0	0	1	2	3	4
	1	1	2	3	4	0
	2	2	3	4	0	1
	3	3	4	0	1	2
	4	4	0	1	2	3

$\mathbb{Z}_{5}\setminus\{0\}$, \cdot):	•	1	2	3	4
	1	1	2	3	4
	2	2	4	1	3
	3	3	1	4	2
	4	4	3	2	1

Tab. 7.1: Multiplikationstafeln zweier Gruppen

Abb. 7.2: Ein Graph mit zwei und ein Graph mit sechs Symmetrien

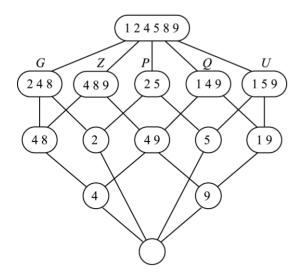


Abb. 7.3: Hasse-Diagramm eines Begriffsverbandes

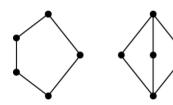


Abb. 7.4: Charakteristische Unterverbände bei Nicht-Distributivität

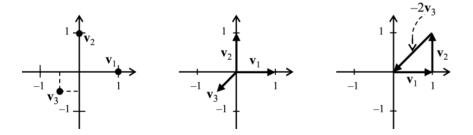


Abb. 7.5: $(v_i)_{1 \le i \le 3}$, eine Familie von Vektoren: Punkt- und Pfeildarstellung, lineare Abhängigkeit

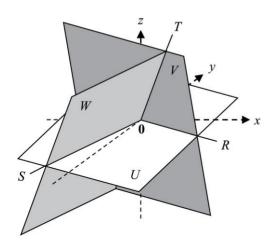


Abb. 7.6: Einige Unterräume des \mathbb{R}^3

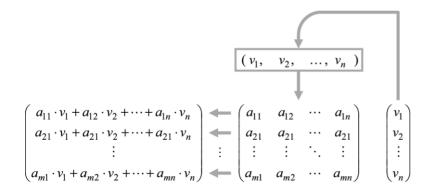


Abb. 7.7: Matrix-mal-Vektor

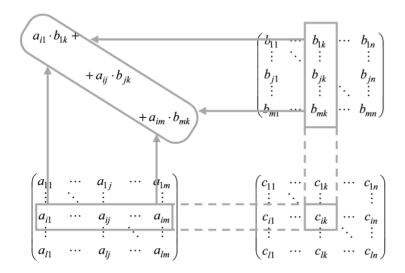


Abb. 7.8: Matrixmultiplikation

(1)	1	2	3	12	0
(2)			1	-2	2
(3)				1	-1

0 x ₁	+2 x ₂	$+ 3 x_3$	12 <i>x</i> ₄	=	0
$0x_1$	$+0 x_2$	$-x_3$	2 <i>x</i> ₄	=	2
0 x ₁	+0 x ₂	$+ 0 x_3$	x_4	=	-1

Tab. 7.2: Lineares Gleichungssystem in normierter Stufenform, knapp und ausgeschrieben

Abb. 7.9: Ein Beispiel für die Erzeugung der normierten Stufenform

Abb. 7.10: Ein Beispiel für die Invertierung einer Matrix

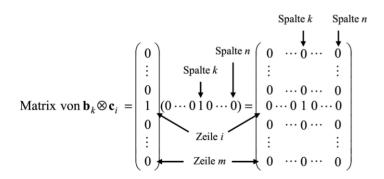


Abb. 7.11: Ein Tensorprodukt von Basisvektoren

$$Rest((a_{ik}), z, s) : \begin{bmatrix} a_{11} & \cdots & a_{1k} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots & & \vdots \\ a_{i1} & \cdots & a_{ik} & \cdots & a_{in} \\ \vdots & & \vdots & \ddots & \vdots \\ a_{l1} & \cdots & a_{lk} & \cdots & a_{ln} \end{bmatrix}$$

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11} \cdot a_{22} - a_{21} \cdot a_{12}$$

Abb. 7.12: Restmatrix beim Entwicklungssatz, Determinantenberechnung 2 × 2 und 3 × 3.

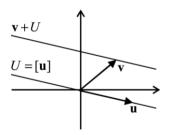


Abb. 7.13: Ein affiner Unterraum $\mathbf{v} + U$ des \mathbb{R}^2

D	Ε
7	7
•	ر

einsortig	g:		mehrsort	tig:		
def	Gruppe		def	StapelNat	tuerlicherZahlen	
sorten	grupel;		sorten	nat, sta;		
operator	en		operator	en		
	e:	\rightarrow grupel;		null:	\rightarrow nat;	
	inv:	grupel \rightarrow grupel;		leer:	\rightarrow sta;	
	mul:	grupel, grupel \rightarrow grupel;		nachfo:	$nat \rightarrow nat;$	
axiome				stapeln:	$sta, nat \rightarrow sta;$	
fuer alle x, y, z in grupel:		1	oberste:	$sta \rightarrow nat;$		
	mul(mu	l(x,y),z) = mul(x, mul(y,z));		abheben:	$sta \rightarrow sta;$	
	mul(x,e)) = x;	axiome			
	mul(e,x)) = x;	fuer alle	fuer alle x in nat; s in sta: oberste(leer) = null;		
	mul(x,ir	$\operatorname{nv}(\mathbf{x}) = \mathbf{e};$	1			
	mul(inv	(x),x)=e;	1	oberste(st	tapeln(x,s) = x;	
ende_de	r_def			abheben(leer) = leer;		
				abheben(s	stapeln(x,s)) = s;	
			ende_de	r_def		

Tab. 7.3: Zwei Spezifikationen mit Sorten, Operatoren und Axiomen in Form von Gleichungen

Abb. 7.14: Zwei triviale 3-Zöpfe und ein nicht-trivialer 3-Zopf

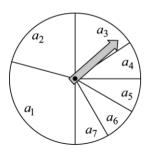


Abb. 8.1: Ein Glücksrad mit W-Raum ($\{a_1, a_2, ..., a_7,\}, P$), in dem $P(\{a_1, a_2\}) = 1/2$ gilt

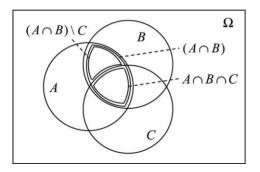


Abb. 8.2: Zur Siebformel mit drei Mengen

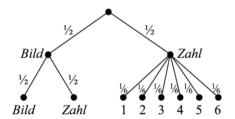


Abb. 8.3: Ein mehrstufiges Zufallsexperiment

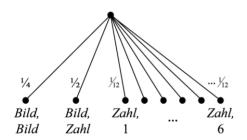


Abb. 8.4: Einstufige Interpretation eines mehrstufigen Zufallsexperiments

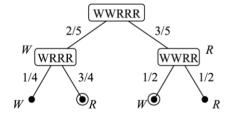


Abb. 8.5: Ziehen ohne Zurücklegen als mehrstufiges Zufallsexperiment

х	1	2	3	4	5	6
G(x)	1	1	3	3	5	5

x	1	2	3	4	5	6
H(x)	5	2	2	2	2	5

Tab. 8.1: Gewinne *G* für Ann, *H* für Ben

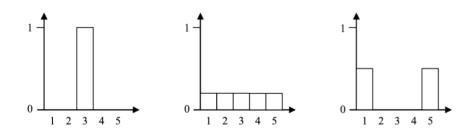
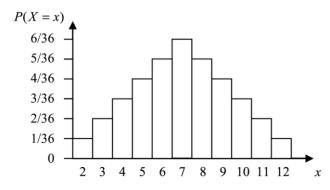


Abb. 8.6: Drei Verteilungen mit gleichem Erwartungswert und unterschiedlicher Varianz



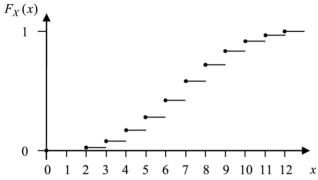


Abb. 8.7: Die Wahrscheinlichkeiten P(X = x) (oben) und die kumulative Verteilungsfunktion F_X (unten) der Augensumme zweier Würfel.

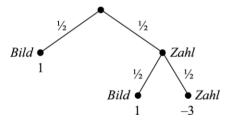


Abb. 8.8: Ein Beispiel für die Verdopplungsstrategie

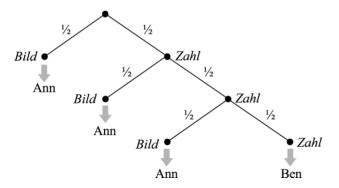


Abb. 8.9: Berechnung der Wahrscheinlichkeiten beim Aufteilungsproblem

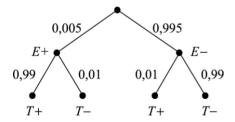


Abb. 8.10: Eigenschaft und Testergebnis als mehrstufiges Zufallsexperiment

DE

\downarrow von nach \rightarrow	(RR,WW)	(RW,RW)	(WW,RR)	
(RR,WW) 1/3		2/3	0	
(RW,RW)	1/6	2/3	1/6	
(WW DD)	0	2/2	1 /2	

Tab. 8.2: Übergangswahrscheinlichkeiten beim ersten endlosen Urnenspiel

Abb. 8.11: Graphische Darstellung von Tab. 8.2

\downarrow von nach \rightarrow	0	1	2	3	
0	1/2	1/2	0	0	
1	1/2	0	1/2	0	
2	0	1/2	0	1/2	0
:	0	0			

Tab. 8.3: Einige Übergangswahrscheinlichkeiten beim zweiten endlosen Urnenspiel

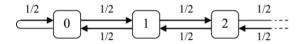


Abb. 8.12: Graphische Darstellung von Tab. 8.3

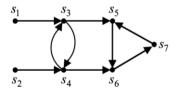


Abb. 8.13: Fallen in gerichteten Graphen

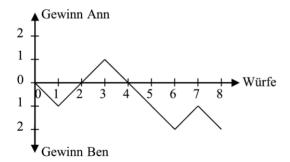


Abb. 8.14: Gewinnstand bei wiederholten Münzwürfen

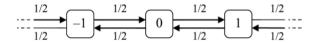


Abb. 8.15: Ein einfacher Irrweg als unendliche Kette

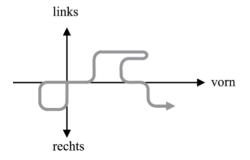


Abb. 8.16: Ein "biased random walk"



Abb. 8.17: Eine Brown'sche Bewegung