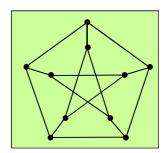
Bernd Baumgarten: Kompendium der diskreten Mathematik De Gruyter, 2014

Korrekturenliste, Stand vom 28.02.2015

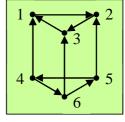
Vielen Dank an alle aufmerksamen Leser!

Legende	e: alter Text (manchmal) neuer Text (immer)
S. 22:	In Aufgabe 2.4 muss die letzte Teilaufgabe mit (e) nummeriert sein.
S. 23:	In Aufgabe 2.16 muss es $(a,b) := \{\{a\}, \{a,b\}\}\$ heißen.
S. 34:	In Zeile 13 muss es Menge <i>P</i> nichtleerer Teilmengen heißen.
S. 36:	In Zeile 2 muss es $f: A^n \to A$ heißen.
	Im letzten Absatz vor 3.6 muss in der 1. Zeile unmittelbare Verallgemeinerung durch ähnliche Konstruktion
	und in der Mitte aRb , aQc und $bQd \Rightarrow cRd$ durch aQb , aRc und $bRd \Rightarrow cQd$
	ersetzt werden.
S. 63:	In Aufgabe 3.9 muss es in Zeile 4 heißen:
	<i>n</i> -stelligen Relation $Q \subseteq A^n$, $n \ge 1$, wenn
	Darunter ist der Satz Im Spezialfall entsprechen. zu streichen.
	Ferner müssen die beiden letzten Zeilen der Aufgabe lauten:
	$Q/R([a_1],[a_2],,[a_n]) := Q(a_1,a_2,,a_n)$
	eine wohldefinierte Relation Q/R beschrieben wird.
S. 64:	In Aufgabe 3.14 muss es dreimal \mathbb{Z} anstelle von \mathbb{N}_0 heißen, und beim ersten Mal
	ist hinter Z anzumerken: (ganze Zahlen, vgl. Kap. 5).
S. 122:	In Tabelle 4.15, Zeile 10 muss die Regel für Spezialisierung lauten: $\frac{\forall x \varphi}{\varphi_{[x/\tau]}}$.
S. 124:	In Algorithmus 4.12, Schritt 5, Zeile 6 muss es anstelle von mindestens lauten: möglicherweise.
S. 129:	In Aufgabe 4.12 muss der dritte Spiegelpunkt lauten: $\varphi \models \psi$ und $\psi \models \varphi$.
S. 149:	In Zeile 5 muss es anstelle von $\{y \in Q \mid y^2 < 2\}$ lauten: $\{y \in Q \mid y^2 < 2 \lor y < 0\}$.
	In den Zeilen – 6 und – 7 muss es heißen:
	genau eine nicht-negative reelle Zahl als Quadratwurzel.
S. 158:	Im zweiten Spiegelpunkt muss es lauten:
	bei denen die (unten erläuterten) Multimengen.
S. 170:	Im Beweis von Satz 5.16 muss es in der ersten Zeile $menge: A \rightarrow P(A)$ heißen (und nicht umgekehrt).

S. 183: In Satz 5.28 muss die Gleichung für
$$x$$
 $x = x_0 + i \cdot \frac{n}{g}$ lauten – anstelle von


$$x = \frac{b}{g} \cdot x_0 + i \cdot \frac{n}{g}$$

S. 185: In Aufgabe 5.4.c muss es anstelle von (vgl. Übungsaufgabe 5-2) lauten:


mit
$$m = pred(n) :\Leftrightarrow n = succ(m)$$
, vgl. Übungsaufgabe 5.2.

S. 187: In Aufgabe 5.15 muss es in der ersten Zeile lauten:

- **S. 190:** In Aufgabe 5.36 muss es in der ersten Zeile Satz 5.28 heißen. (Vgl. auch dessen Korrektur oben.)
- **S. 205:** In Tabelle 6.1 muss es in der dritte und vierten Zeile (für Radius bzw. Durchmesser) anstelle von $\varepsilon(a)$ lauten: e(a).
- S. 229: In Aufgabe 6.4 muss im linken Graphen das innere Fünfeck weggelassen werden.Der Petersen-Graph sieht folgendermaßen aus:

S. 229: In Aufgabe 6.7 (b) fehlen Pfeilspitzen; der (rechte) Graph muss folgendermaßen aussehen:

S. 245: In Satz 7.14 fehlt in der Formel ein Klammerpaar. Es muss dort heißen:

$$\forall a, b \in Q \ (a - b \in Q \land a \cdot b \in Q)$$

- S. 251: In Beispiel 2 muss es anstelle von Ordnung < lauten: Halbordnung ≤.
- S. 269: In der Zeile über 7.4.5 ist *rang* durch rang zu ersetzen.
- **S. 270f:** Ab Tab. 7.2 treffen einige Tipp- und Editierfehler zusammen. Tab. 7.2 soll lauten:

1	2	3	12	0
		1	2	2
			1	-1

x_1	+ 2 <i>x</i> ₂	+3x ₃	$+12x_{4}$	=	0
$0x_1$	+0x2	+ x ₃	+ 2x ₄	=	2
$0x_1$	$+0x_{2}$	$+0x_{3}$	+ x ₄	=	-1

In der Folge muss es auf Seite 271 Zeile 2 in der Mitte lauten:

Mit (2) folgt
$$x_3 = 2 - 2x_4 = 4$$
.

Zeile 4 darunter muss so beginnen:

$$x_1 = 0 - 2x_2 - 3x_3 - 12x_4 = \dots$$

- S. 283: Satz 7.45 ist hinter die ihm derzeit folgenden vier Zeilen zu platzieren.
- **S. 292:** In Zeile 10 von unten (3. Spiegelpunkt) ist $aR \cap Ra$ durch RaR zu ersetzen.
- S. 301: In Aufgabe 7.1 (b) muss es heißen: für eine assoziative aber nicht kommutative
- **S. 303:** In Aufgabe 7.11 (c) muss es

anstatt einer Gruppe heißen: einer möglichst kleinen Gruppe, und

der Linksmultiplikation mit einem festen Gruppenelement

muss ersetzt werden durch:

einem Vielfachen
$$f_n: a \mapsto a^n$$
, $n \in \mathbb{N}$, $(a^n = a \circ a \circ ... \circ a (n-mal))$,

S. 304: In Aufgabe 7.18 muss die zweite Formelzeile lauten:

$$(a,b)\cdot(c,d) := (a\cdot c - b\cdot \overline{d}, a\cdot d + b\cdot \overline{c})$$

In Aufgabe 7.22 (b) muss es heißen:

$$\bigcup_{i=0,1,\dots} X_i, \text{ sowie } X_{i+1} := \{X \cap Y \mid X, Y \in X_i\} \cup \{X \cap Y \mid X, Y \in X_i\}$$

- **S. 307:** In Aufgabe 7.38 (b) muss es **Spaltenvektoren** anstatt **Zeilenvektoren** lauten, und qqq ist zu streichen.
- **S. 310:** In Aufgabe 7.50 (b) muss es am Ende $\delta_{ip}\delta_{ks}$ anstatt $\delta_{ip}\delta_{ks}$ heißen.
- **S. 311:** In Aufgabe 7.53 ist $V \circ V = V$ durch $A \circ A = A$ zu ersetzen. Aufgabe 7.57 soll komplett anders lauten, nämlich wie folgt:

7.57 Kleinste Ideale

- a) In einem Ring $(R,+,\cdot)$ sei für eine Teilmenge $M\subseteq R$ die Menge $[M]_+$ definiert als die Menge aller endlichen Summen und Differenzen $\sum_{i=1}^m m_i \sum_{k=1}^n l_k$ von Elementen von M, z.B. $\sum_{i=1}^2 m_i \sum_{k=1}^1 l_k = m_1 + m_2 l_1 = ((m_1 + m_2) + -l_1)$, wobei die leere Summe (m=n=0) mit der Null 0_R von (R,+) identifiziert wird. Zeigen Sie, dass
 - (i) $[M]_+$ eine M enthaltende Untergruppe von (R,+) ist, und dass insbesondere
 - (ii) $[M]_+$ die *kleinste M* enthaltende Untergruppe von (R,+) ist
- b) Seien $(R,+,\cdot)$ ein Ring, $a \in R$ und $M_a := \{a\} + Ra + aR + RaR$. Zeigen Sie, dass
 - (i) $I_a := [M_a]_+$ ein a enthaltendes *Ideal* ist, und dass insbesondere
 - (ii) I_a das *kleinste a* enthaltende Ideal in $(R,+,\cdot)$ ist.
- **S. 312:** In Aufgabe 7.61 muss es zweimal $\frac{k}{k}$ anstatt $\frac{1}{k}$ heißen.
- **S. 314:** In 8.1.2 im dritten Spiegelpunkt muss es Abschnitt 8.4.3 heißen.
- S. 352: In Satz 8.17(1) muss es Wahrscheinlichkeits-Links-Eigenvektor heißen.
- **S. 356:** In Aufgabe 8.11 ist Teil (b) ersatzlos zu streichen.
- S. 357: In Aufgabe 8.18 muss es unterhalb von 2. die Folgen für den Spieler heißen.