

Toleranzdesign im Maschinen- und Fahrzeugbau

Bernd Klein

ISBN: 978-3-11-037344-8

© 2015 Walter de Gruyter GmbH, Berlin/München/Boston

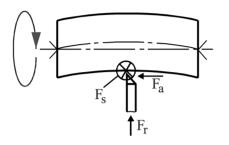
Abbildungsübersicht / List of Figures Tabellenübersicht / List of Tables

	Normblatt	Jahr	Inhalt	
Grundlagen	DIN 406, T. 10–12	1992	Techn. Zeichnungen, Maßeintragung	
	ISO 128	2000	Darstellungen in technischen Zeichnungen	
	DIN EN ISO 286, T. 1, 2	2010	Toleranzsystem für Längenmaße	
	DIN EN ISO 14405, T. 1	2011	GPS – Dimensionelle Tolerierung	
	und T. 2	2012		
	DIN EN ISO 17450, T. 1,2	2012	Geometrische Produktspezifikation - Grundlagen	
	DIN EN ISO 14660, T. 1, 2	1999	Geometrieelemente	
	DIN 30630	2008	Toleranzregel	
	DIN 30-10	2006	Zeichnungsvereinfachung	
Form- und Lagetole- ranzen	DIN EN ISO 1101	2014	GPS – Geometrische Tolerierung (F+L)	
	DIN ISO 16792	2008	Digitale Produktdefinitionsdaten	
	DIN 32869	2002	3D-CAD-Modelle	
	DIN EN ISO 8015	2011	Unabhängigkeitsprinzip	
	DIN 7167	1987	Hüllprinzip (zurückgezogen)	
	DIN ISO 1660	1988	Profiltoleranzen	
	DIN ISO 5459	2013	Bezüge und Bezugssysteme	
	DIN ISO 5458	1999	Positionstolerierung	
	DIN EN ISO 10579	2013	Tolerierung nicht formstabiler Teile	
Allgemein- toleranzen	DIN ISO 2768, T. 1, 2	1991	Allgemeintoleranzen: Länge, Winkel; F+L	
	DIN EN 15860	1991	Kunststoffe: Spanende Verarbeitung	
	DIN 1680, T. 1, 2	1980	Gussrohteile: Allgemeintoleranzen	
	DIN 1683, T. 1	1998	Gussrohteile aus Stahlguss	
	DIN EN ISO 8062	2008	Maß-, Form- und Lagetoleranzen für Formteile	

Tabelle 1.1: Übersicht über die aktuellen Normen zur Tolerierung nach http://www.beuth.de bzw. Perinorm-Datei des DIN-Instituts (*Fortsetzung*)

GE G

Allgemein- toleranzen	DIN 1687, T. 1	1998	Schwermetall: Sand- und Kokillenguss	
	DIN 1687, T. 3	1980	Schwermetall: Sand- und Kokillenguss	
	DIN 1687, T. 4	1986	Schwermetall: Druckguss	
	DIN 1688, T. 1	1998	Leichtmetall: Sandguss	
	DIN 1688, T. 3	1980	Leichtmetall: Kokillenguss	
	DIN 1688, T. 4	1986	Leichtmetall: Druckguss	
	DIN 16742	2013	Kunststoff-Formteile, Toleranzen und Abnahmebedingungen (Nachfolgenorm von DIN 16901)	
	DIN EN ISO 10135	2010	Angaben für Formteile	
	DIN 7526 + Beiblatt	1969	Schmiedestücke aus Stahl/Gesenkschmiedeteile	
	DIN 16794	1986	Tol-für Spritzgusswerkzeuge (zurückgezogen)	
	DIN 7523, T. 2	1986	Bearbzugabe usw. für Schmiedestücke	
	DIN 7526	1969	Freiform-Schmiedestücke aus Stahl	
	DIN 6930, T. 2	2011	Toleranzen für Stanzteile	
	DIN 6784	1982	Werkstückkanten	
	DIN 2310, T. 4	1987	Autogenes Brennschneiden	
	DIN EN ISO 13920	1996	Schweißkonstruktionen	
	DIN ISO 3302, T. 2	1999	Gummi	
	DIN 40680	1983	Keramik	
Toleranz- verknüpfung	DIN EN ISO 2692	2012	Technische Zeichnungen, F+L-Tolerierung, Maximum-/ Minimum-Material-Prinzip, Wechselwirkungsprinzip	
	DIN 7186, T. 1, 2	1974	Statistische Tolerierung (seit 1985 ruhend)	
	DIN EN ISO 1302	2002	Angabe der Oberflächenbeschaffenheit	
	E DIN EN ISO 25178,	2013	GPS-Oberflächenbeschaffenheit: Flächenhaft., Kenn-	
	T. 1 bis T. 3	1000	größen und Spezifikationsoperatoren	
Oberfläche	DIN EN ISO 14253, T. 1 bis T. 3	1999	Prüfung von Werkstücken und Messgeräten durch Messen	
	DIN ISO 13715	2000	Technische Zeichnungen – Werkstückkanten mit	
		2000	unbestimmter Form	
	DIN 1319, T. 1 bis T. 4	1995	Grundlagen der Messtechnik	
Messtechnik	DIN EN ISO 10360,	2010	GPS-Annahmeprüfung und Bestätigungsprüfung für	
	T. 1 bis T. 9	2012	Koordinatenmessgeräte (KMG)	
	DIN EN ISO 15530, T. 3	2012	GPS-Verfahren zur Ermittlung der Messunsicherheit von KMG	


Tabelle 1.1: Übersicht über die aktuellen Normen zur Tolerierung nach http://www.beuth.de bzw. Perinorm-Datei des DIN-Instituts

Einspannung des Werkstückes

Resultierende Formabweichung

zen gespannt und bearbeitet.

Eine Welle wird zwischen den Spit- Infolge der auf die Welle wirkenden Zustellkraft F_r des Drehmeißels biegt sich diese elastisch durch.

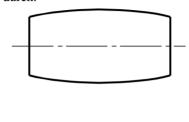


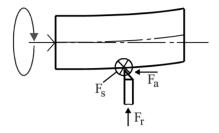
Abb. 3.1: Formabweichung durch Durchbiegung bei beidseitiger Einspannung (nach /DIN 01/)

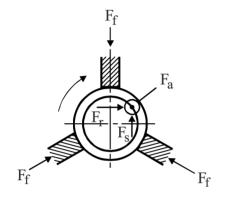
Einspannung des Werkstückes

Resultierende Formabweichung

und bearbeitet.

Eine Welle wird einseitig eingespannt \Longrightarrow Infolge der auf die Welle wirkenden Zustellkraft F_r des Drehmeißels biegt sich diese elastisch durch.




Abb. 3.2: Formabweichung durch Ausbiegung bei einseitiger Einspannung (nach /DIN 01/)

Einspannung des Werkstückes

Resultierende Formabweichung

elastisch verformt und bearbeitet.

Eine Hohlwelle wird im Futter gespannt, Infolge der punktuellen Spannkräfte entstehen Rundheitsabweichungen in der ausgedrehten Bohrung.

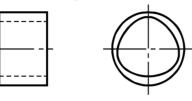


Abb. 3.3: Formabweichung durch Spannkräfte (nach /DIN 01/)

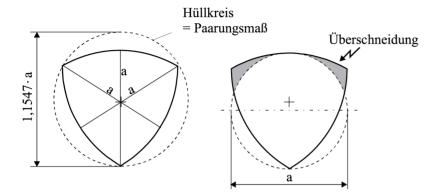


Abb. 3.4: Vergleich einer gleichdickförmigen Welle mit einem Kreis gleichen Durchmessers

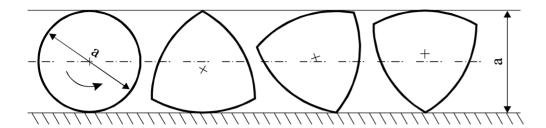


Abb. 3.5: Vergleich eines Gleichdicks mit einer Rolle des Durchmessers a

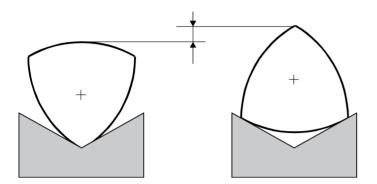


Abb. 3.6: Nachweis einer Gleichdickform mit einem V-Prisma bei einer Zweipunktmessung

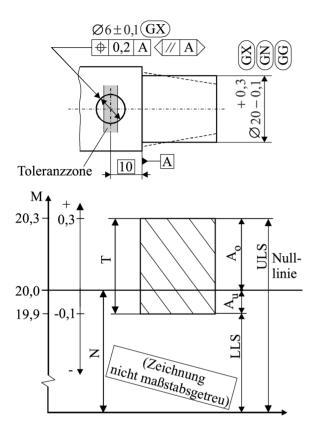


Abb. 4.1: Darstellung einer Nenn-Geometrie mit Positionstoleranz und Maßspezifikation

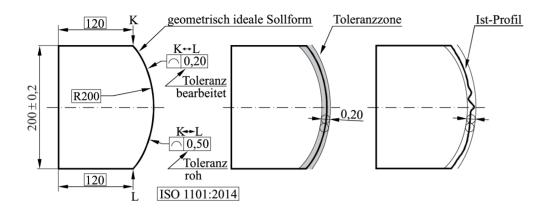


Abb. 4.2: Vergleich zwischen geometrisch idealer Form, Toleranzzone und Ist-Profil am Werkstück

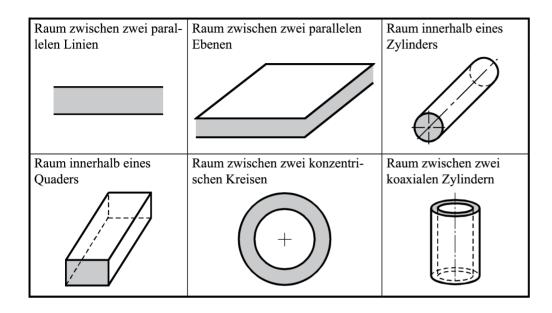


Abb. 4.3: Darstellung der Toleranzzonen nach ISO 1101

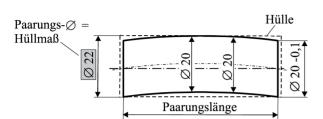
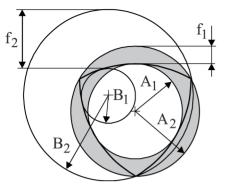



Abb. 4.4: Nicht eindeutig spezifiziertes Maßelement

Abb. 4.5: Ausrichtung der Bezugslinien zur Bestimmung der Geradheit nach der Minimum-Bedingung

konzentrische Kreispaare	$A_1 - A_2$	$B_1 - B_2$
Abstand	\mathbf{f}_1	f_2

Abb. 4.6: Bestimmung der Rundheitsabweichung nach der Minimum-Bedingung

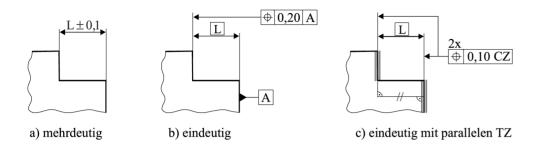


Abb. 4.7: Bemaßter, linearer Abstand (Stufenmaß) zwischen zwei Maßelementen

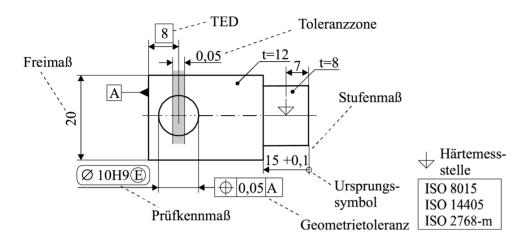


Abb. 5.1: Angabe von Maßen in einer Fertigungszeichnung

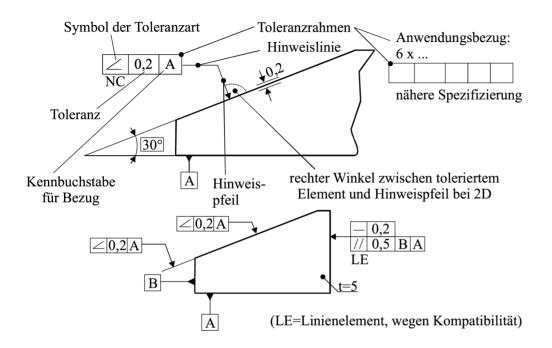


Abb. 5.2: Toleranzangaben am tolerierten Element und verschiedene Stellungen des Hinweispfeils

a) Tolerierung des realen Geometrieelementes b) Tolerierung eines abgeleiteten Geometrieelementes (Gesamtlauf) (Achse für Koaxialität)

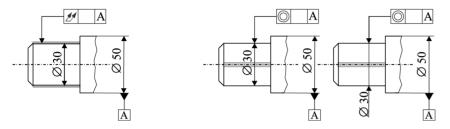


Abb. 5.3: Stellung des Hinweispfeils erzeugt unterschiedliche Bedeutung

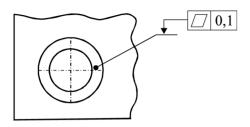


Abb. 5.4: Tolerierung einer gesenkten Ringfläche

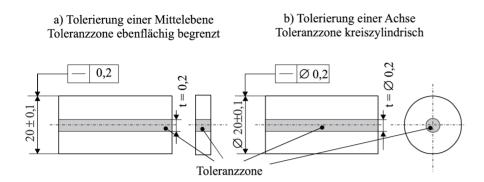


Abb. 5.5: Gestalt der Toleranzzonen und Größenzuweisung

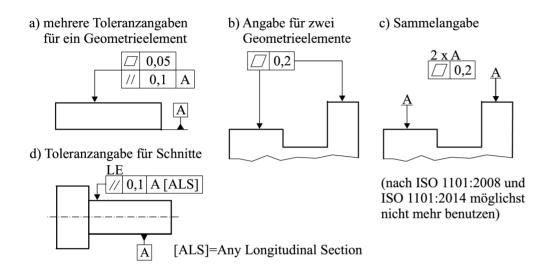
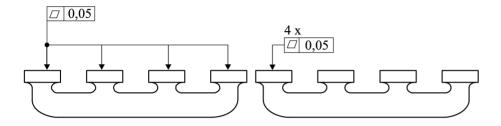
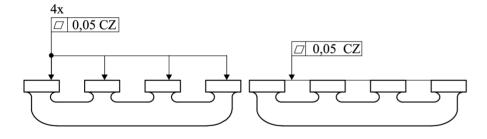




Abb. 5.6: Möglichkeiten der Zuweisung einer Toleranz

a) Einzelne Toleranzzonen für jedes Geometrieelement verlangen: Jede Fläche muss in sich eben sein.

b) Nach ISO 1101 kann über mehrere Geometrieelemente eine gemeinsame Toleranzzone (= CZ) gelegt werden.

c) Gemeinsame Toleranzzonen mit demselben Wert auf unterschiedliche Flächenniveaus Bedeutung wie unter b) für jede Fläche in einer Aufspannung mit Prüfanforderung.

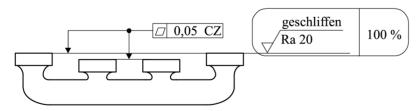


Abb. 5.7: Zeichnungseintragung von Toleranzzonen an einem Auspuffkrümmer

Toleranzdesign im Maschinen- und Fahrzeugbau, Bernd Klein ISBN 978-3-11-037344-8 © 2015 Walter de Gruyter GmbH, Berlin/München/Boston

 $\frac{\mathsf{DE}}{\mathsf{G}}$

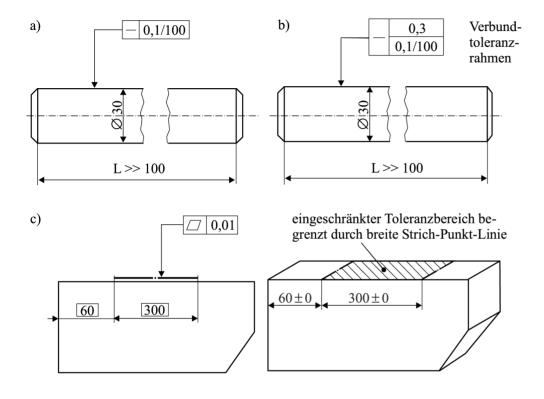
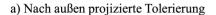
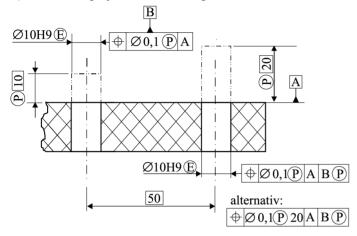




Abb. 5.8: Einschränkung der Ausdehnung einer Toleranzzone

b) Darstellung der Toleranzzone

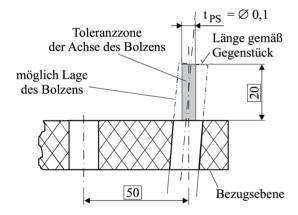
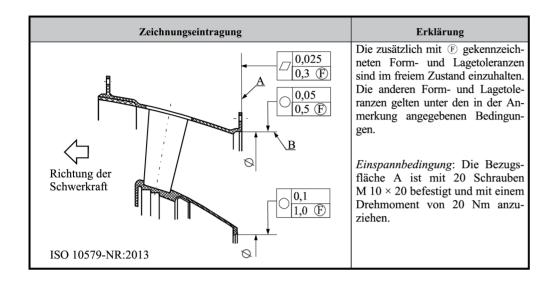



Abb. 5.9: Projizierte Toleranzzone bei einem Zentrierstift nach DIN ISO 10578

Abb. 5.10: Kennzeichnung "flexibler Toleranzzonen" nach DIN EN ISO 10579 (nicht benutzte Bezüge bei den Toleranzen müssen als "Fahne" angezogen werden)

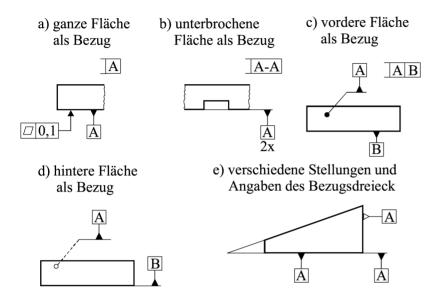
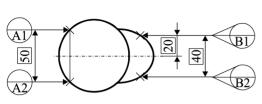
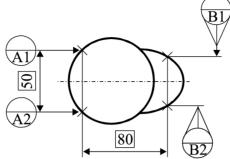




Abb. 5.11: Kennzeichnung eines Bezugselementes nach DIN EN ISO 5459

- a) Die Beweglichkeit der Bezugsstelle B1, B2, b) Die Beweglichkeit der Bezugsstelle B1, B2, welche durch die Richtung des modifizierten Be- welche durch die Richtung des modifizierten zugsstellenrahmens für eine bewegliche Bezugsstel- Bezugsstellenrahmens für eine bewegliche le gegeben ist, ist senkrecht zu einer Linie, welche Bezugsstelle gegeben ist, ist parallel zu einer durch die Bezugsstellen A1 und A2 geht.
 - Linie, welche durch die Bezugsstellen A1 und A2 geht.

Abb. 5.12: Einführung beweglicher Bezugsstellen an Formteile

Lauftolerierung eines Lagersitzes

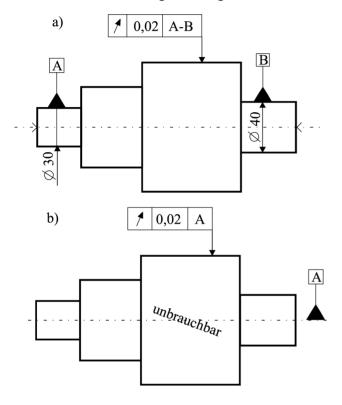
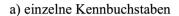
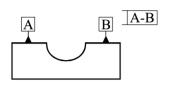
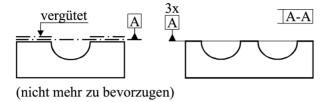





Abb. 5.13: Gemeinsame Bezugsbildung zur Lauftolerierung eines Lagersitzes (Aufnahme zwischen den Spitzen ist angedeutet.)

c) eingeschränkte Bezugsflächen

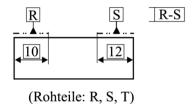
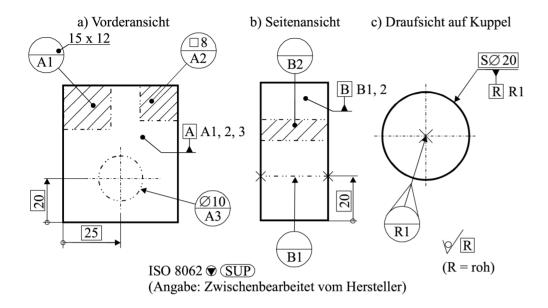



Abb. 5.14: Möglichkeiten zur Angabe von Bezugsflächen bei spanender Bearbeitung an Bauteilen

Abb. 5.15: Zeichnungseintragung von Bezügen über Bezugsstellen; Verwendung von Bezugsstellenrahmen, einer beweglichen Bezugsstelle und des Ursprungssymbols

 $\frac{\mathsf{DE}}{\mathsf{G}}$

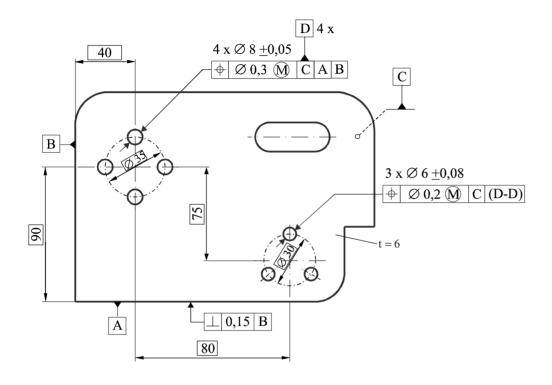


Abb. 5.16: Funktionsbezug an einem Bauteil unter Einbezug einer ganzen Formelementgruppe mit (D-D)

 $\frac{\mathsf{DE}}{\mathsf{G}}$

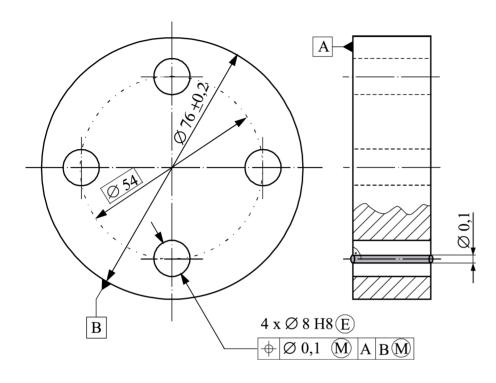


Abb. 5.17: Werkstück mit symmetrischem Bohrungsbild

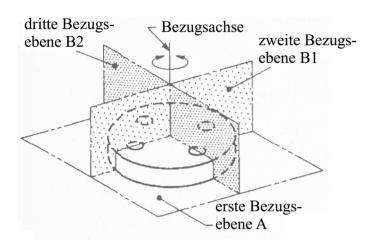


Abb. 5.18: Bezugsebenen am Bauteil nach /ASM 98/

 $\overset{\text{de}}{G}$

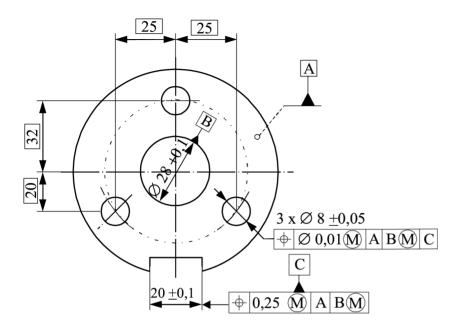


Abb. 5.19: Bauteil mit eindeutiger Ausrichtung der Bezüge

 $\frac{\mathsf{DE}}{\mathsf{G}}$

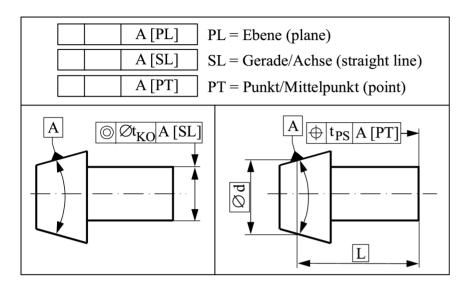


Fig. 5.20: Vereinbarung von Lageelementen bei Bezügen

a) Parallelitätstolerierung mit Bezug b) reales Form- und Bezugselement (Zeichnungseintrag)

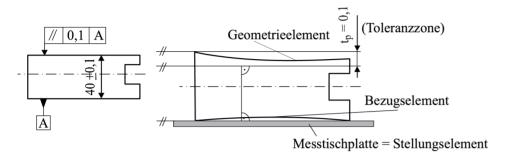


Abb. 6.1: Bezugsangabe und Bezugsbildung über ein ideales Stellungselement

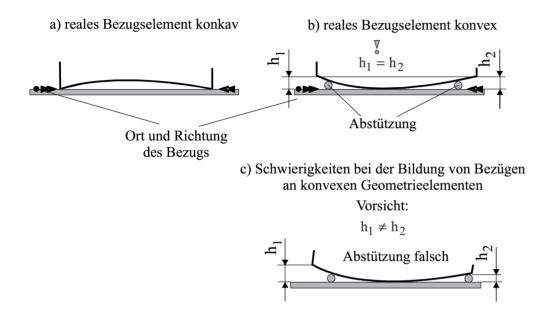


Abb. 6.2: Gerade Fläche als Bezugselement - konvexe und konkave Formabweichung

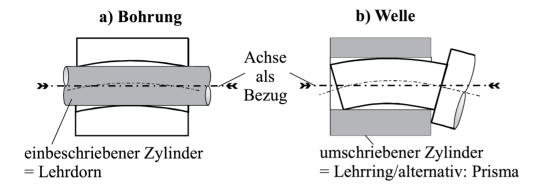


Abb. 6.3: Traditionelle Verkörperung der Bezugsachse über einen Dorn bzw. einen Ring

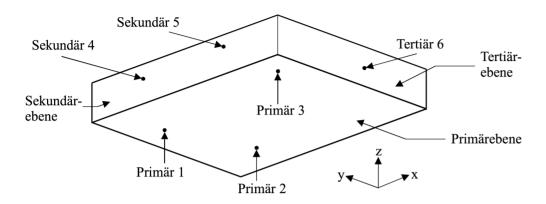
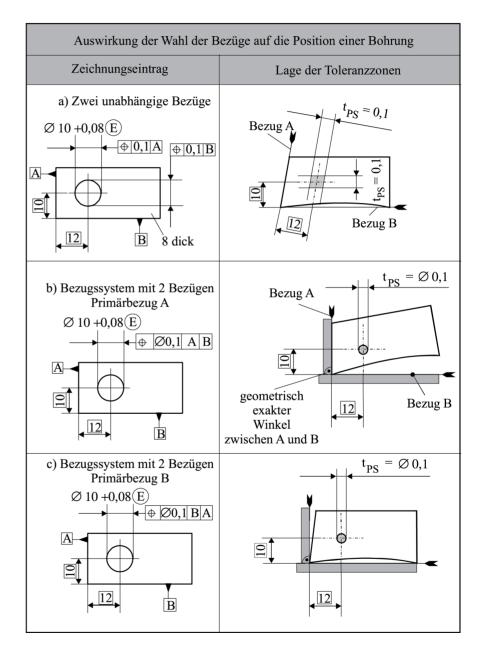
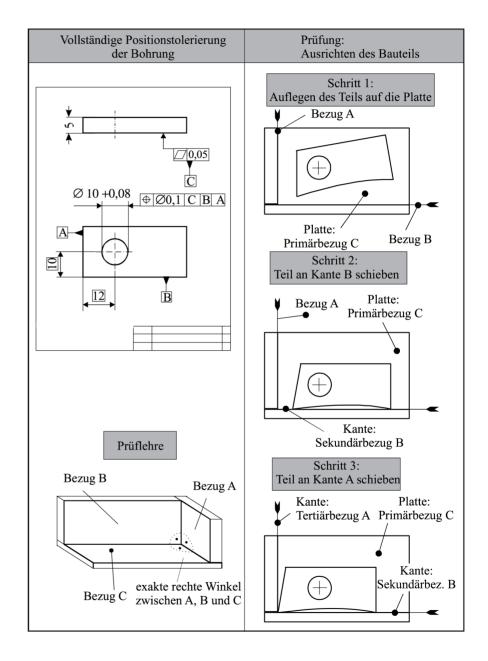




Abb. 6.4: Festlegungen im Referenz-Punkt-System

Abb. 6.5: Festlegung der Position einer Bohrung durch Bezüge a) mit zwei unabhängigen Bezügen, b) und c) mit einem rechtwinkligen Bezugssystem in der Ebene (Vereinbarung einer Hülle für die Bohrung)

Abb. 6.6: Positionstolerierung und Ausrichtung eines dünnen Blechteils in einem vollständigen räumlichen Bezugssystem (drei senkrecht aufeinanderstehende Ebenen)

Tabelle 7.1: Übersicht über die 14 Toleranzarten zur Geometriebeschreibung nach ISO 1101 beziehungsweise identisch zur ASME Y 14.5M-2009

Art	Gruppe	Symbol	Bezeichnung	Tole- ranz	Abwei- chung	Toleranzzone/ Bezug erforderlich		Tolerierte Geometrie- elemente
Formtoleranzen	"flach"		Geradheit	t _G	f_G	geradlinig/ nein		alle, d. h. sowohl reale als auch abgeleitete
			Ebenheit	t _E	$f_{\rm E}$	zwischen zwei Ebenen/ nein		
	"rund"	0	Rundheit	t _K	f _K	zwischen zwei Kreisen/nein		nur reale
		/2/	Zylindrizität	t _Z	f_Z	zwischen zwei Zylindern/ nein		
		\cap	Profilform einer beliebigen Linie	t _{LP}	f_{LP}	mittig (+/–) zum idealen Profil/ nein		nur reale
			Profilform einer beliebigen Fläche	t _{FP}	f _{FP}			
Lagetoleranzen	Richtungs- toleranzen		Parallelität	t _P	f_{P}	geradlinig	Nur Richtung festgelegt. Flachform implizit enthalten./ja	alle
		上	Rechtwinkligkeit	t _R	f_R			
		_	Neigung	t _N	f_N			
		\cap	Profilform einer beliebigen Linie	t _{LP}	f_{LP}			nur reale
			Profilform einer beliebigen Fläche	t _{FP}	f_{FP}			
	Ortstole- ranzen	\Phi	Position	t _{PS}	f _{PS}		symmetrisch (+/-) zum idealen Ort. Richtung und Flachform implizit ent- halten./ja	alle
		0	Koaxialität/ Konzentrizität	t _{KO}	f _{KO}			nur Achsen
		=	Symmetrie	t _S	f_S			meist abgelei- tete: Symmet- rieebenen, Achsen
		\cap	Profilform einer beliebigen Linie	t _{LP}	f_{LP}			nur reale
			Profilform einer beliebigen Fläche	t _{FP}	f _{FP}			
	dynamische Lauftole- ranzen	1	einfacher Lauf Rund-, Planlauf	$t_{\rm L}$	f_L	zylindrisch/ ja		nur reale
		11	Gesamtlauf Rund-, Planlauf	t _{LG}	f_{LP}			

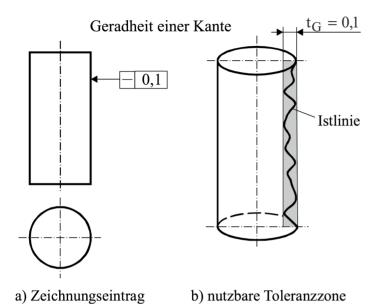


Abb. 7.1: Eintragung und Interpretation der Geradheitstoleranz einer Kante

Geradheit einer Achse

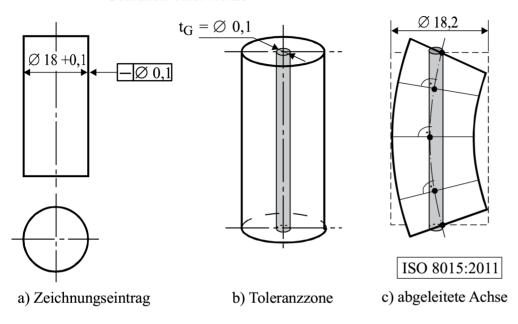
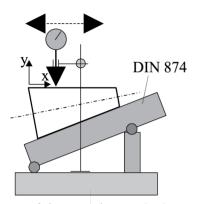
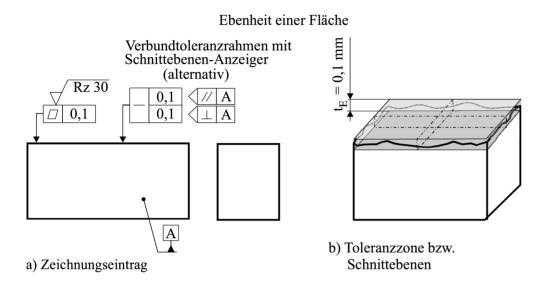
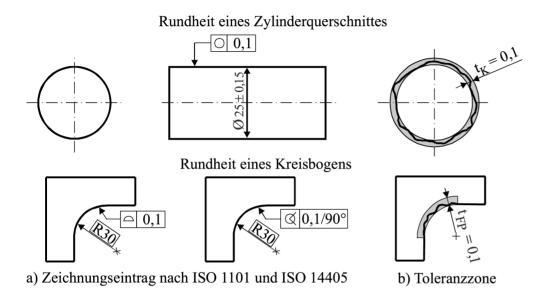




Abb. 7.2: Eintragung und Interpretation der Geradheitstoleranz einer Achse



Prüfplatte nach DIN 876

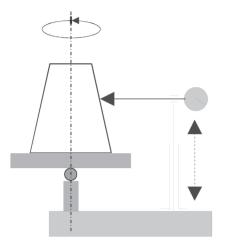

Abb 7.3: Prüfen einer Geradheitstoleranz mit Messuhr

Abb. 7.4: Eintragung und Interpretation der Ebenheitstoleranz einer Deckfläche bzw. alternative Interpretation über zwei Geradheitstoleranzen

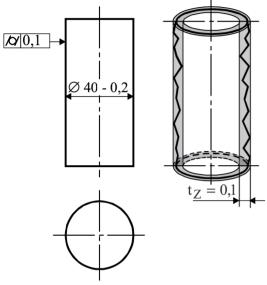


Abb. 7.5: Eintragung und Interpretation der Rundheit eines Zylinderquerschnittes bzw. eines Kreisbogens über Winkelsektor

Abb 7.6: Rundheitsmessung mit Messuhr nach DIN EN 12181-1

Zylindrizität einer Zylindermantelfläche

a) Zeichnungseintrag b) Toleranzzone

Abb. 7.7: Eintragung und Interpretation der Zylindrizität einer Mantelfläche für ein Passbolzen

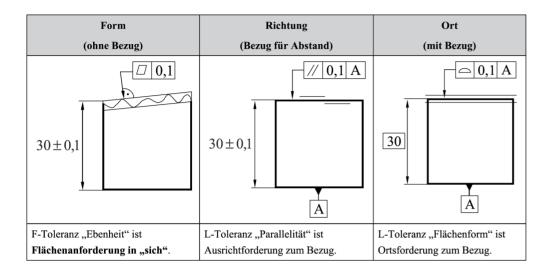


Abb. 7.8: Alternative Nutzung von F+L-Toleranzen als Flächeneingrenzung

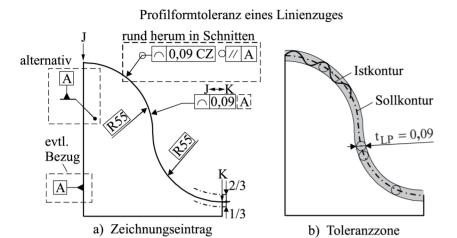


Abb. 7.9: Linienformtolerierung mit Angabe für Kurve und Alternative umlaufend für ganze Kontur

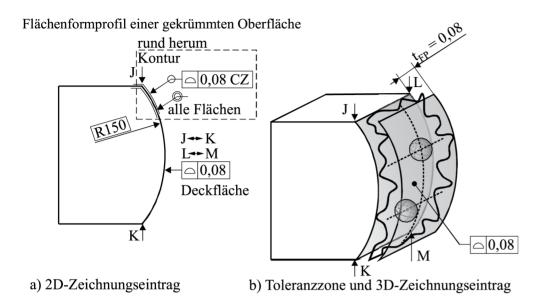


Abb. 7.10: Flächenformprofil oder Flächenformtoleranz einer gekrümmten Oberfläche bzw. umlaufend

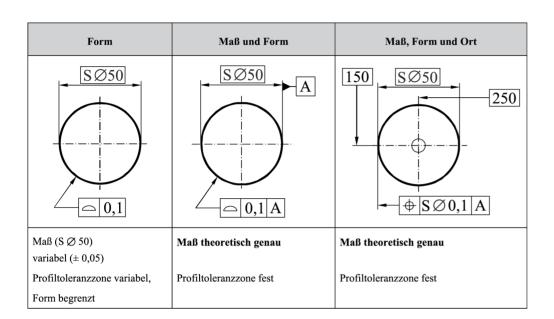


Abb. 7.11: Beispielhafte Übertragung von F+L-Toleranzen auf eine Kugel

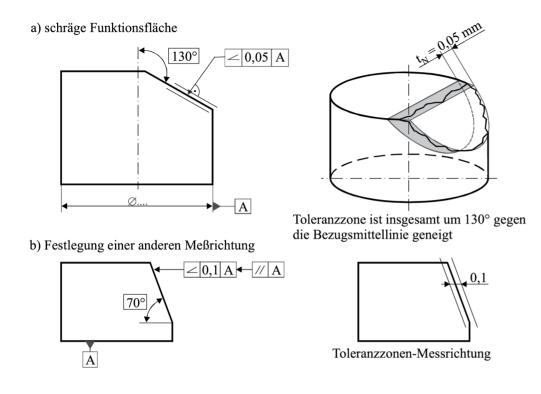


Abb. 7.12: Eintragung und Interpretation einer Neigungstolerierung

 $\frac{\mathsf{DE}}{G}$

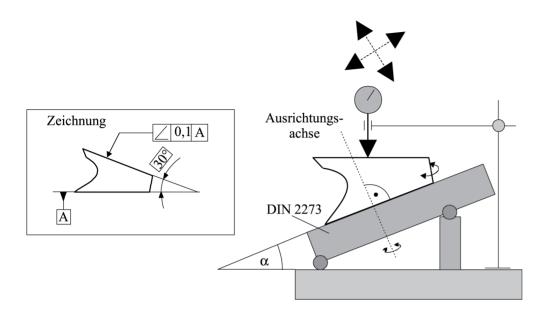


Abb. 7.13: Prüfverfahren für die Neigung

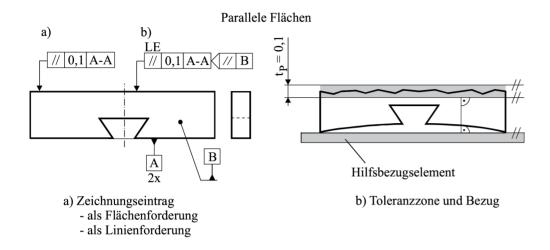
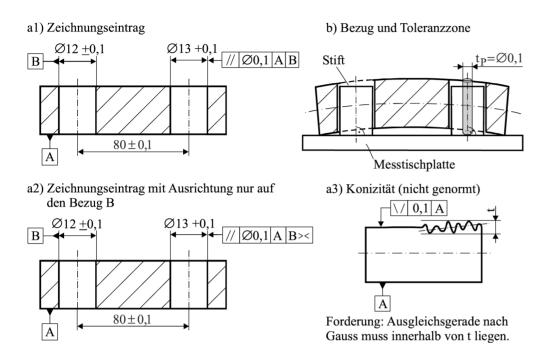



Abb. 7.14: Parallelität einer Ebene a) bzw. Linie b) – Zeichnungseintragung und Toleranzzone

Abb. 7.15: Parallelität - Zeichnungseintrag und Toleranzzone

 $\frac{\mathsf{DE}}{G}$

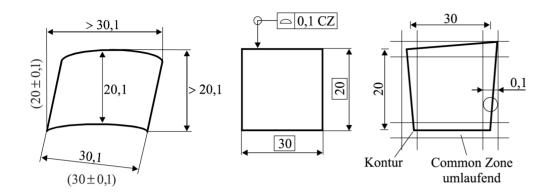
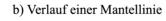
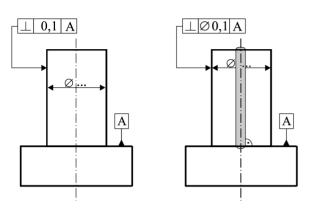
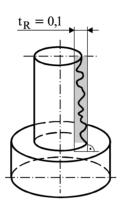
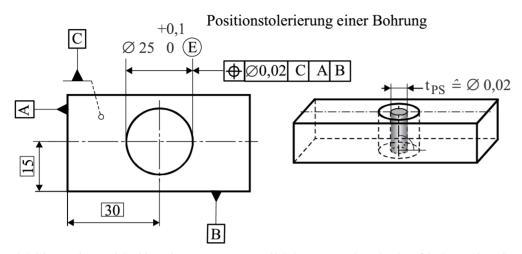
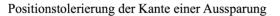




Abb. 7.16: Alternative Parallelitätsforderung für ein Fügeteil

a) Rechtwinkligkeit der Mantellinien bzw. Mittellinie eines angedrehten Zapfens


Abb. 7.17: Eintragung und Interpretation der Rechtwinkligkeitstoleranz an einer Mantellinie

a) Zeichnungseintrag mit Positionstoleranz

b) Toleranzzone steht senkrecht auf der Bezugsebene C

Abb. 7.18: Eintragung und Interpretation der Positionstolerierung einer Bohrung

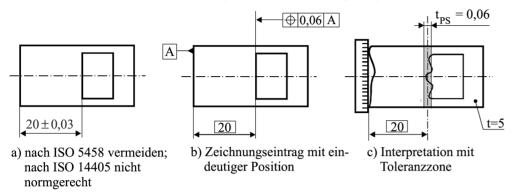


Abb. 7.19: Positionstolerierung einer "festen" Werkstückkante – Zeichnungseintrag und Toleranzzone

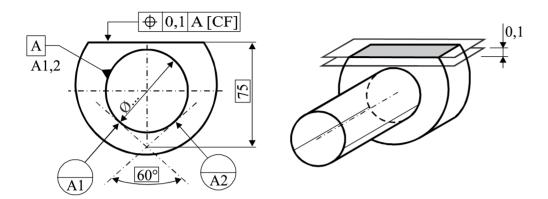
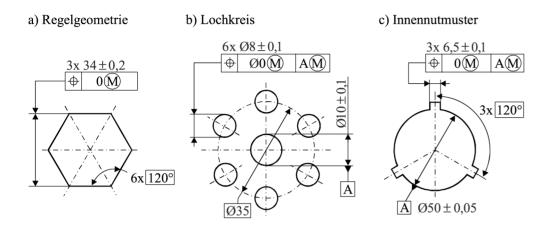
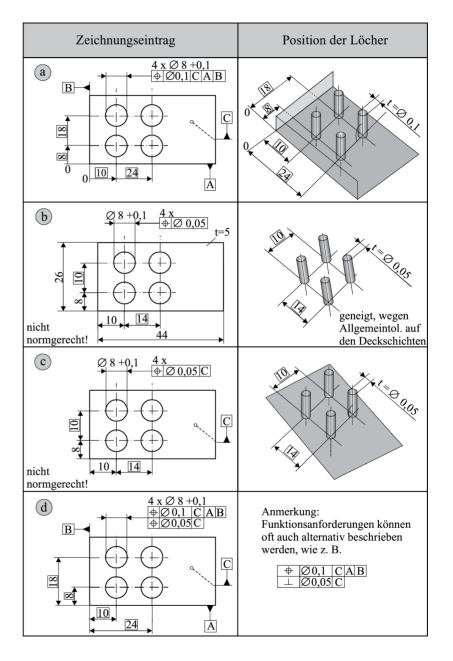
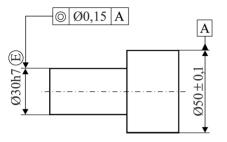


Abb. 7.20: Bezugsbildung über Bezugsstellen bzw. Hilfslinien von einem Prisma


Abb. 7.21: Geometrische Anordnungsmuster von Geometrieelementen

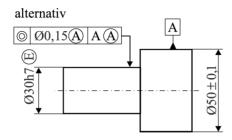
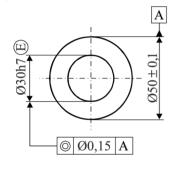
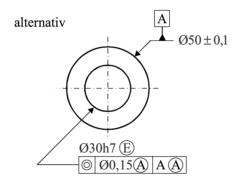
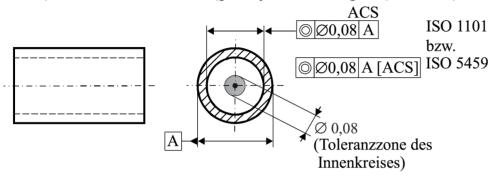

DE G

Abb. 7.22: Tolerierung von Lochbildern und die Interpretation der Symbolik




a) Vorderansicht eines Bolzens

b) gleiche Seitenansicht



(A) Kennzeichnung abgeleiteter Geometrieelemente (=Achse)

Abb. 7.23: Nutzung einer vereinfachten Darstellungsweise

a) Konzentrizität mit ACS (gilt in jedem beliebigen Querschnitt)

b) Koaxialität von Zylindern

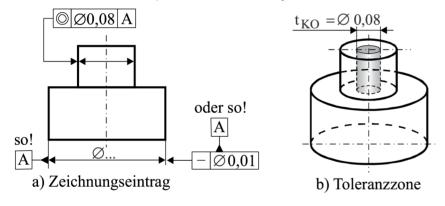
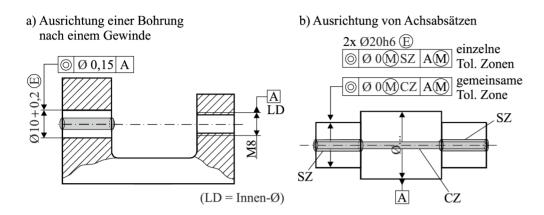
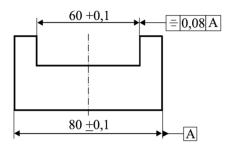
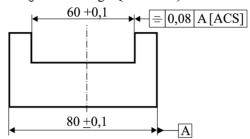
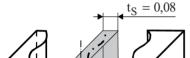


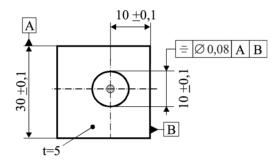
Abb. 7.24: Eintragung und Interpretation der Konzentrizitäts- und Koaxialitätstoleranz


Abb. 7.25: Fluchten einzelner Geometrieelemente und verschiedene Toleranzzonen

a) Symmetrie für die Mittelebene einer einzubringenden Nut


a1) Zeichnungseintrag für ganze Tiefe


a2) alternativer Zeichnungseintrag mit ACS (jeder beliebige Querschnitt)

b) Toleranzzone über ganze Tiefe

c) Symmetrie für die Mitte einer Bohrung

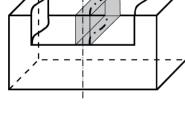
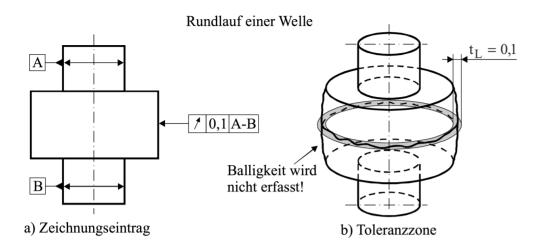
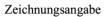
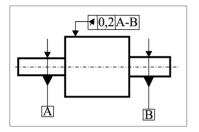
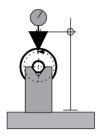


Abb. 7.26: Eintragung und Interpretation der Symmetrie von Mittelebenen von Geometrieelementen

 $\frac{\mathsf{DE}}{\mathsf{G}}$


Abb. 7.27: Eintragung und Interpretation der Rundlauftoleranz

Bezugselemente liegen in ausgerichteten Prüfprismen

Fluchtende Einspannung der Bezugselemente über Spitzen

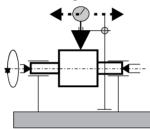


Abb. 7.28: Prüfverfahren für Rundlauf in zwei alternativen Aufbauten

Abb. 7.29: Eintragung und Interpretation der Gesamtplanlauftoleranz

DE G

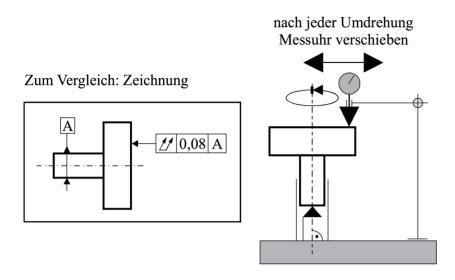


Abb. 7.30: Prüfung des Gesamtplanlaufs

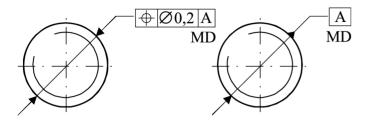
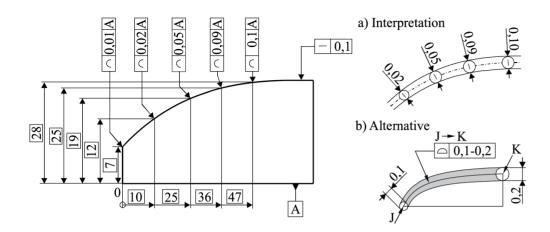



Abb. 7.31: Positionstoleranz und Bezug am Gewinde

Abb. 7.32: Profiltoleranz einer Freiformkurve nach ISO 1660 (*Die Koordinatenbemaßung ist bewusst nach zwei Prinzipien durchgeführt worden.*)

a)	örtliches Maß	c)	berechnetes Maß
	(u. a. Zweipunktmaß)		
b)	globales Maß	d)	Rangordnungsmaß
			(kleinstes, mittleres, größtes)

Tabelle 7.2: Anwendungsbereich der dimensionellen Tolerierung

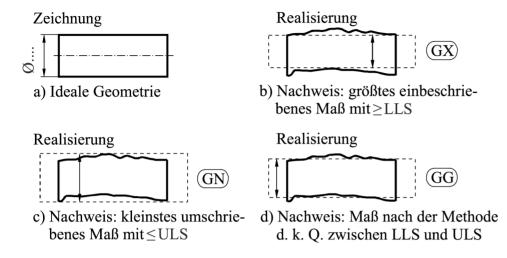
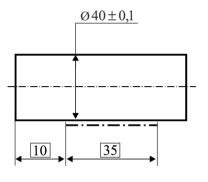


Abb. 7.33: Darstellung eines globalen Maßes über ein Maßelement

D	E
_	7
•	J

Anwendung	Modifikationssymbol
(LP)	Zweipunktmaß
(LS)	örtliches Maß, festgelegt durch eine Kugel
GG	Zuordnungskriterium nach der Methode der kleinsten Quadrate (Maβ bestimmt nach der M. d. k. Q. nach Gauβ)
GX	Zuordnungskriterium größtes einbeschriebenes Element (Maximum des einbeschriebenen Maßes = Pferchkreis)
(GN)	Zuordnungskriterium kleinstes umschriebenes Element (Minimum des umschriebenen Maβes = Hüllkreis)
CC	umfangsbezogener Durchmesser
CA	flächenbezogener Durchmesser
CV	volumenbezogener Durchmesser
(SX)	größtes Rangordnungsmaß
(SN)	kleinstes Rangordnungsmaß
SA	mittleres Rangordnungsmaß (Mittelwert)
SM	Median des Rangordnungsmaßes
SD	Intervallmitte des Rangordnungsmaßes
(SR)	Spanne des Rangordnungsmaß


Tabelle 7.3: Spezifikations-Modifikationssymbol für Längenmaße

Beschreibung	Symbole	Eintragungsbeispiele
Hüllbedingung auf Teillänge		\varnothing 40 ± 0,1 $\stackrel{\frown}{E}$ /10
bzw. für einzelnen Querschnitt	E	\varnothing 40 ± 0,1 \bigcirc /0
beliebige eingeschränkte Teillänge	/Länge	\varnothing 40 ± 0,1 \bigcirc GG /10
für einen beliebigen Querschnitt	ACS	$\varnothing 40 \pm 0,1 \boxed{\text{GX}}/\text{ACS}$
für eine festgelegte Querschnittsfläche	SCS	\varnothing 40 ± 0,1 $\overline{\text{GX}}$ /SCS
mehr als ein Maßelement	Anzahl ×	$2 \times \emptyset \ 40 \pm 0,1 \ \textcircled{E}$
gemeinsame Toleranz	СТ	$2 \times \emptyset 40 \pm 0,1$ E CT
Bedingung des freien Zustands	F	$\varnothing 40 \pm 0.1$ LP SA F
zwischen	\leftrightarrow	Ø 40 ± 0,1 A ↔ B

Tabelle 7.4: Anwendung von Spezifikations-Modifikationssymbolen mit beispielhaften Eintragungen

- a) Bestimmter Teil über eingeschränkte Länge
- b) Bestimmter Teil eingeschränkt über Streckensymbol "zwischen"

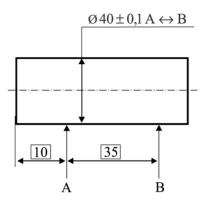
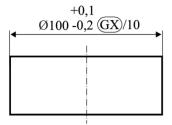



Abb. 7.34: Festlegung für einen bestimmten fest eingeschränkten Teilbereich durch TED-Maße

a) Verwendung des Symbols (Länge)

b) Verwendung des Streckensymbols "zwischen"

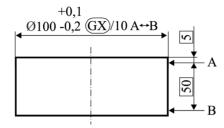


Abb. 7.35: Forderung für irgendeinen eingeschränkten Teilbereich eines Maßelementes

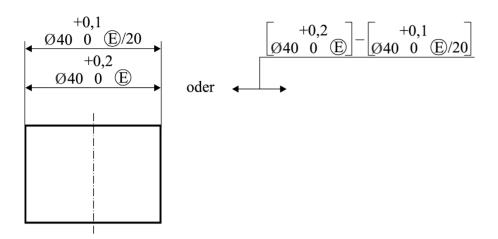


Abb 7.36: Mehrere Anforderungen für einen eingeschränkten Teilbereich eines Maßelementes

Verwendung des Modifikationssymbols "ACS"

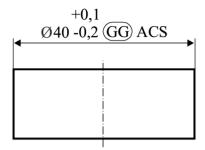
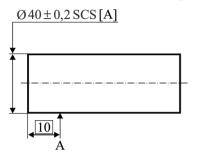



Abb. 7.37: Anforderung für einen beliebigen Querschnitt des zylindrischen Maßelements

a) Modifikationssymbol SCS eingetragen

b) Modifikationssymbol SCS weggelassen

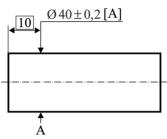
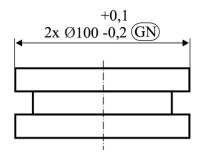



Abb. 7.38: Anforderung für einen bestimmten Querschnitt eines Maßelements

a) Gleiche Anforderungen für zwei, jeweils für sich ausgewertete, getrennte Maßelemente

b) Gemeinsame Toleranz für zwei getrennte Maßelemente

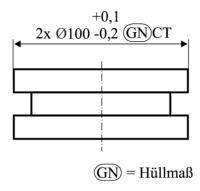


Abb. 7.39: Gleiche oder gemeinsame Anforderung für zwei getrennte Maßelemente für das kleinste umschriebene Maß

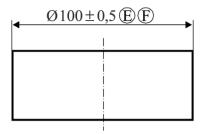


Abb. 7.40: Hüllbedingung für nicht formstabiles Teil

 $\overset{\text{de}}{G}$

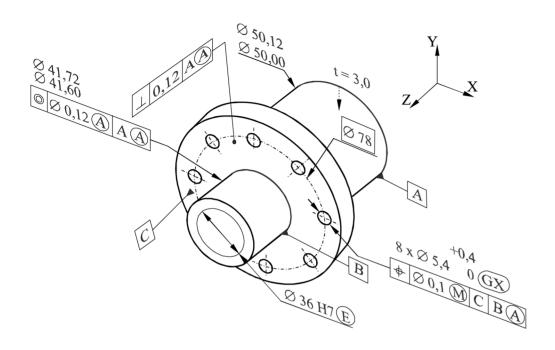


Abb. 7.41: vereinfacht bemaßtes 3D-Modell nach ISO-Normung

	Schnittebenen-Anzeiger
(// A >	Toleranzzonen-Richtungs-Anzeiger
$\bigcirc \bot A$	Sammlungs-Anzeiger für "ringsum"
$-\bot A$	Messrichtungsanzeiger

Abb. 7.42: Anzeiger für Toleranzzonen nach ISO 1101

 $\frac{\mathsf{DE}}{\mathsf{G}}$

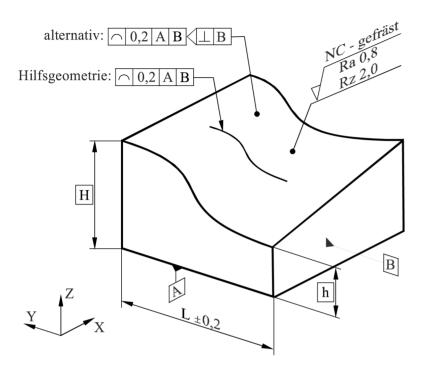


Abb. 7.43: Alternative Festlegung von Toleranzzonen

D	E	=	
	_	1	
	_	J	

Fertigungsverfahren	Norm	vorhandene Toleranzen	enthält Tolerierungs- grundsatz
Metallguss/	DIN 1680 – DIN 1688	Maße, FS, BZ	Festlegung als Hüllprinzip
Gussstücke	ISO 8062-3	Maße, F+L, BZ	
Kunststoffspritzguss	DIN 16472	Maße, W, F+L	Unabhängigkeit
Kunststoff-Halbzeuge	DIN EN 15860	Maße; — ○ ◎	
Keramik	DIN 40680	Mаßе; — □	
Gummi	DIN 3302-1/2	Maße;	
Gesenkschmieden St	DIN 7526	Maße, R; FV, BZ; —	entspricht in etwa Hüllprin- zip
Gesenkschmieden Al	DIN EN 586-3	Maße, FV;	
Freiformschmieden St	DIN 7527	Maße, BZ; O	
Freiformschmieden Al	DIN 71606	маßе; 🏻	
	DIN EN 755-9	Maße, R; — ☐ ○ ⊥ ∠; ◎ = (über Wanddicke)	
Strangpressen Al	DIN EN 12020-1/2	Maße, R; — ☐ //	entspricht in etwa Hüllprin- zip
Schweißen	DIN EN ISO 13920	Маßе, W; // — []	Unabhängigkeitsprinzip vorgeschrieben
Thermoschneiden	DIN 2310	Maße; \perp / (im Profil)	Unabhängigkeitsprinzip vorgeschrieben
Stanzen	DIN 6930-2	Maße, R, W; □ =	
spanende Fertigung	DIN ISO 2768	Maße, W, alle F+L	

Abkürzungen in der Tabelle:

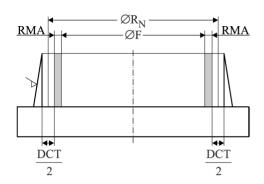

BZ: Bearbeitungszugabe FS: Formschräge FV: Formversatz F+L: Form- und Lagetoleranzen R: Radienmaße W: Winkelmaße

 Tabelle 8.1: Allgemeintoleranzen für verschiedene Fertigungsverfahren

Toleranzdesign im Maschinen- und Fahrzeugbau, Bernd Klein ISBN 978-3-11-037344-8 © 2015 Walter de Gruyter GmbH, Berlin/München/Boston

Televieute Figuresheften	Begrenzungen				
Tolerierte Eigenschaften	Toleranzarten	eingeschlossene Toleranzen			
	Zylindrizität	Rundheit, Geradheit und Parallelität sowie gegebenenfalls Hüllbedingung			
Geradheit Rundheit	Linienprofil, Flächenprofil	Ebenheit, gegebenenfalls Parallelität			
Parallelität	Neigung	Winkeltoleranzen			
Ebenheit	Position	teilweise durch Maßtoleranzen			
Rechtwinkligkeit	Koaxialität	Lauf			
Symmetrie Gesamtlauf	Lauf	Rundheit, Geradheit Parallelität (bei Gesamtlauf) bzw. Rechtwinkligkeit (bei Planlauf)			

Tabelle 8.2: Durch Allgemeintoleranzen (ISO 2768, T. 2) direkt und indirekt begrenzte Geometrieabweichungen nach /JOR 04/

R_N = Nennmaß des Rohgussteils, F = Maß nach der Fertigbearbeitung

RMA = Bearbeitungszugabe

DCT = Gusstoleranz

Abb. 8.1: Maßbeziehungen an einer rotationssymmetrischen Außenkontur

 $\frac{\mathsf{DE}}{\mathsf{G}}$

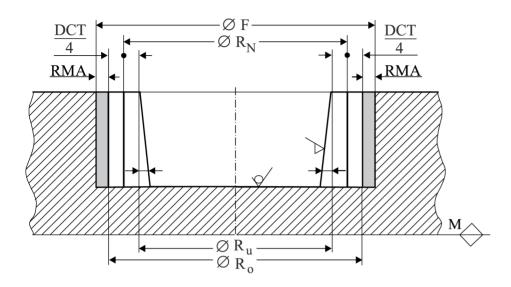


Abb. 8.2: Maßbeziehungen an einer Innenkontur mit Formschräge

Nennma Formtei		Längenmaßtoleranzen für Gussstücke (DCT) als Toleranzgrade in Millimeter								
von	bis	7	8	9	10	11	12	13	14	
100	160	1,2	1,8	2,5	3,6	5	7	10	12	
160	250	1,4	2	2,8	4	5,6	8	11	14	
250	400	1,6	2,2	3,2	4,4	6,2	9	12	16	
400	630	1,8	2,6	3,6	5	7	10	14	18	
630	1.000	2	2,8	4	6	8	11	16	20	
1.000	1.600	2,2	3,2	4,6	7	9	13	18	23	
1.600	2.500	2,6	3,8	5,4	8	10	15	21	26	

Tabelle 8.3: Längenmaßtoleranzen in Abhängigkeit vom Nennmaß nach DIN EN ISO 8062

	DCT-Werte für Material- bzw. Legierung					
Fertigungsverfahren	Stahl und Grauguss	Kupfer- und Zink- Legierungen	Leichtmetall- Legierungen			
Sandformen, händisch eingeformt	11–14	10–13	9–12			
Sandformen, maschinell eingeformt	8–12	8–10	7–9			
Druckguss/Feinguss	"Werte sollten mit d	er Gießerei vereinbart werde	en."			

Tabelle 8.4: Zuordnung von Toleranzgraden zu Gussstücken

Größtes	ßtes Maß Toleranzgrad der Bearbeitungszugaben (RMAG)								
von	bis	C	D	E	F	G	H	J	K
63	100	0,4	0,5	0,7	1,0	1,4	2,0	2,8	4
100	160	0,5	0,8	1,1	1,5	2,2	3	4	6
160	250	0,7	1	1,4	2	2,8	4	5,5	8
250	400	0,9	1,3	1,8	2,5	3,5	5	7	10
400	630	1,1	1,5	2,2	3	4	6	9	12
630	1.000	1,2	1,8	2,5	3,5	5	7	10	14
1.000	1.600	1,4	2	2,8	4	5,5	8	11	16
1.600	2.500	1,6	2,2	3,2	4,5	6	9	13	18

 Tabelle 8.5:
 Erforderliche Bearbeitungszugaben (RMA) für Gussstücke

 $\frac{\mathsf{DE}}{\mathsf{G}}$

Fertigungsverfahren	Material- bzw. Legierung					
	Stahl	Stahl Grauguss Kupfer- Zink-			Leichtmetall-	
			Legierungen	Legierungen	Legierungen	
Sandformen, händisch eingeformt	G-K	F-H	F-H	F-H	F-H	
Sandformen, maschinell eingeformt	F-H	E-G	E-G	E-G	E-G	
dauerhafte Metallform, Niederdruck	_	D-F	D-F	D-F	D-F	
Druckguss	_	_	B-D	B-D	B-D	
Präzisionsguss	E	E	E	-	E	

 Tabelle 8.6: Abhängigkeit des Toleranzgrades vom Fertigungsverfahren und dem Werkstoff

Freiformschmieden			
Norm	Schmiedeteil		
DIN 7527, Bl. 1	Scheiben		
DIN 7527, Bl. 2	Lochscheiben		
DIN 7527, Bl. 3	Ringe		
DIN 7527, Bl. 4	Buchsen		
DIN 7527, Bl. 5	gerollte und geschweißte Ringe		
DIN 7527, Bl. 6	Stäbe		

Tabelle 8.7: Normen über Abweichungen und Bearbeitungszugaben von Freiformschmiedeteilen

Gesenkschmieden			
Norm	Norm Werkstoff/Verfahren/Geometrie		
DIN EN 10243-1	Stahl/Warmverarbeitung in Hämmern und Senkrecht-Pressen		
DIN EN 10243-2	Stahl/Warmverarbeitung in Waagerecht-Stauchmaschinen		
DIN 7523, T. 2	Stahl/Gesenkschmieden/Bearbeitungszugaben, Schrägen, Rundungen, Kehlen, Dicken, Breiter		
DIN 586-3	Aluminium/Schmiedestücke/Grenzabmaße und Formtoleranzen		

Tabelle 8.8: Normen über Maß- und Geometrieabweichungen für Gesenkschmiedeteile

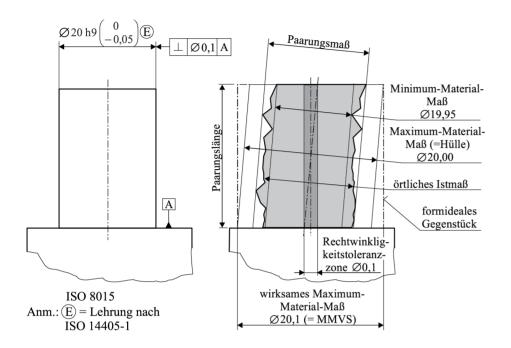


Abb. 9.1: Normgerechte Maß- und Zustandsdefinitionen an einem Geometrieelement

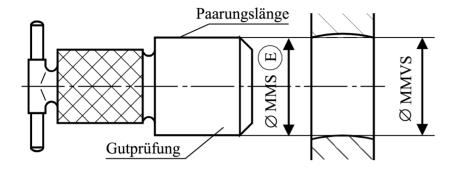


Abb. 9.2: Starre Lehre nach Taylor (engl. Pat. Nr. 6900 von 1905) für Bohrungen

DE G

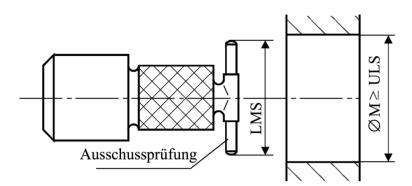
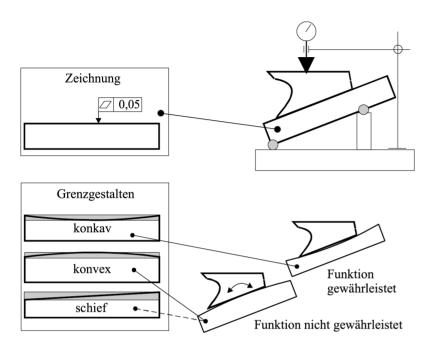
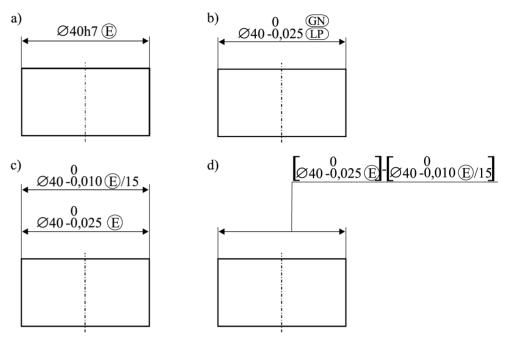
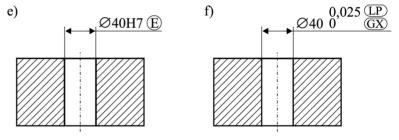


Abb. 9.3: Ausschussprüfung nach Tayor als LML-Prüfung


Abb. 9.4: Beispiel für die Bedeutung der Grenzgestalt für ein Bauteil bzw. im Zusammenwirken von Bauteilen

G

Abb. 9.5: Verschiedene Angaben der Hüllbedingung nach gültigen ISO-Normen

Wenn Bohrungen nicht näher spezifiziert sind, sind beliebige Geometrieabweichungen möglich und zulässig.

Legende:

- a + b) HB für ein äußeres Maßelement mit alternativer Spezifikation
- c+d) HB für Gesamtlänge und "schärfer" für eingeschränkte Länge von 15 mm
- e + f) HB für ein inneres Maßelement mit alternativer Spezifikation

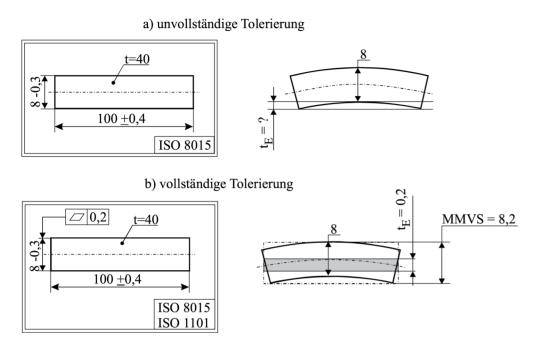
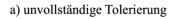
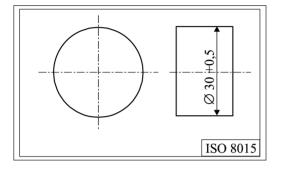
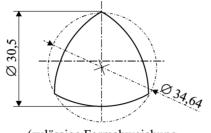
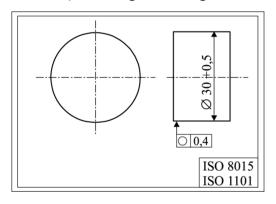





Abb. 10.1: Unvollständige bzw. vollständige Ebenheitstolerierung nach ISO 8015



b) Auswirkung auf die Formabweichung

(zulässige Formabweichung bei einer Gleichdickform)

c) vollständige Tolerierung

d) Auswirkung auf die Formabweichung

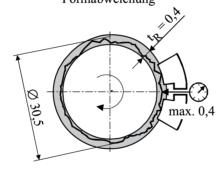


Abb. 10.2: Unvollständige bzw. vollständige Rundheitstolerierung

Formelement	Zeichnung	Beispiele für Maßelemente und Hülle	Default Kriterien
Kreiszylinder (Welle)	Welle	Lehrring mit Höchstmaß GN MMS = Ø20,1	Zweipunktmaß +
Kreiszylinder (Bohrung)	Bohrung Ø20 ± 0,1	Lehrdorn mit Mindestmaß (GX) MMS = Ø19,9	Geradheit Rundheit Zylinderform
Parallelebenen (außen)	Klotz 20 ± 0,1	Parallelebenen mit Höchstmaß GN MMS = 20,1	Zweipunktmaß + Geradheit Ebenheit + Parallelität
Parallelebenen (innen)	Nut, Schlitz 20 ± 0,1	Parallelebenen mit Mindestmaß (GX) MMS = 19,9	

Tabelle 10.1: Darstellung der Hülle für charakteristische Geometrieelemente. Maßtoleranz schränkt die Form- und Parallelitätsabweichung ein.

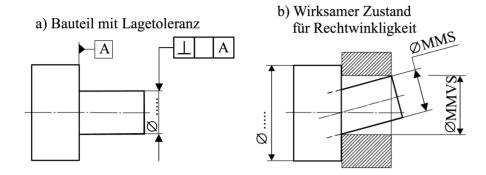
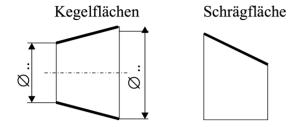



Abb. 10.3: Prüfung der Rechtwinkligkeitsabweichung mit einem Lehrring nach Weinhold

Abb, 10.4: Keine Hülle definiert für Kegel und Schrägen

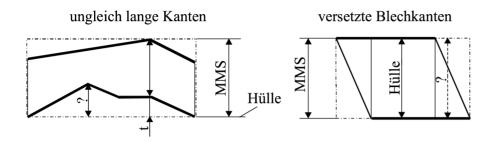


Abb. 10.5: Keine Hülle für ungleich lange und versetzte Kanten

nicht gegenüberliegende Kanten

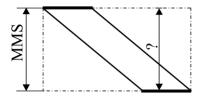


Abb. 10.6: Keine Hülle für nicht gegenüberliegende Kanten

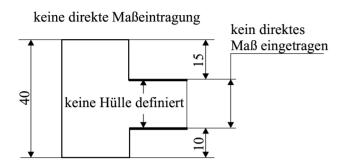


Abb. 10.7: Keine Hülle für nicht direkt bemaßte Kanten

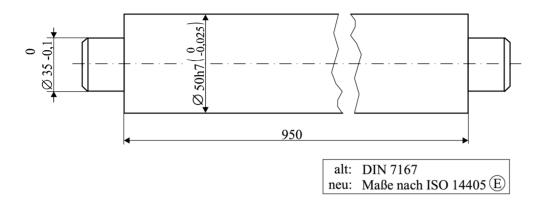


Abb. 10.8: Vermaßte Zeichnung einer Welle für eine "deutsche Fertigungsstätte"

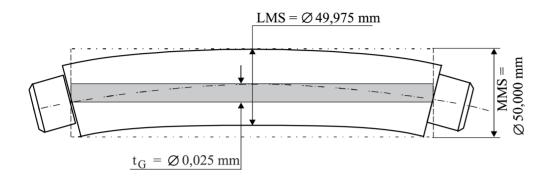


Abb. 10.9: Welle mit zulässiger Formabweichung von der Geradheit gemäß dem Hüllprinzip

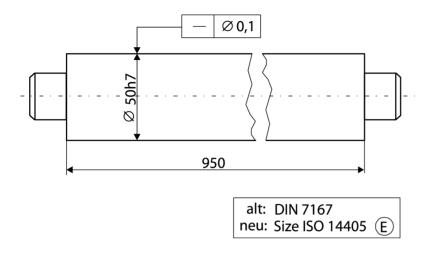
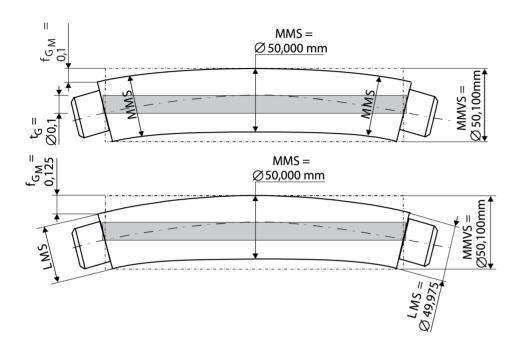
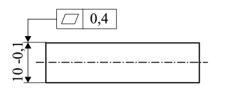
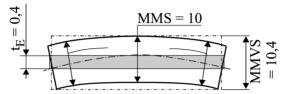
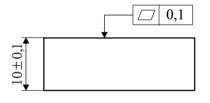


Abb. 10.10: Partielle Aufhebung des Hüllprinzips durch Angabe einer vergrößerten Geradheitstoleranz (Zeichnung der Welle)

 $\frac{\mathsf{DE}}{\mathsf{G}}$


Abb. 10.11: Zulässige Toleranzen bei partieller Aufhebung des Hüllprinzips

a) Tolerierung der Mittelebene wegen Paarungsfähigkeit Zeichnungsdarstellung und zulässige Ausführung (führt zum wirksamen Zustand MMVS)

b) Tolerierung der oberen Fläche keine Paarungsfähigkeit verlangt! (kein wirksamer Zustand definiert, keine Hülle)

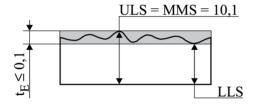
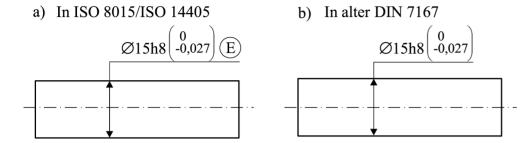
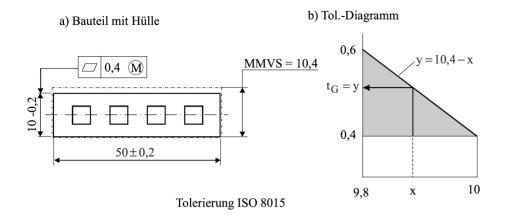




Abb. 10.12: Partielle Aufhebung der Hüllbedingung für Ebenheit bei einem Führungsklotz nach DIN 7167

Abb. 10.13: Festlegung der Hüllbedingung nach den beiden Tolerierungsprinzipien bei einem zylindrischen Geometrieelement mit Passfunktionalität

Abb. 10.14: Beispiel für Maximum-Material-Bedingung (MMR) an einem dünnen Flachstecker a) Festlegung der Hülle, b) Toleranzdiagramm

Korrekte Eintragung von (M) an der Geometrietoleranz

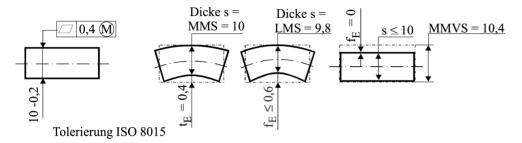
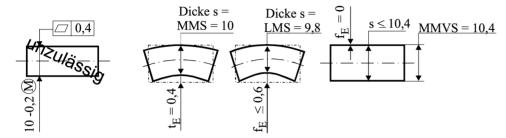
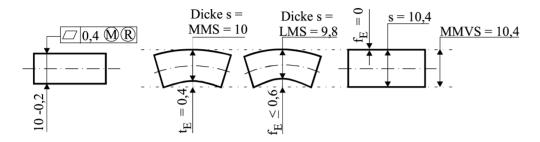



Abb. 10.15: Tolerierung einer Ebenheitstoleranz nach der Maximum-Material-Bedingung und deren praktische Auswirkung


Nicht genormte Eintragung von M an die Maßtoleranz

Tolerierung ISO 8015

Abb. 10.16: Nicht zulässige Eintragung von M an die Maßtoleranz

Schaffung eines Toleranzpools

Tolerierung ISO 8015

Abb. 10.17: Reziprozitätsbedingung und deren Interpretation als Toleranzpool

		Formtoleranzen		Lagetoleranzen					
					[//		lacktriangle	0	=
tol. Ele- ment	Mittellinie	х		х	х	х	х	х	х
	Mittelebene		х	х	х	х	х		х
Be- züge	Mittellinie			х	х	х	х	х	
	Mittelebene			х	х	х	х		х

Abb. 10.18: Anwendung der Maximum-Material-Bedingung nur auf abgeleitete Geometrieelemente

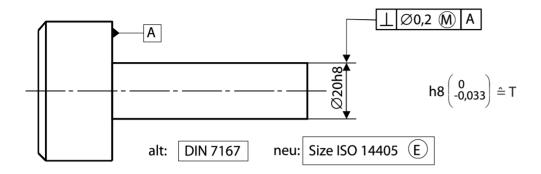
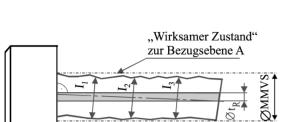
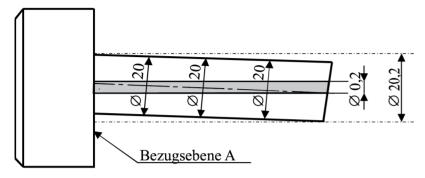



Abb. 10.19: Rechtwinkligkeitstoleranz mit MMB bei aufgehobener "Hüllbedingung"



Bezugsebene A

$\mathbf{I_i}$	=	Örtliche Istmaße 19,967 und 20 MMS = Ø 20 mm
Ø MMVS	=	MMS + L = Ø 20,2 mm
Ø t _R	=	Lagetoleranzzone 0,2 0,233 mm

Abb. 10.20: Begrenzung der Rechtwinkligkeitstoleranz durch den "wirksamen Zustand"

a) minimale Rechtwinkligkeitsbweichungen des Zapfens

b) maximale Rechtwinkligkeitsabweichungen des Zapfens

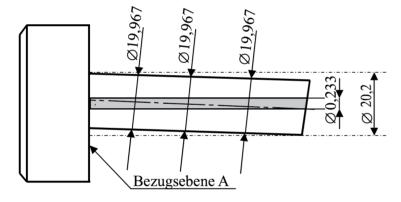


Abb. 10.21: Interpretation der Maß- und Lageabweichung in den Grenzzuständen

Ø MMVS

 \emptyset t_R

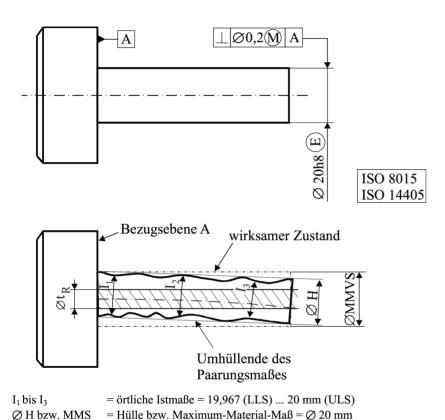


Abb. 10.22: Festlegung einer Hülle für den Zylinder durch die Hüllbedingung (E)

= Richtungstoleranzzone = 0,2 ... 0,233 mm

= wirksames Maß Ø 20,2 mm (Hülle für Rechtwinkligkeit)

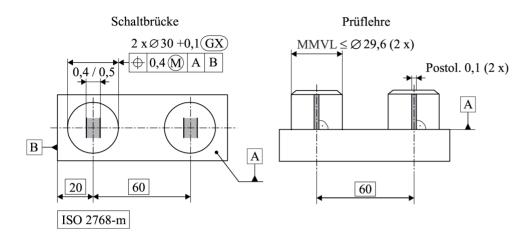


Abb. 10.23: Positionstoleriertes Lochbild und Prüfung mit starrer Lehre

 $\frac{\mathsf{DE}}{\mathsf{G}}$

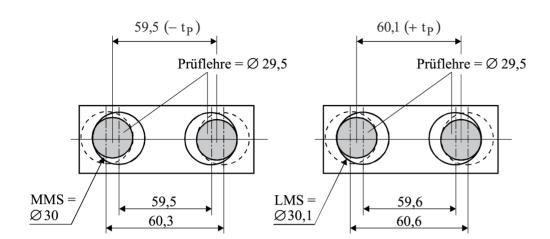
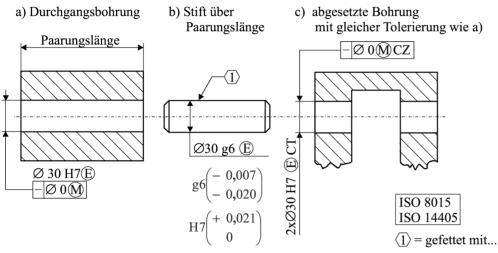
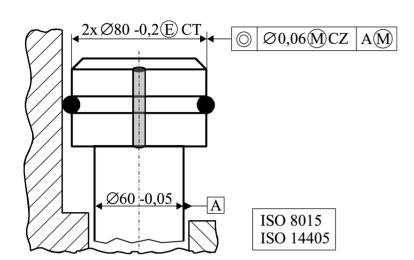
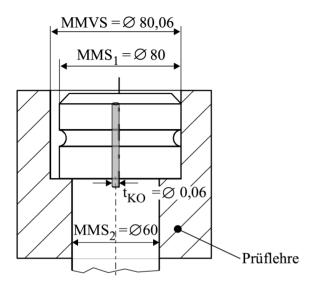


Abb. 10.24: Grenzgestaltprüfung für Bauteil und Lehre


Abb. 10.25: Anwendung des Toleranzwertes "0" in Verbindung mit M

- a) Durchgangsbohrung unterliegt der Hüllbedingung (E)
- b) Prüfdorn für Fall a) und c) mit Symbol "Allgemeine Kennung" nach DIN 30-10
- c) abgesetzte Bohrung (mit unterbrochener Hülle), aber vereinbarter gemeinsamer Toleranzzone (CZ)

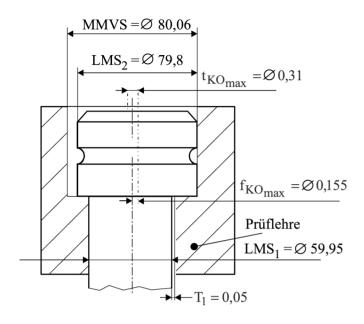
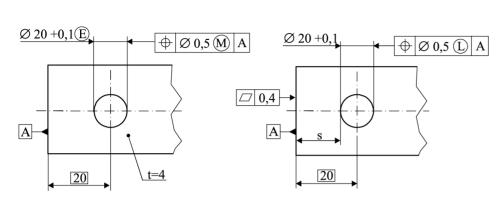
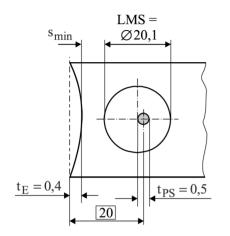
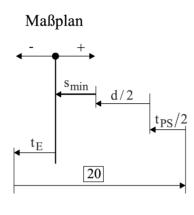


Abb. 10.26: Kolben mit MMB-Bezug (CT = gemeinsame Toleranz, CZ = gemeinsame Tol.-Zone)


 $\frac{\mathsf{DE}}{G}$

Abb, 10.27: Konstruktion der Prüflehre für Bezug mit MMR




Abb, 10.28: Stempel und Kopf mit Minimum-Material-Grenze LMS

- a) Maximum-Material-Bedingung
 (Ziel: Paarungsfähigkeit mit Stift)
- b) Minimum-Material-Bedingung (Ziel: Mindestwandstärke gewährleisten)

Abb. 10.29: Tolerierung nach der MMR und LMR an einem Stanzteil

Abb. 10.30: Situation zur Berechnung der Mindestwandstärke s_{min}

c) Reziprozitätsbedingung

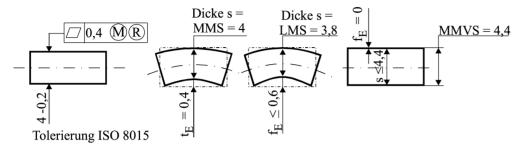


Abb. 10.31: Wirkung der Reziprozitätsbedingung

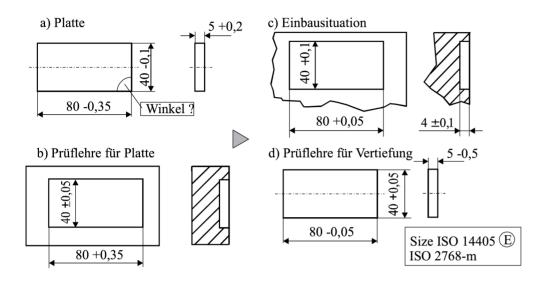


Abb. 10.32: Zu grobe Tolerierung für die Funktion und zur Prüfung mit einer Prüflehre

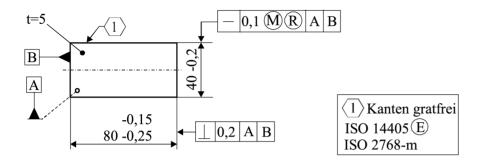
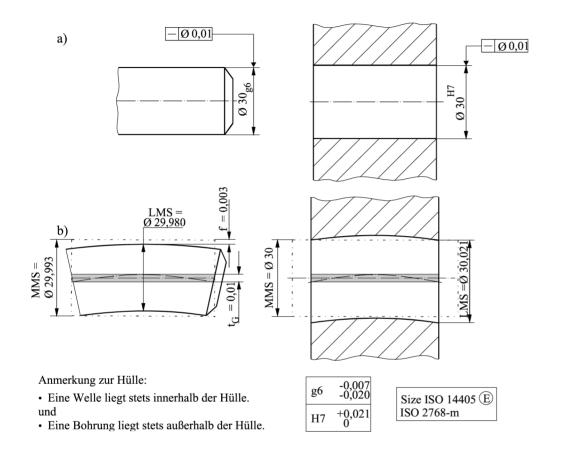



Abb. 10.33: Toleranzangabe nach der Reziprozitätsbedingung

Abb. 10.34: Herstellung einer funktionierenden Spielpassung bei Welle/Bohrung a) Zeichnungsangabe b) Hüllen vom Maximum-Material-Maß (MMS) nach DIN 7167-Prinzip

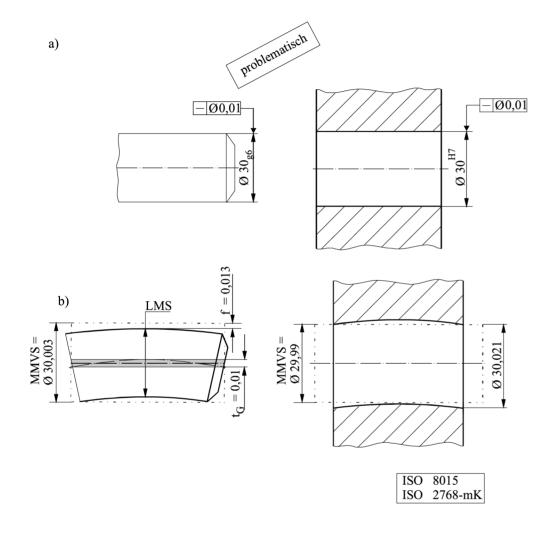


Abb. 10.35: Herstellung einer Spielpassung bei Welle/Bohrung a) Zeichnungsangabe b) Hüllen von MMVS bei ISO 8015

 $\frac{\mathsf{DE}}{G}$

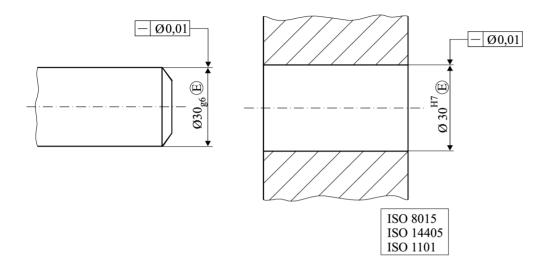


Abb. 10.36: Herstellung einer Spielpassung mit definierter geometrischer Hülle

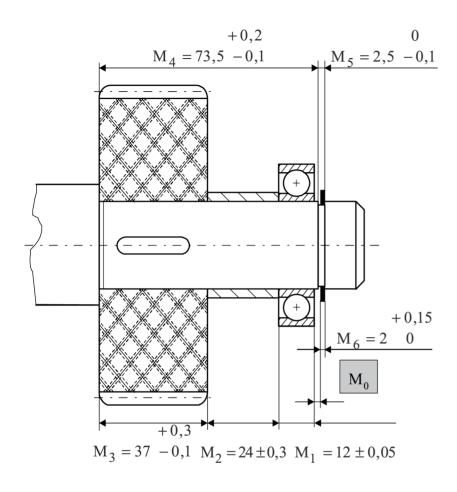


Abb. 11.1: Beispiel zur arithmetischen Berechnung von Maßketten

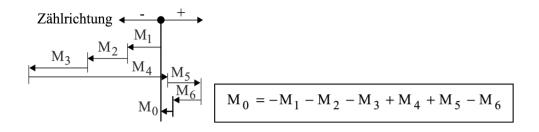


Abb. 11.2: Maßplan der Zahnrad-Einbausituation

Maßrichtung	Bezeichnung	Nennmaß N _i /[mm]	Größtmaß Goi/[mm]	Kleinstmaß G _{ui} /[mm]	Toleranz T _i /[mm]
$-M_1$	Lagerbreite	12,0	12,05	11,95	0,10
$-M_2$	Hülsenbreite	24,0	24,30	23,70	0,60
$-M_3$	Zahnradbreite	37,0	37,30	36,90	0,40
$+ M_4$	Wellenabsatz	73,5	73,70	73,40	0,30
+ M ₅	Nutbreite	2,5	2,50	2,40	0,10
$-M_6$	Sicherungsring	2,0	2,15	2,00	0,15

Tabelle 11.1: Maße für arithmetische Toleranzberechnung

 $\frac{\mathsf{DE}}{\mathsf{G}}$

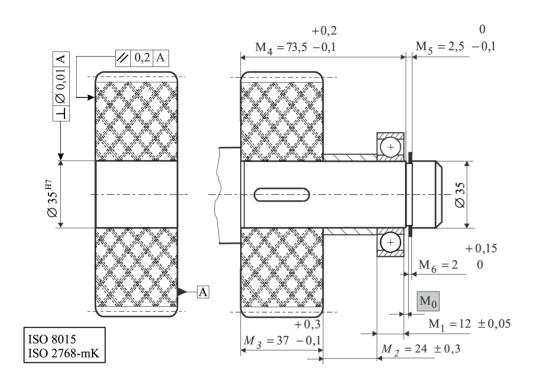


Abb. 11.3: Maß- sowie Form- und Lagebeziehungen in einer Maßkette

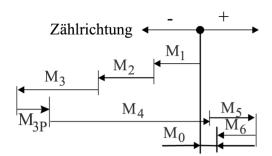
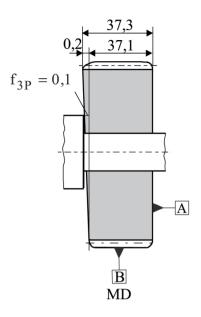
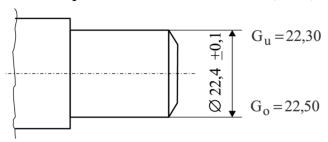


Abb. 11.4: Maßplan für Maßkette mit einer Lagetoleranz




Abb. 11.5: Auswirkung der Formabweichung nach ISO 8015

Richtung	Bezeichnung	Nennmaß N _i /[mm]	Größtmaß Goi/[mm]	Kleinstmaß Gui/[mm]	Toleranz T _i /[mm]
$-\mathbf{M}_1$	Lagerbreite	12,0	12,05	11,95	0,10
$-\mathbf{M}_2$	Hülsenbreite	24,0	24,30	23,70	0,60
$-M_3$	Zahnradbreite	37,0	37,30	36,90	0,40
+ M _{3p}	Parallelitätstoleranz	0	0,2	0	0,2
+ M ₄	Wellenabsatz	73,5	73,70	73,40	0,30
+ M ₅	Nutbreite	2,5	2,50	2,40	0,10
$-\mathbf{M}_{6}$	Sicherungsring	2,0	2,15	2,00	0,15

Tabelle 11.2: Maße der Getriebeeinbau-Situation

Wellenzapfen mit Außendurchmesser $22,4 \pm 0,1 \text{ mm}$

Messwerte (von 50 Wellen)

(Angegeben sind nur die Nachkommastellen)

Nr.	Wert												
1	48	9	40	17	32	25	46	33	52	41	37	49	38
2	37	10	35	18	40	26	41	34	41	42	43	50	43
3	38	11	43	19	39	27	38	35	44	43	45		
4	45	12	42	20	41	28	43	36	45	44	41		
5	43	13	51	21	40	29	35	37	42	45	39		
6	41	14	40	22	38	30	42	38	36	46	42		
7	42	15	39	23	41	31	39	39	38	47	44		
8	36	16	43	24	43	32	41	40	40	48	40		

Ergebnis:

angenommen: 48

verworfen:

2 (grau unterlegt)

Strichliste:

	Klassen	
1	$22,30 \le d \le 22,32$	
2	$22,32 \le d < 22,34$	/
3	$22,34 \le d < 22,36$	//
4	$22,36 \le d \le 22,38$	////
5	$22,38 \le d < 22,40$	///////
6	$22,40 \le d \le 22,42$	///////////////////////////////////////
7	$22,42 \le d \le 22,44$	/////////
8	$22,44 \le d \le 22,46$	////
9	$22,46 \le d \le 22,48$	//
10	$22,48 \le d \le 22,50$	

Anzahl	%
0	0
1	2
2	4
4	8
9	18
14	28
11	22
5	10
2	4
0	0

Mittelwert: $\mu = 22,41 \text{ mm}$

Standardabweichung $\sigma = 0.03 \text{ mm}$

2 Stück = 4 % wurden verworfen.

Daraus ergibt sich die folgende Verteilung:

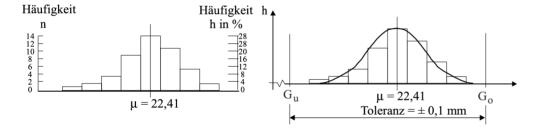


Abb. 11.6: Ermittlung der Häufigkeitsverteilung einer Stichprobe

Tabelle 11.3: Kenngrößenauswertung verschiedener Verteilungen

Art der Ve	erteilung	Varianz σ ² Toleranz T	Simulationsfall
Rechteck- verteilung	$\begin{array}{c c} f(x) \uparrow \\ \hline \\ G_{\cup} & \mu \\ \hline \\ H & T \end{array}$	$\sigma^{2} = \frac{T^{2}}{12}$ $T = 2\sqrt{3} \cdot \sigma$ $= 3,4641 \cdot \sigma$	"Worst Case" oder Simulation eines wandernden Mittelwertes durch Werkzeugverschleiss
Trapez- verteilung	f(x) ↑ T/2 G ₀ μ G ₀ T → I	$\sigma^2 = \frac{10 \cdot T^2}{192}$ $T = 2\sqrt{48/10} \cdot \sigma$ $= 4,3818 \cdot \sigma$	
Trapez- verteilung	f(χ) ↑ T/3 G ₀ μ G ₀ T → H	$\sigma^2 = \frac{13 \cdot T^2}{300}$ $T = 2\sqrt{75/13} \cdot \sigma$ $= 4,8038 \cdot \sigma$	Ergebnisverteilung bei der Faltung oder Simulation eines abgeschwächten Werkzeugverschleißes
Trapez- verteilung	f(x) ↑ T/5 G _υ μ G _ο T H	$\sigma^2 = \frac{T^2}{24}$ $T = 2\sqrt{6} \cdot \sigma$ $= 4,8990 \cdot \sigma$	
Dreieck- verteilung	f(x) G _u µ G _o	$\sigma^2 = \frac{T^2}{24}$ $T = 2\sqrt{6} \cdot \sigma$ $= 4,8990 \cdot \sigma$	Simulation einer Kleinserie
Normal- verteilung	$f(x)$ G_{ν} T G_{σ} G_{σ} G_{σ}	$\sigma^2 = \frac{T^2}{36}$ $T = 2 \cdot 3 \cdot \sigma$ $= 6 \cdot \sigma$ ausserhalb der Toleranz liegen 0,27% der Teile	Simulation einer Großserie z.B. $\pm 3\sigma$ bei $C_{\rm pk}$ = 1

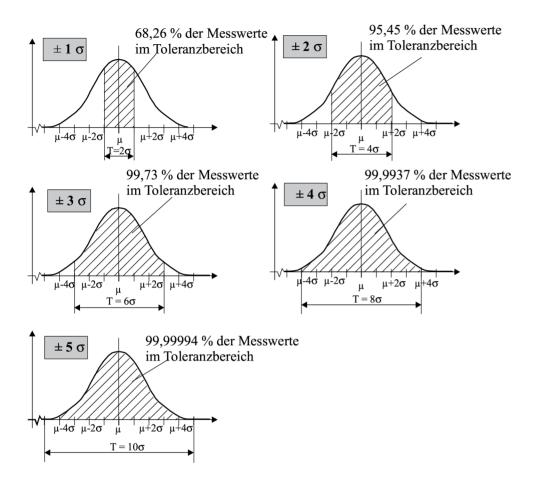


Abb. 11.7: Einschluss von Gutteilen unterhalb der Gauß'schen Verteilung

 $\overset{\text{de}}{G}$

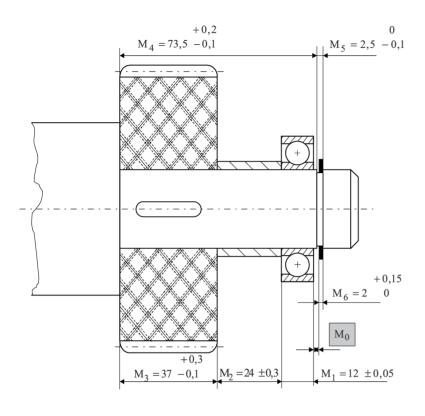


Abb. 11.8: Einbausituation in einem Getriebe

	Bezeichnung	Nennmaß N _i [mm]	Mittelwert μ _i [mm]	Toleranz T _i [mm]	Streuung σ _i [mm]
$-M_1$	Lagerbreite	12,0	12,00	0,1	0,0167
$-M_2$	Hülsenbreite	24,0	24,00	0,6	0,1000
$-\mathbf{M}_3$	Zahnradbreite	37,0	37,10	0,4	0,0667
+ M ₄	Wellenabsatz	73,5	73,55	0,3	0,050
+ M ₅	Nutbreite	2,5	2,45	0,1	0,0167
$-M_6$	Sicherungsring	2,0	2,075	0,15	0,0250

Tabelle 11.4: Maßgrößen für die statistische Toleranzberechnung

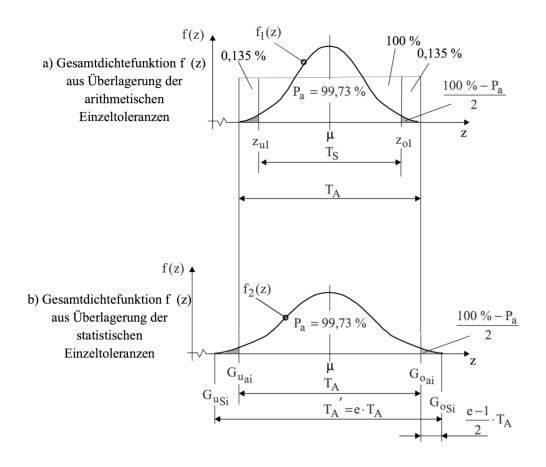
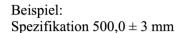
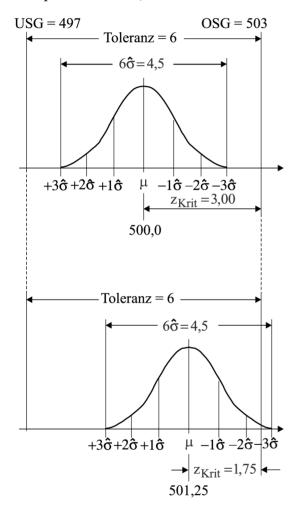


Abb. 11.9: Aufteilung der statistisch ermittelten Toleranzpotenziale

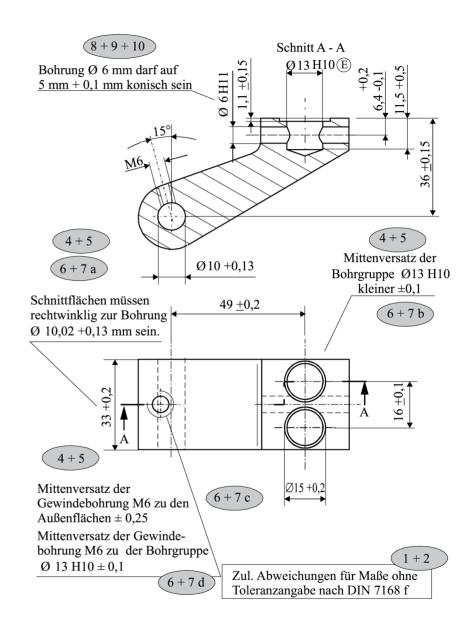
DE —


Maß-Nr:	Größtmaß G _{oi} /[mm]	Kleinstmaß G _{ui} /[mm]	
1	12,05	11,95	
2	24,30	23,70	
3	37,30	36,90	
4	73,70	73,40	
5	2,50	2,40	
6	2,15	2,00	


Tabelle 11.5: Größt- und Kleinstmaße der ersten Auslegung

Statistisch:	Nennmaß	Größtmaß G _{oSi} /[mm]	Kleinstmaß G _{uSi} /[mm]	Toleranz T _i /[mm]
		Lager: Normteil		
1	12,0	12,05	11,95	0,1
2	24,0	24,61	23,39	1,22
3	37,0	37,50	36,69	0,81
4	73,5	73,85	73,25	0,6
5	2,5	2,55	2,35	0,2
		Nutring: Normte	eil	
6	2,4	2,4	2,35	0,05

Tabelle 11.6: Statistische Toleranzberechnung mit gerundeten Maßen



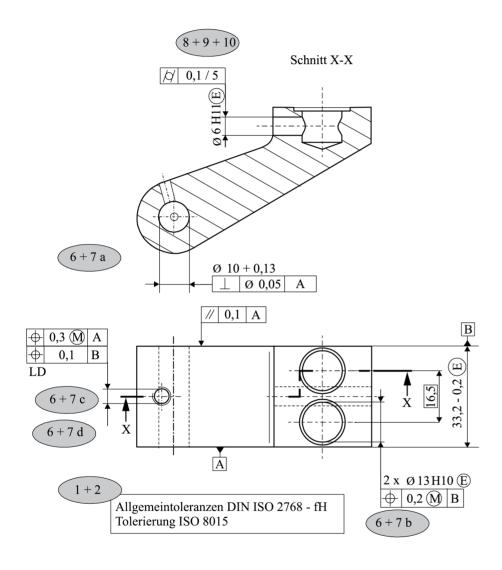

Abb. 11.10: Vergleich von f_p , C_p und C_{pk}

Abb. 12.1: Problempunkte einer gegebenen Fertigungszeichnung

DE G

Abb. 12.2: Schritte zur normgerechten Tolerierung mit F+L-Toleranzen

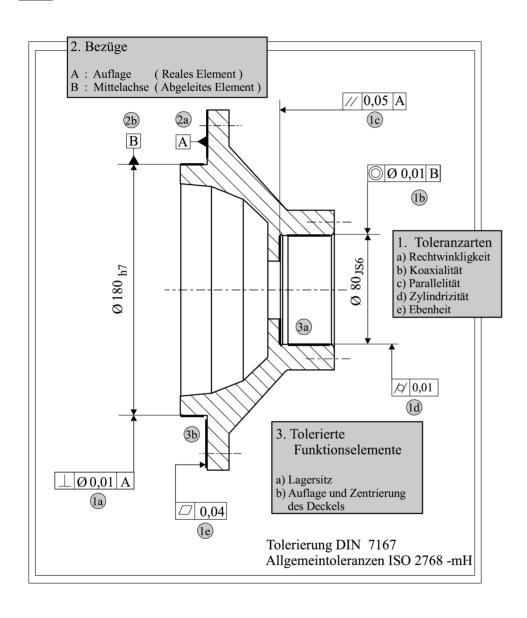


Abb. 12.3: Interpretation von eingetragenen Toleranzen am Beispiel einer Radnabe

Toleranzdesign im Maschinen- und Fahrzeugbau, Bernd Klein ISBN 978-3-11-037344-8 © 2015 Walter de Gruyter GmbH, Berlin/München/Boston

 $\frac{\mathsf{DE}}{\mathsf{G}}$

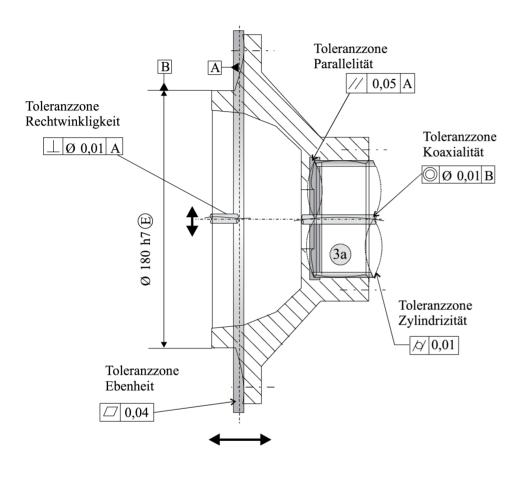


Abb. 12.4: Gehäusedeckel einer Lkw-Radnabe

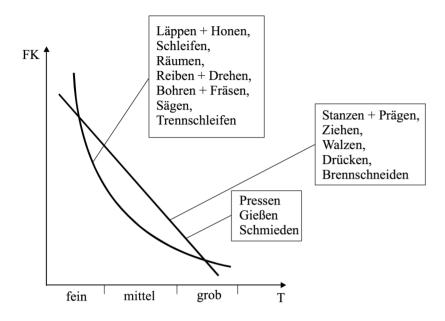


Abb. 12.5: Geglättete Toleranz-Kosten-Kurven

0 1	Relativkostenfaktor (r _{Tol})	Fertigungsverfahren
l l	25,0	Läppen, Honen
in mm)	2,0	Rundschleifen, Fein- bohren + Feindrehen
Toleranz (in mm) -	15,0	Räumen, Feinschleifen
Tol	12,0	Reiben
	9,0	Ausbohren auf Bohrwerk
	7,0	Drehen
	5,0	Bohren, Hobeln
	3,0	Fräsen
	1,0	Sägen, Trennschneiden

Tabelle 12.1: Toleranzabhängige Relativkosten einiger spanender Fertigungsverfahren in der Kleinserie (nach Universität Toledo/Ohio)

	Relativkostenfaktor (r _{Tol})	Fertigungsverfahren
0 T	3,7	Stanzen, Prägen
n mm)	3,0	Ziehen
Toleranz (in mm)	2,3	Walzen
Tole	1,5	Drücken, Kaltschlagen

Tabelle 12.2: Toleranzabhängige Relativkosten einiger Umformverfahren in der Kleinserie (nach ABB)

IT	5	6	7	8	9	10	11	12	13	14
T =	7 i	10 i	16 i	25 i	40 i	64 i	100 i	160 i	250 i	400 i

Tabelle 12.3: Bildung von Toleranzfeldern mit der Toleranzeinheit i nach DIN 7151

 $\frac{\mathsf{DE}}{G}$

Fertigungsverfahren	Rauigkeit	Relativkostenfaktor	
Tertigungsvertum en	Ra (µm)	$ m r_{Ob}$	
Guss, unbearbeitet	12,7	1	
grobe Bearbeitung (z. B. Schruppen)	6,5	3	
normale Bearbeitung (z. B. Schlichten)	3,2	5	
feinere Bearbeitung (z. B. Feinschlichten)	1,7	11	
Schleifen	1,0	18	
Feinschleifen, Honen	0,5	30	

Tabelle 12.4: Oberflächenabhängige Relativkosten (nach GE)

Toleranzabw.	Relativkosten	Toleranzabw.	Relativkosten
(mm)	$\mathbf{r_{Tol}}$	(mm)	\mathbf{r}_{Tol}
± 0,025	14,50	$\pm 0,\!279$	2,30
0,051	11,94	0,305	2,00
0,076	8,95	0,330	1,79
0,102	7,78	0,356	1,66
0,127	6,30	0,380	1,49
0,152	5,02	0,406	1,45
0,177	4,18	0,432	1,34
0,203	3,54	0,457	1,23
0,228	3,00	0,483	1,10
0,254	2,61	0,510	1,00

Tabelle 12.5: Toleranz-Kostentabelle für Drehteile (100 < n < 1.000 Stück)

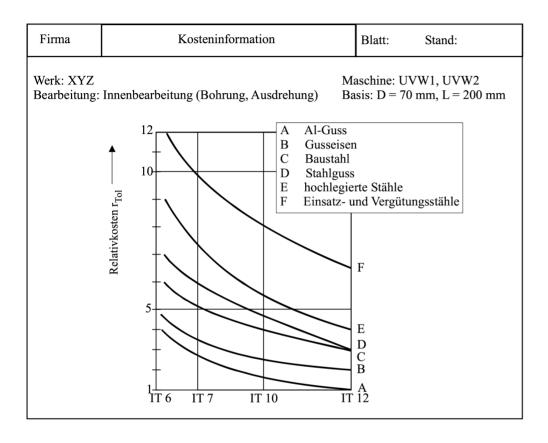


Abb. 12.6: Beispiel für die Gestaltung eines Relativkosten-Arbeitsblattes nach DIN 32991, T. 1

 $\frac{\mathsf{DE}}{\mathsf{G}}$

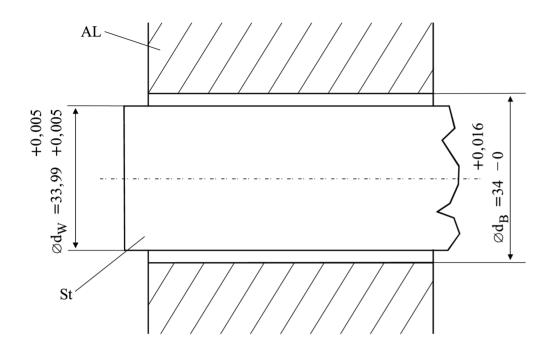
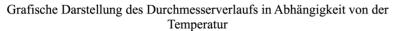



Abb. 13.1: Spielpassung bei einem Schwenkhebellager Al-Nabe mit Stahlwelle

	θ/[K]	$d_{\mathrm{Bu}}/[\mathrm{mm}]$	$d_{Wo}/[mm]$	$M_o/[mm]$
min.	258,15	33,876	33,980	-0,104
Nenn.	293,15	34,000	33,995	0,005
max.	333,15	34,032	34,011	0,021

Tabelle 13.1: Abhängigkeit des Mindestspiels von der Temperatur

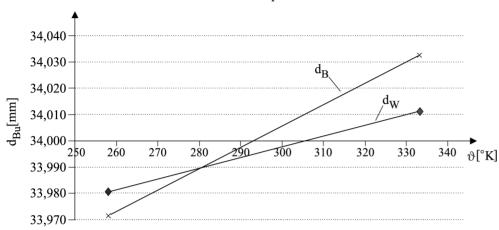


Abb. 13.2: Wellendurchmesser als Funktion der Temperatur

Mindestspiel M₀ als Funktion der Temperatur

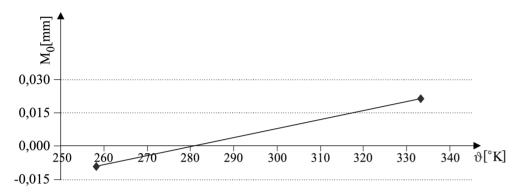


Abb. 13.3: Mindestspiel als Funktion der Temperatur

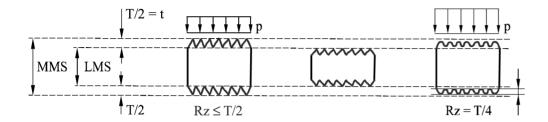
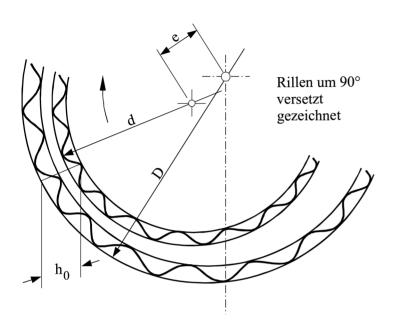
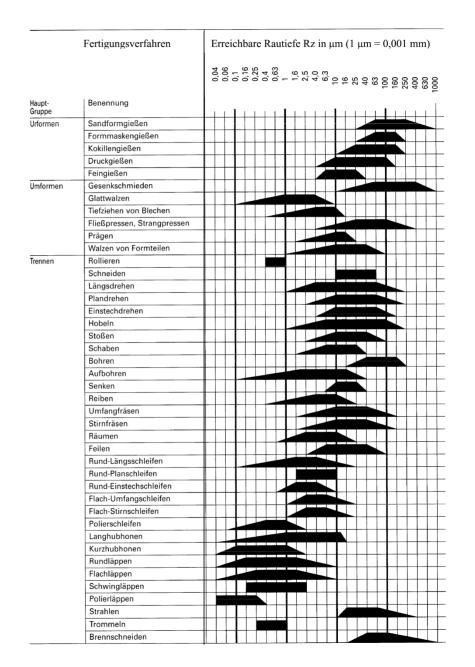


Abb. 14.1: Zusammenhang zwischen Maßtoleranz und größter Rautiefe (Rz) bei einer Passfläche

 $\frac{\mathsf{DE}}{G}$




Abb. 14.2: Geometrie eines Lagerspaltes an der engsten Stelle bei rauen Oberflächen

	technische Oberflächen	größte Rautiefe Rz bzw. Rt
$\overline{}$	Schneidflächen	2–3 μm
.	Press- und Übergangspressflächen	1,5–6 μm
.	Schrumpfpassflächen	10–20 μm
.	Stützflächen	6–30 μm
•	Messflächen	0,4–2,5 μm
.	Haftflächen für Endmaße aus St	0,03–0,06 μm
-	Dichtflächen ohne Dichtung	1,0–13 μm
.	Dichtflächen mit	
	a) bewegter Dichtung	1–6 μm
	b) ruhender Dichtung	6–25 μm
•	Spielpassflächen	3–17 μm
•	Bremsflächen	15–18μm
•	Rollflächen	0,1–2,5μm
-	Wälzflächen	1–60 μm
.	Stoßflächen	0,4–3 μm
·	Spannungsgrenzenflächen	1,5–32 μm

Abb. 14.3: Bereiche für Rautiefen Rz bzw. Rt von Oberflächen

DE G

Abb. 14.4: Erreichbare Rautiefen bei geläufigen Fertigungsverfahren

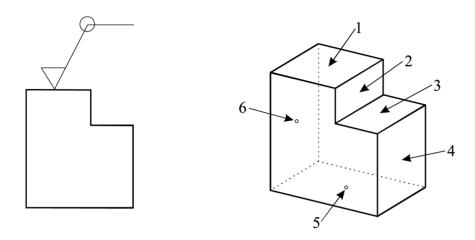
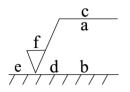

Eaumaigangahaftan	Relationen	Anforderungen an die Paarung		
Formeigenschaften		hoch	mittel	
Passung		H7/g6	H8/F7 oder e8	
Rundheits-/Maßtoleranz	$\frac{t_{K}}{T}$	0,1 0,2	0,25 0,5	
Zylindrizitäts-/Maßtoleranz	$\frac{\mathrm{t_{_{Z}}}}{\mathrm{T}}$	0,2 0,4	0,5 1	
Rauheit/Maßtoleranz	$\frac{Rz}{T}$	0,02 0,06	0,04 0,12	
Rauheit/Rundheitstoleranz	$\frac{Rz}{t_K}$	0,1	0,25	
Rauheit/Zylindrizitätstoleranz	$\frac{Rz}{t_z}$	0,0	5 0,13	

Abb. 14.5: Anhaltswerte und Relationen von Maß-, Form- und Oberflächentoleranzen für zylindrische Gleitflächen


D	E
	_

	Bedeutung: Jedes Fertigungsverfahren ist zulässig	
	Textangabe in Berichten oder Verträgen: APA (Any process allowed)	
	Bedeutung: Materialabtrag gefordert	
	Textangabe in Berichten oder Verträgen: MRR (Material removal required)	
	Bedeutung: Materialabtrag unzulässig	
\bigvee	Textangabe in Berichten oder Verträgen: NMR (No material removed)	

Abb. 14.6: "Vollständige" grafische Symbole nach ISO 1302

Abb. 14.7: Angabe einer Oberflächenanforderung auf die sechs Flächen eines Außenumrisses (vordere und hintere Fläche sind nicht erfasst) nach ISO 26178-1

- a = Oberflächenkenngröße und Zahlenwert (μm)
- b = zweite Anforderung an die Oberfläche (μm)
- c = Fertigungsverfahren
- d = Angabe der Oberflächenrillen
- e = Bearbeitungszugabe (mm)
- f = A für Flächenangabe (n. ISO 25178)

Abb. 14.8: Positionen für die Zusatzanforderungen

	D	E
		7
		_

Anordnungsbeispiele	Textfolge
1. 0,0025 – 0,8/Rz 6,5	Übertragungscharakteristik-Einzelmessstrecke/Oberflächen- kenngröße mit Zahlenwert
20,8/Rz 6,5	(fehlt) – Einzelmessstrecke/Oberflächenkenngröße mit Zahlenwert
3. 0,008 – 0,5/12/R 10	Motivmethode: Übertragungscharakteristik/Wert der Einzelmessstrecke (Wert 16 ist Standard)/
	Oberflächenkenngröße mit Zahlenwert
	Motivmethode wird nur in der französischen Automobil- industrie verwendet

Abb. 14.9: Spezifizierte Anforderungen an die Oberflächenbeschaffenheit

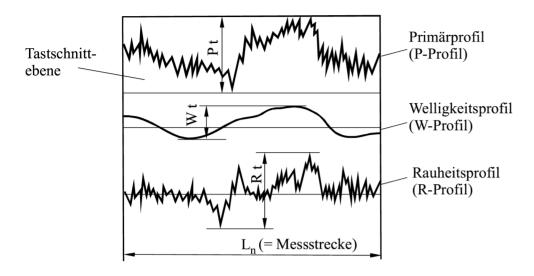


Abb. 14.10: Technische Oberfläche in einem Tastschnitt (senkrecht zur Oberfläche)

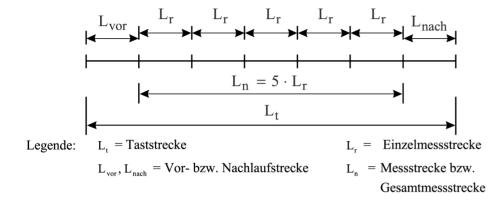


Abb. 14.11: Messtechnische Erfassung und Auswertung des Oberflächenprofils

GE G

Textangabe	Zeichnungsangabe	
MRR Ra 0,7; Rz1 3,3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Angabe: "16-%-Regel"/U = obere bzw. L = untere Grenze		
MRR Ra max 0,7; Rz1 max 3,3	Ramax 0,7 Rz1max 3,3	
Angabe: "max" nach "Höchstwert-Regel"		

Abb. 14.12: Verschlüsselung von Rauheitsanforderungen

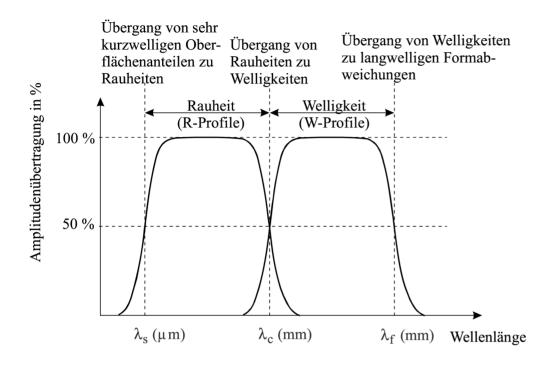


Abb. 14.13: Übertragungscharakteristika oder Bandbreiten für das Rauheits- und Welligkeitsprofil

λ _c (mm)	λ _s (μm)	Bandbreite $\lambda_c : \lambda_s$	maximaler Tastnadel- radius (μm)	minimaler Profilpunkt- abstand (μm)
0,08	2,5	30	2	0,5
0,25	2,5	100	2	0,5
0,80	2,5	300	2	0,5
2,5	8	300	5	1,5
8,0	25	300	10	5

Abb. 14.14: Für Rauheitsmessungen empfohlene Spezifikationen

 $\frac{\text{DE}}{G}$

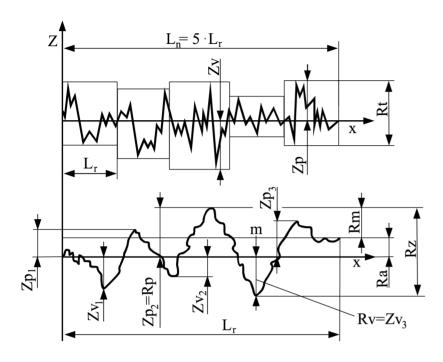


Abb. 14.15: Ermittlung von "Senkrecht-Kenngrößen" an einem Rauheitsprofil

Grunddefinitionen	Benennung
Messstrecke	L _n
Einzelmessstrecke	L_p, L_r, L_w
Ordinatenwert	Z(x)
örtliche Profilsteigung	dZ/dx
Höhe der Profilspitze	Zp
Tiefe des Profiltals	Zv
Höhendifferenz des Profilelements	Zt
Breite des Profilelements	Xs
Materiallänge des Profils auf der Schnitthöhe c	ML(c)

Abb. 14.16: Grunddefinitionen von geometrischen Profilkenngrößen

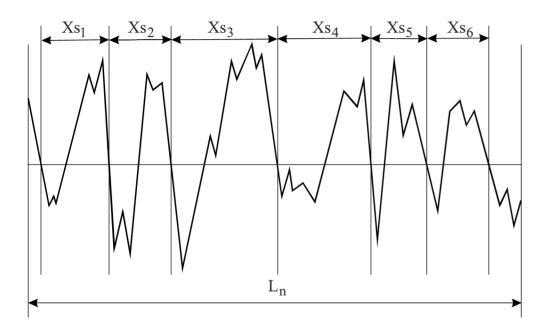


Abb. 14.17: Rillenbreite der Profilelemente

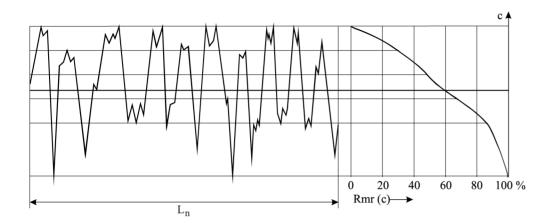


Abb. 14.18: Tragender Materialanteil eines Oberflächenprofils

Kenngrößen	Benennung
Profile allgemein:	
Höhe der größten Profilspitze	Rp
Tiefe des größten Profiltales	Rv
größte Höhendifferenz des Profils	Rz
mittlere Höhe der Profilelemente	Rc
Gesamthöhe des Profils innerhalb der Messstrecke	Rt
Aperiodische Profile (Schleifen, Erodieren, etc.):	
größte Höhendifferenz des Profils	Rz
arithmetischer Mittelwert der Profilordinaten	Ra
quadratischer Mittelwert der Profilordinaten	Rq
Schiefe des Profils	Rsk
Steilheit des Profils	Rku
Periodische Profile (Drehen, Fräsen, Hobeln, etc.):	
mittlere Rillenbreite der Profilelemente	RSm
quadratischer Mittelwert der Profilordinaten	Rq
quadratischer Mittelwert der Profilsteigung	RΔq
Materialanteilkurve des Profils	Rmr(c)
Höhendifferenz zwischen zwei Schnittlinien	RSc
Materialanteil	Rmr

Abb. 14.19: Kenngrößen zur Oberflächenquantifizierung nach ISO 4287

DE G

Symbol	Erläuterung und Bedeutung
Rz 5	Materialabtragende Bearbeitung ist unzulässig, R-Profil, Regelübertragungscharakteristik, einseitig vorgegebene obere Grenze, größte Rautiefe 5 μm innerhalb einer Einzelmessstrecke, Messstrecke aus 5 Einzelmessstrecken, "16-%-Regel"
Rzmax 6,5	Materialabtragende Bearbeitung ist verlangt, R-Profil, Regelübertragungscharakteristik, einseitig vorgegebene obere Grenze mit größter gemittelter Rautiefe 6,5 μm, Messstrecke aus 5 Einzelmessstrecken, "max-Regel"
0,0025 - 0,8 / Ra 2,5	Materialabtragende Bearbeitung ist verlangt, R-Profil, Übertragungscharakteristik: 0,0025–0,8 mm (d. h. $\lambda_s=0,0025$, $\lambda_c=L_r=0,8$), einseitig vorgegebene obere Grenze, Mittenrauwert: 2,5 μ m, Messstrecke aus 5 Einzelmessstrecken, "16-%-Regel"
- 0,8 / Ra3 2,5	Materialabtragende Bearbeitung ist verlangt, R-Profil, Übertragungscharakteristik: Einzelmessstrecke 0,8 mm (λ_s -Regelwert = 0,0025 mm), einseitig vorgegebene obere Grenze, Mittenrauwert: 2,5 μ m, Messstrecke aus 3 Einzelmessstrecken, "16-%-Regel"
0,008 - / Ptmax 20	Materialabtragende Bearbeitung ist verlangt, P-Profil, Übertragungscharakteristik: $\lambda_s=0{,}008$ mm, kein Langwellenfilter λ_c , einseitig vorgegebene obere Grenze für Profil-Gesamthöhe: 20 μm , Messstrecke gleich Werkstücklänge, "max-Regel"

Abb. 14.20: Eintragungsbeispiele in technischen Zeichnungen für Anforderungen an die Oberfläche

Symbol	Erläuterung und Bedeutung	
5 V	Bearbeitungszugabe 5 mm für die gekennzeichnete Oberfläche	
gefräst A	Bearbeitungsangabe für die gekennzeichnete Oberfläche: Materialabtrag durch Fräsen	
M	Alle Bearbeitungsverfahren und mehrfache Richtungen der Oberflächenrillen sind zulässig.	
	Die Oberflächenangabe (Materialabtrag unzulässig) gilt für den gesamten Außenumriss der Ansicht.	

Abb. 14.21: besondere Vereinbarungen zur Oberflächenbearbeitung

$$\begin{array}{c|c}
 & gefräst \\
\hline
A & Ra & 0,8 \\
\hline
\ & Rz1 & 3,0
\end{array}$$

Abb. 14.22: Vereinbarung paralleler Rillenstruktur für eine Oberfläche

D	E
7	7
·	J

Symbole	Vereinbarung	Bedeutung/Eintragung
=	Rillen <i>parallel</i> zur Projektionsebene der Ansicht, auf die das Symbol weist	
	Rillen <i>rechtwinklig</i> zur Projektionsebene, auf die das Symbol weist	
X	Rillen <i>gekreuzt</i> in zwei schrägen Richtungen zur Projektionsebene der Ansicht, auf die das Symbol weist	X
M	Rillen in <i>mehrfachen</i> Richtungen zur Projektionsebene der Ansicht, auf die das Symbol weist	M
С	Rillen annähernd <i>konzentrisch</i> zur Mitte der Oberfläche, auf die das Symbol weist	\sqrt{c}
R	Rillen annähernd <i>radial</i> zur Mitte der Oberfläche, auf die das Symbol weist	\sqrt{R}
P	Nichtrillige Oberfläche darf ungerichtet oder muldig sein	\sqrt{P}

Abb. 14.23: Angabe und Vereinbarung von Oberflächenrillen

	ISO 128	ASME Y14.5M
Maßzahlen	stehen auf der Maßlinie	Die Maßlinie wird für die Maßzahl unterbrochen. (Maßzahl auf Linie ist auch zulässig aber unüblich.)
Maßlinien und Maß- hilfslinien	enden an der Körperkante	Zwischen Linie und Körperkante besteht eine kleine Lücke.
	werden nicht unterbrochen, wenn sie sich schneiden	werden unterbrochen, wenn sie sich schneiden
Hauptleserichtung	gerade oder von links	vom unteren Rand her lesbar (gerade)
Allgemein	DIN ISO 128	Maße sollen immer von unten lesbar sein.
Koordinatenbe- maßung	Maße sollen von unten oder von rechts lesbar sein.	Maße sollen von unten lesbar sein.

Tabelle 15.1: Unterschiede in der Maßeintragung

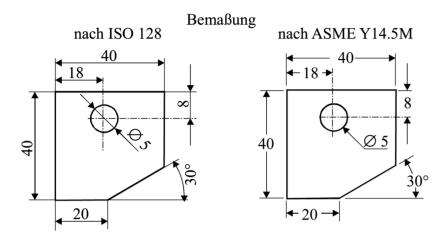


Abb. 15.1: Besonderheiten für die Eintragung von Maßen und Maßpfeilen

	I
Millimeter-Bemaßung	Dezimal-Inch-Bemaßung
Bei Maßen kleiner Millimeter steht	Bei Maßen kleiner ein Inch steht
eine Null vor dem Punkt.	keine Null vor dem Punkt.
0.5 Ø0.5	.20 Ø.25
Der letzten Ziffer rechts vom Dezi-	Die Maßangabe erfolgt mit der glei-
malpunkt folgt keine Null.	chen Anzahl von Ziffern wie die
$\begin{array}{c c} & & & \\ \hline 30^{+0.1}_{-0.1} & & & \\ \hline \end{array}$	Toleranzangabe. Wenn notwendig, werden rechts vom Dezimalpunkt Nullen hinzugefügt.
	30.0 30.1 .650

Tab. 15.2: Unterschiede zwischen Millimeter und Dezimal-Inch-Bemaßung in ASME Y14.5M

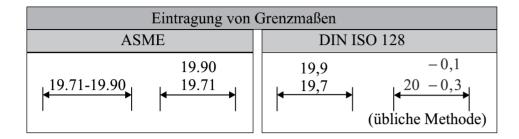


Abb. 15.2: Unterschiede bei der Eintragung von Grenzmaßen

Zeichnungs- eintragung	ASME Y14.5M	DIN 406-10
R 5.0± 0.2	kleinster Radius zulässige 4.8 mm Werkstückkontur größter Radius 5.2 mm Toleranzzone	
CR 5.0± 0.2	kleinster Radius zulässige 4.8 mm Werkstückkontur größter Radius 5.2 mm Toleranzzone	NICHT DEFINIERT

Abb. 15.3: Tolerierung eines Radius mit R und CR

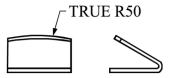


Abb. 15.4: Möglichkeit zur Bemaßung von verzerrten Radien

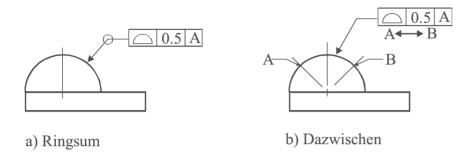


Abb. 15.5: Tolerierungsangabe ALL AROUND und BETWEEN

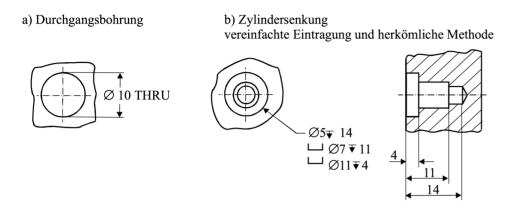


Abb. 15.6: Bemaßung von Durchgangsbohrungen und Bohrungen mit Zylindersenkung

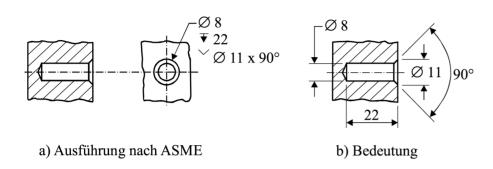


Abb. 15.7: Bemaßung von Bohrungen mit Kegelsenkung

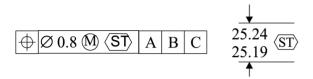


Abb. 15.8: Kennzeichnung von statistischen Toleranzen

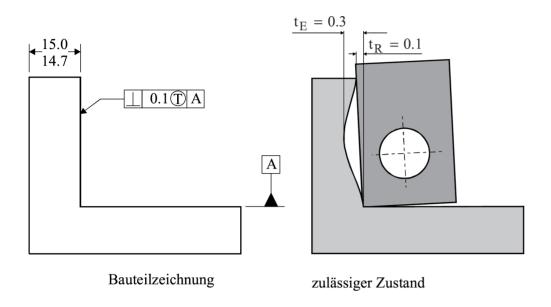
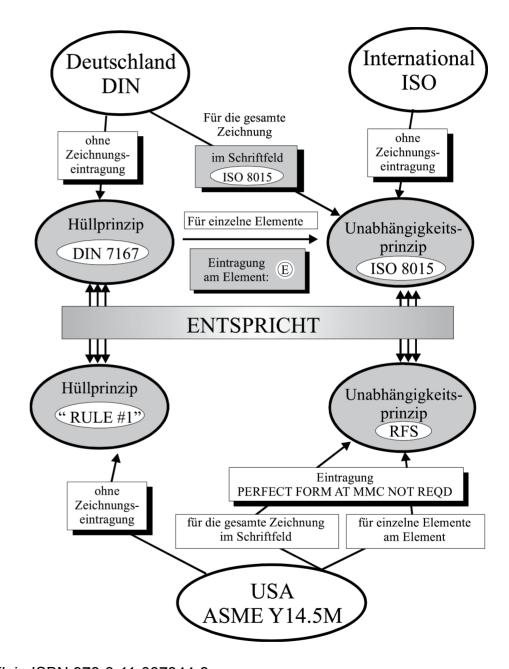
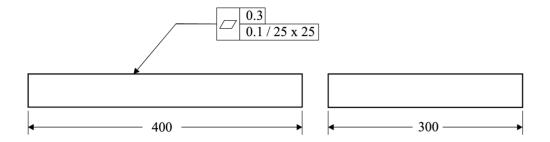



Abb. 15.9: Toleranzangabe einer Tangentenebene und deren Interpretation


Abb. 15.10: Anwendungsbereich der Toleranzprinzipien bis Stand 2011

Begriff	DIN ISO 2692	ASME Y14.5M
Maximum-Material-Zustand (engl.: Maximum-Material-Condition)	MMC	MMC (In ASME Y14.5M wird zwischen
Maximum-Material-Maß (engl.: Maximum-Material-Size)	MMS	MaxMatZustand und MaxMat Maß nicht unterschieden.)
Minimum-Material-Zustand (engl.: Minimum-Material-Condition)	LMC	LMC (In ASME Y14.5M wird zwischen
Minimum-Material-Maß (engl.: Minimum-Material-Size)	LMC	MinMatZustand und MinMat Maß nicht unterschieden.)

Tabelle 15.3: Begriffsdefinition Materialprinzipien

Lage der Toleranzzonen eines Linienelementes

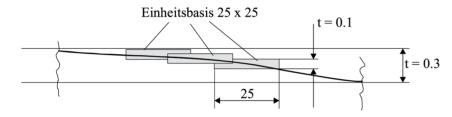
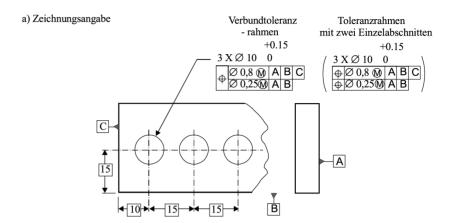
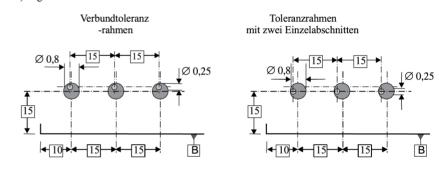
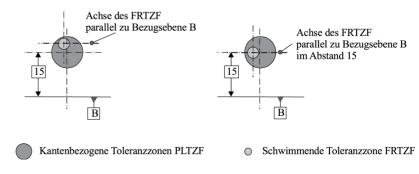



Abb. 15.11: Angabe einer Ebenheitstoleranz auf Einheitsbasis und deren Interpretation

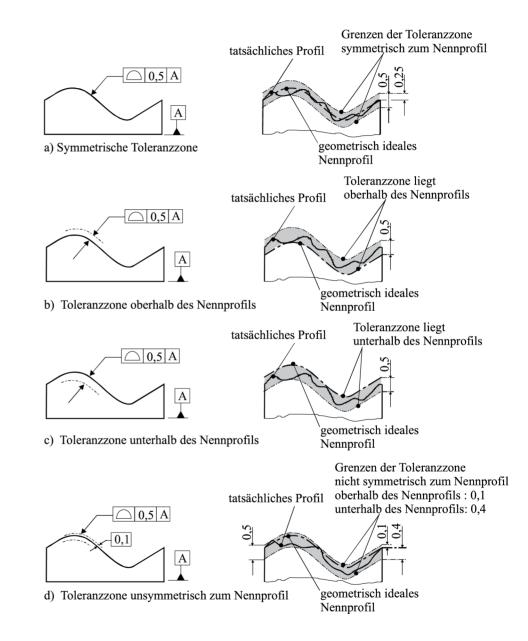


Profiltoleranzen	Positionstoleranzen
DIN ISO 1101 : 2014	DIN EN ISO 5458 : 1999
Form und Lagetolerierung	Form und Lagetolerierung
Kap. 17.10	Positionstolerierung
ASME Y14.5M Kap. 6.5	ASME Y14.5M Kap. 5.3


Abb. 15.12: Verbundtoleranzrahmen/Rahmen mit zwei Einzelabschnitten

b) Lage der Toleranzzonen

c) Lage der Toleranzzone einer Bohrungsachse



Toleranzzonen des schwimmenden Bezugssystems FRTZF				
Verbundtoleranzrahmen		Rahmen mit zwei Einzelabschnitten		
Bezug A	Die Zylinder stehen senkrecht auf Bezugsfläche A.			
Bezug B	Zylinder sind als Gruppe parallel zum Bezug B angeordnet. Das theoretisch genaue Maß 15 muss nicht eingehalten werden.	Zylinder sind als Gruppe parallel zum Bezug B angeordnet. Das theoretisch genaue Maß 15 muss zusätzlich eingehalten werden.		
Bezug C	Da der Bezug C im unteren Teil nicht aufgeführt wird, sind die Toleranzzylinder des FRTZF im Bezug auf C frei verschiebbar. Sie müssen jedoch im Rahmen des kantenbezogenen Bezugssystems PLTZF liegen.			

Tabelle 15.4: Verbundtoleranzrahmen/Rahmen mit zwei Einzelabschnitten

Abb. 15.13: Eintragung von Toleranzzonen bei Profiltoleranzen

Darstellung einer gemeinsamen Toleranzzone

a) nach ASME Y14.5M

a) nach DIN ISO 1101

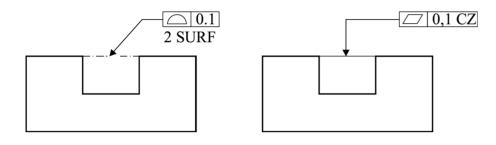


Abb. 15.14: Gemeinsame Toleranzzone

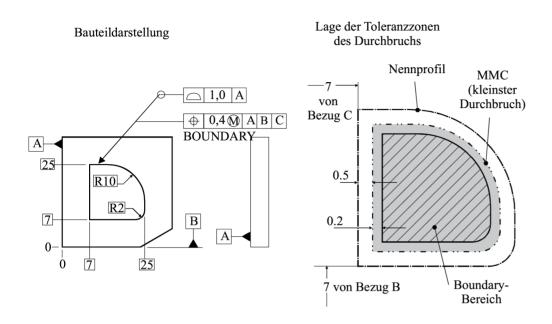


Abb. 15.15: Erweiterung des Maximum-Material-Prinzips durch Profiltolerierung

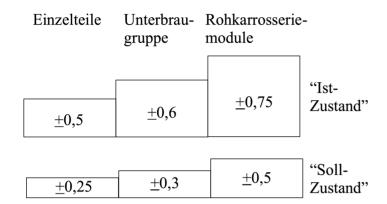


Abb. 16.1: Toleranzspektrum im Automobilbau

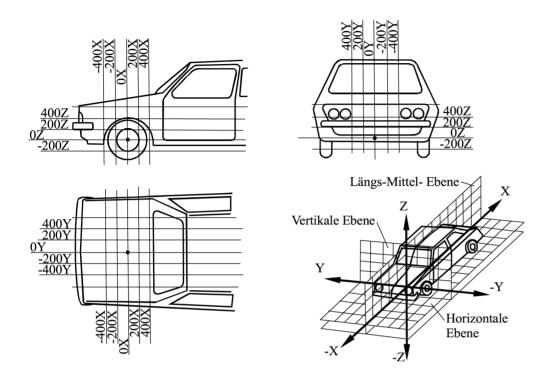


Abb. 16.2: Fahrzeug-Koordinatensystem mit seinen achsparallelen Netzlinien

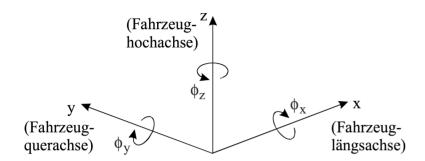
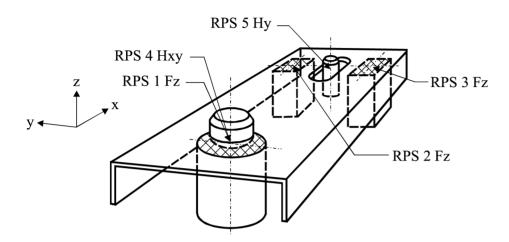



Abb. 16.3: Definition der Freiheitsgrade (FHGs) im 3-D-Raum

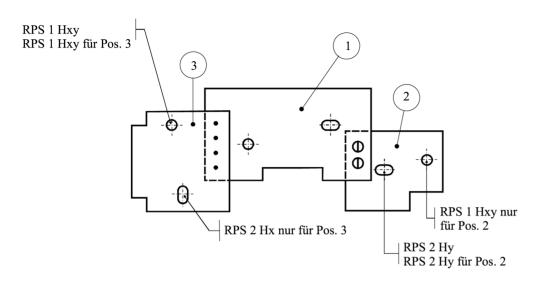


Abb. 16.4: Anwendung der "3-2-1-Regel" am Beispiel (RPS 1 ist immer der Punkt, der die meisten FHGs sperrt.)

D	E
	7
L	J

Haupt-Referenz-Punkte	=	Großbuchstaben	
1 bis 6	\rightarrow	H =	Loch/Stift
1 bis 6	\rightarrow	F =	Fläche/Punkt
1 bis 6	\rightarrow	T =	theoretischer Punkt, wird aus zwei Nebenpunkten gebildet
System starrer Körper (Ge-	=	Großbuchstaben	
lenk oder Verschiebeschlit- ten)			
51 bis 99	\rightarrow	H/F/T	Loch/Stift/Fläche/Punkt
Neben-Referenz-Punkte (fle- xible und nicht eigenständige Teile)	=	Kleinbuchstaben	
ab 101	\rightarrow	h =	Loch/Stift
ab 101	\rightarrow	f=	Fläche/Punkt
21 bis 50	\rightarrow	f/h =	Nebenpunkte aus denen ein T entsteht (Symmetrie)
Fixierungsrichtungen	=	Kleinbuchstaben	
ab 101	\rightarrow	x, y, z	für netzparallele, bauteilorientierte Bezugssysteme
ab 101	\rightarrow	a, b, c	für gedrehte, bauteilorientierte Bezugssysteme

Abb. 16.5: RPS-Symbolik nach VW-Werksnorm

Abb. 16.6: Baugruppen mit RPS-Punkten (Angabe ohne Z-Aufnahme)

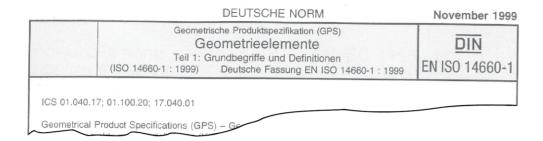


Abb. 17.1: Kopfleiste einer deutschen, europäischen und internationalen GPS-Norm

Globale GPS-Normen

DE

beeinflussen
Matrix allgemeiner GPS-Normen
Allgemeine GPS-Normenketten
Normenkette Maß
Normenkette Abstand
Normenkette Radius
Normenkette Winkel
Normenkette Form einer Linie (bezugsunabhängig)
Normenkette Form einer Linie (bezugsabhängig)
Normenkette Form einer Oberfläche (bezugsunabhängig)
Normenkette Form einer Oberfläche (bezugsabhängig)
Normenkette Richtung
Normenkette Lage
Normenkette Rundlauf
Normenkette Gesamtlauf
Normenkette Bezüge
Normenkette Oberflächenrauheit
Normenkette Oberflächenwelligkeit
Normenkette Grundprofil
Normenkette Oberflächenfehler
Normenkette Kanten
Matrix ergänzender GPS-Normen
Ergänzende GPS-Normenkette
A. Toleranznormen für bestimmte Fertigungsverfahren
A1. Normenkette Spanen
A2. Normenkette Gießen
A3. Normenkette Schweißen
A4. Normenkette Thermoschneiden
A5. Normenkette Kunststoffformen
A6. Normenkette Metallischer und anorganischer Überzug
A7. Normenkette Anstrich
B. Geometrienormen für Maschinenelemente
B1. Normenkette Gewindeteile

GPS-Normen oder verwandte Normen, die verschiedene oder alle GPS-Normenketten behandeln und

Abb. 17.2: Übersicht über GPS-Matrixmodell

B2. Normenkette *Zahnräder* B3. Normenkette *Keilwellen*

Zeichnung (NENN)	hergestelltes Werkstück (WIRKLICH) Messung des We		Werkstückes Zuordnung
, ,	(WIRKLICII)	Litussung	Zuorunung
A	C C	D C	F G
a)	b)	c)	d)

- A vollständiges Nenn-Geometrieelement B abgeleitetes Nenn-Geometrieelement
- C wirkliches Geometrieelement
- D erfasstes vollständiges Geomtrieelement G zugeordnetes abgeleitetes Geometrie-
- E erfasstes abgeleitetes Geometrieelement
- F zugeordnetes vollständiges Geometrieelement
 - element

Abb. 17.3: Erfassung der realen Werkstückgeometrie durch Ableitung von der Nenn-Geometrie

Ket	tengliedernummer	1	2	3	4	5	6
F	geometrische Eigenschaften des Elementes	Angaben der Produkt- dokumenten- Codierung	Definition der Toleran- zen Theoretische Definition und Werte	Definitionen der Eigen- schaften des Istform- elementes oder der Kenngrößen	Ermittlung der Abwei- chungen des Werkstücks Vergleich mit Toleranz- grenzen	Anforder- ungen an Messein- richtungen	Kalibrier- anforder- ungen – Kalibrier- normen
1.	Maß						
2.	Abstand						
3.	Radius						
4.	Winkel (Toleranz in Grad)						
5.	Form einer Linie (bezugs- unabhängig)						
6.	Form einer Linie (bezugsabhängig)						
7.	Form einer Ober- fläche (bezugs- unabhängig)						
8.	Form einer Ober- fläche (bezugs- abhängig)						
9.	Richtung						
10.	Lage						
11.	Rundlauf						
12.	Gesamtlauf						
13.	Bezüge						
14.	Oberflächenrauheit						
15.	Oberflächen- welligkeit						
16.	Grundprofil						
17.	Oberflächenfehler						
18.	Kanten						

Abb. 17.4: Übersicht über das GPS-Matrixmodell

		Ebenheitstoleranzen in mm					
Größte Länge L der zu bear- beitenden Flä- che							
über (mm)	bis (mm)	beim Läppen	beim Schleifen	beim Fräsen	beim Drehen	beim Planieren	
	10	0,002	0,005	0,015	0,020	0,040	
10	25	0,004	0,015	0,030	0,040	0,080	
25	50	0,006	0,030	0,045	0,080	0,160	
50	120	0,010	0,050	0,060	0,120	0,280	
120	250	0,012	0,060	0,070	0,140	0,360	

Größte	Länge	Parallelitätstoleranzen in mm				
	u bear- len Flä-					
über (mm)	bis (mm)	beim Drehen	beim Fräsen	beim Schleifen	bei Pressteilen	
	10	0,03	0,05	0,01	0,040	
10	25	0,05	0,05	0,02	0,080	
25	50	0,10	0,10	0,05	0,160	
50	120	0,10	0,15	0,08	0,280	
120	250	0,15	0,20	0,10	0,360	

Dur mes		Rundheitstoleranzen in mm				nm
über	bis	beim 1	beim Drehen beim Schleit			en
(mm)	(mm)	zwischen im Futter, Spitzen in Zange		zwischen Spitzen	im Futter, in Zange	spitzenlos
	10	0,003	0,005	0,002	0,003	0,003
10	50	0,005	0,015	0,002	0,005	0,005
50	120	0,008	0,030	0,003	0,008	0,008
120	250	0,010	0,050	0,005	0,010	0,010

Größte Länge L der zu bear- beitenden Fläche			Zylinderformtoleranzen in mm			
		für Wellen beim		für Bohrungen beim		
über (mm)	bis (mm)	Drehen Schleifen		Drehen	Schleifen	
	50	0,01	0,003	0,02	0,003	
50	120	0,02	0,005	0,03	0,005	
120	250	0,04	0,008	0,05	0,008	
250	500	0,05	0,010	-	-	

Dur		Planlauf- und Rundlauftoleranzen in mm				
über	bis	beim 1	Drehen	b	eim Schleif	en
(mm)	(mm)	zwischen Spitzen	im Futter, in Zange	zwischen Spitzen	im Futter, in Zange	spitzenlos
	6	0,03	0,05	0,005	0,03	0,03
6	10	0,05	0,08	0,010	0,05	0,05
10	50	0,08	0,10	0,015	0,10	0,10
50	120	0,10	0,15	0,020	0,15	0,15
120	250	0,15	0,20	0,025	0,20	0,20

Toleranzdesign im Maschinen- und Fahrzeugbau, Bernd Klein ISBN 978-3-11-037344-8 © 2015 Walter de Gruyter GmbH, Berlin/München/Boston

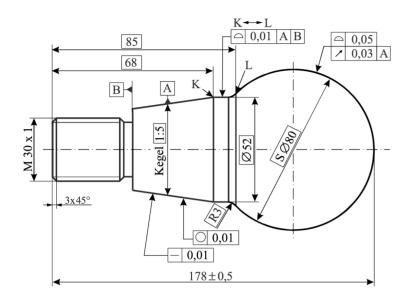


Abb. 20.1: Vermaßter und tolerierter Kugelzapfen mit den wesentlichen Maßen

DE G

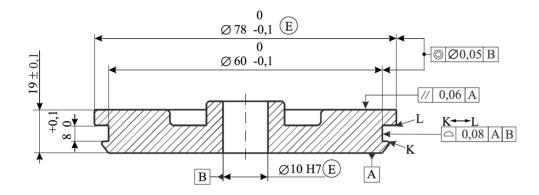


Abb. 20.2: Bemaßter und tolerierter Zylinderkolben mit den wesentlichen Maßen

 $\frac{\text{DE}}{G}$

Abb. 20.3: Bemaßter und tolerierter Laufring mit den wesentlichen Maßen

 $\frac{\mathsf{DE}}{\mathsf{G}}$

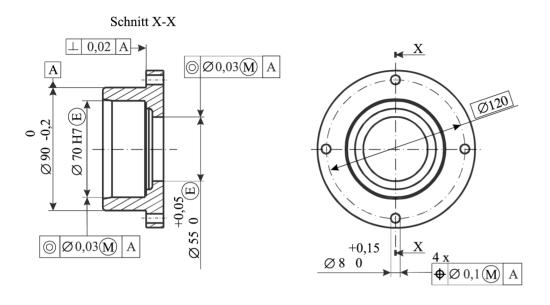


Abb. 20.4: Bemaßter und tolerierter Lagerdeckel mit den wesentlichen Maßen

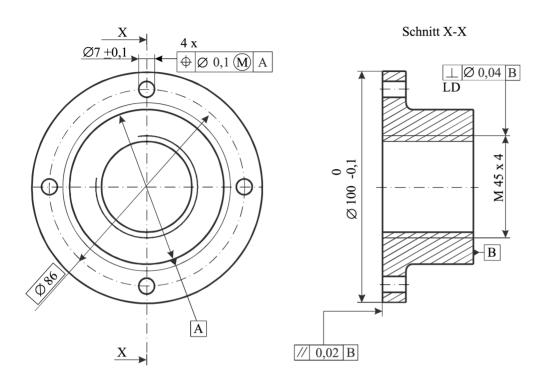


Abb. 20.5: Bemaßter und tolerierter Gewindeflansch mit den wesentlichen Funktionsmaßen

 $\frac{\mathsf{DE}}{\mathsf{G}}$

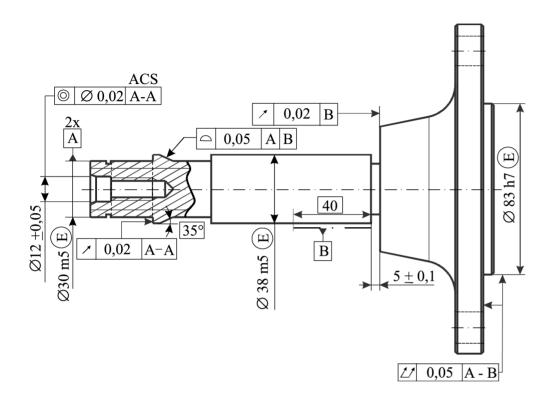


Abb. 20.6: Bemaßte und tolerierte Abtriebswelle mit den wesentlichen Maßen



Abb. 20.7: Bemaßte und tolerierte Mitnehmerwelle mit den wesentlichen Maßen

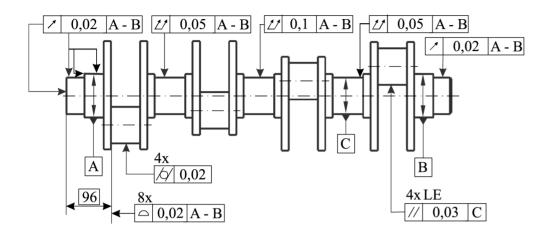


Abb. 20.8: Teilvermaßte und tolerierte Kurbelwelle mit den wesentlichen Maßen

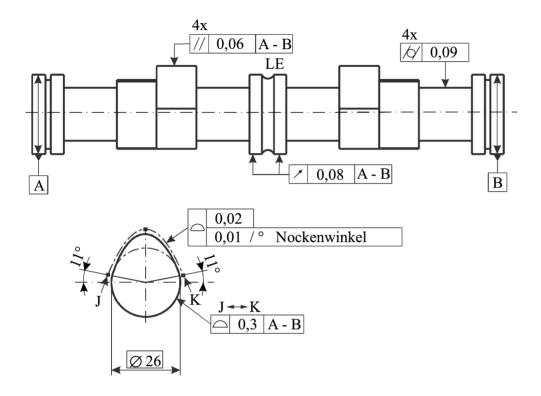
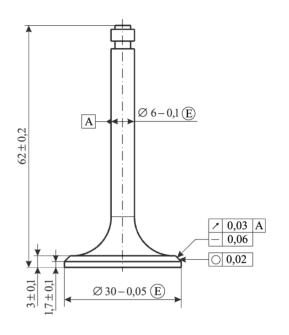



Abb. 20.9: Teilvermaßte und tolerierte Nockenwelle mit den wesentlichen Maßen

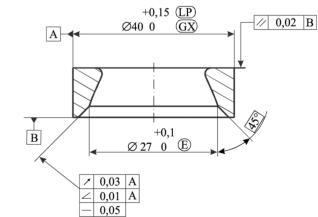


Abb. 20.10: a) Bemaßtes und toleriertes Ventil, b) Bemaßter und tolerierter Ventilsitz

a)

b)

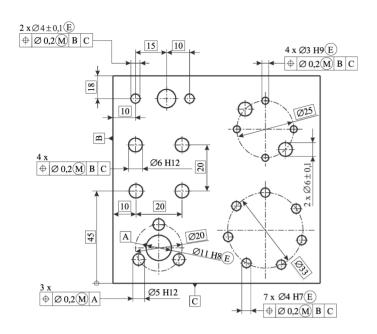


Abb. 20.11: Bemaßte und tolerierte Abdeckplatte mit den wesentlichen Maßen

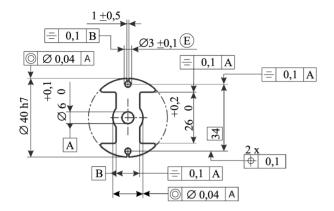


Abb. 20.12: Bemaßtes und toleriertes Rotorblech mit den wesentlichen Maßen

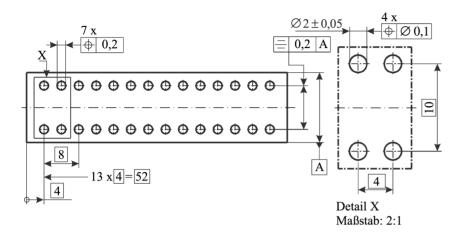


Abb. 20.13: Bemaßte und tolerierte Steckerleiste

Φ

 $\frac{\mathsf{DE}}{\mathsf{G}}$

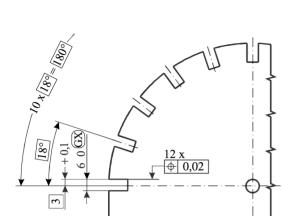


Abb. 20.14: Bemaßte und tolerierte Schaltscheibe nach /DIN 11/

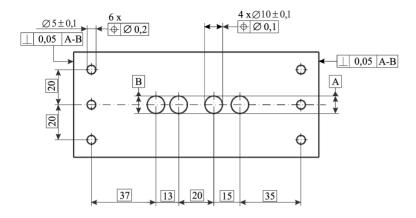


Abb. 20.15: Bemaßte und tolerierte Anschlussplatte nach /DIN 11/

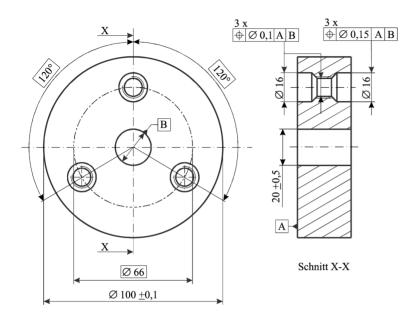


Abb. 20.16: Bemaßte und tolerierte Ausgleichsscheibe nach /DIN 01/

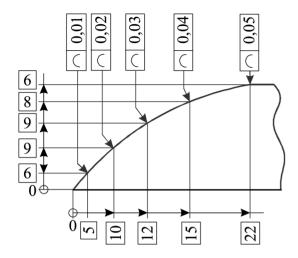


Abb. 20.17a: Tolerierte Freiformfläche

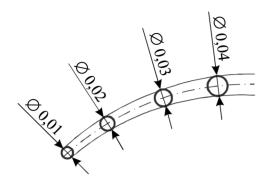


Abb. 20.17b: Veränderliche Toleranzzonen

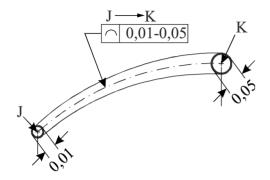
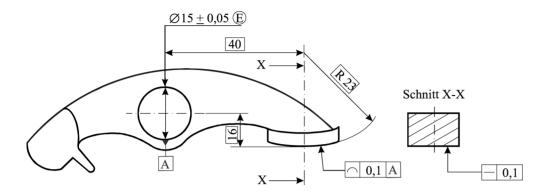
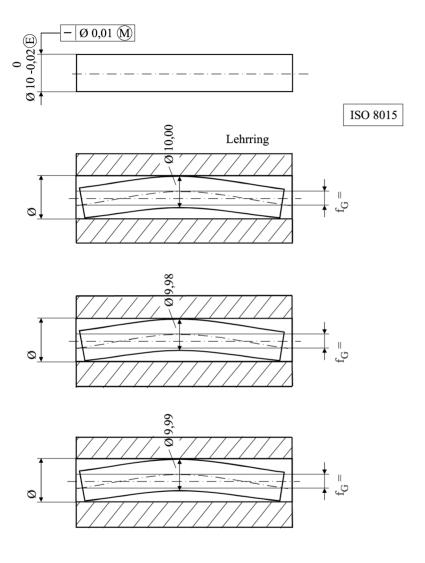
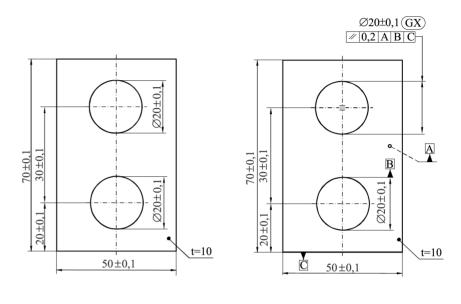



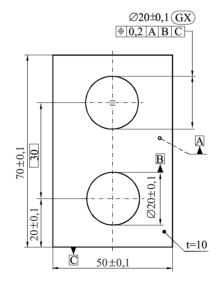
Abb. 20.17c: Alternative Angaben

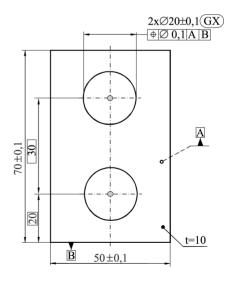
 $\frac{\text{DE}}{G}$

Abb. 20.18: Tolerierung von Kreissegmenten nach /DIN 11/

 $\frac{\mathsf{DE}}{\mathsf{G}}$


Abb. 21.1: Prüfsituation bei der Eingangsprüfung von Bolzen



Fallbeispiel 2

Tolerierung von Lochabständen. Umsetzung verschiedener Prinzipien

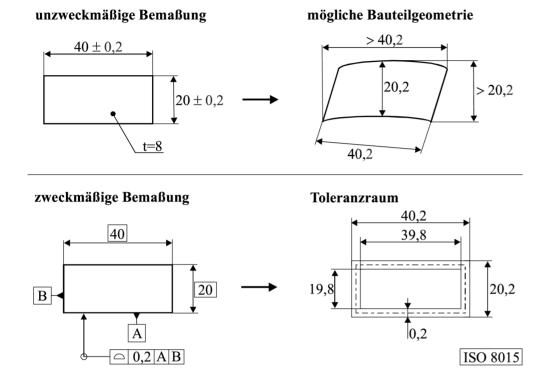
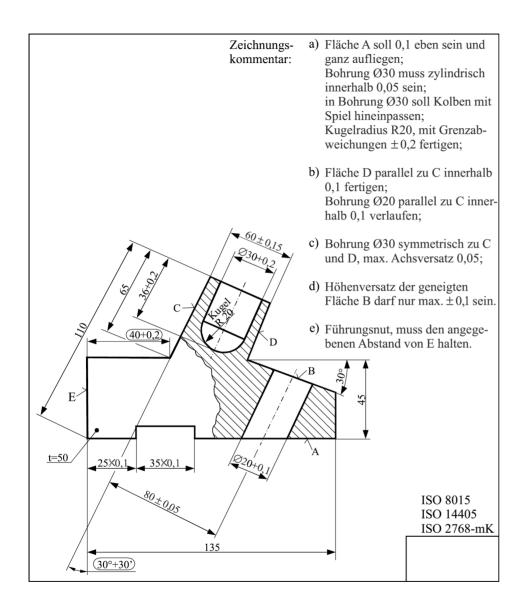
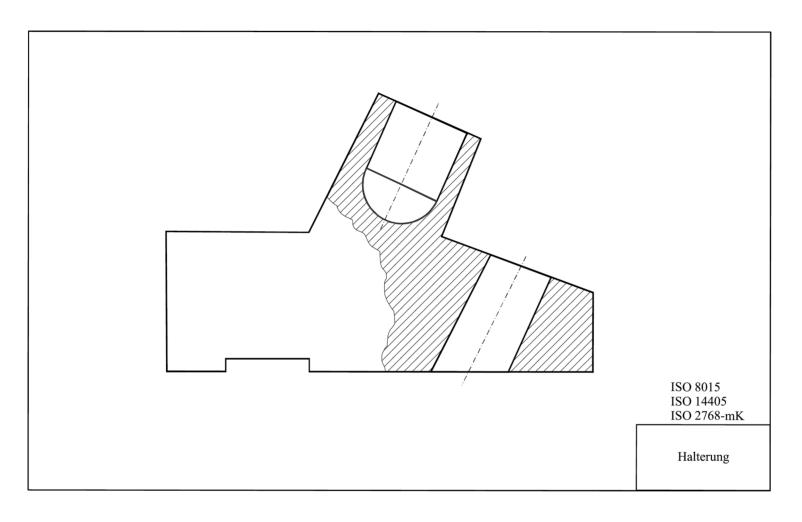
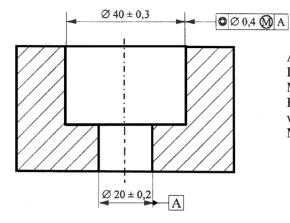




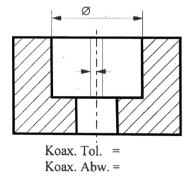
Abb. 21.2: Ersatz einer Plus/Minus-Tolerierung durch eine Flächenformtolerierung

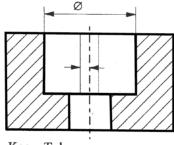
Fallbeispiel 4 (Fortsetzung)



Fallbeispiel 4

DE

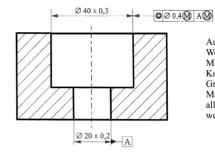

Situation 1: Geometrieelement mit Maximum-Material-Bedingung


Aussage:

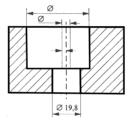
Die Koaxialitätstoleranz gilt beim Maximum-Material-Maß. Die Koaxialität kann vergrößert werden, wenn die Bohrung sich zum Minimum-Material-Maß hinbewegt.

Fall 1: Maximumsituation

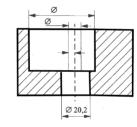
Fall 2: Minimum situation


Koax. Tol. = Koax. Abw. =

Fallbeispiel 5 (Fortsetzung)

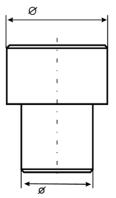

Fallbeispiel 5

Situation 2: Geometrieelement und Bezug mit Maximum-Material-Bedingung

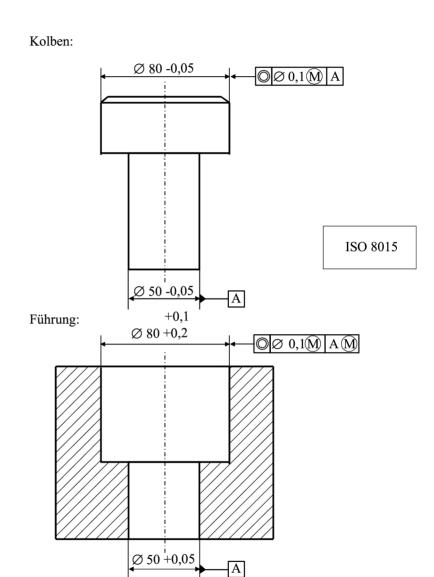


Aussage: Wenn beide Bohrungen Maximal-Material-Maß haben, darf die Koaxialitätstoleranz nur 0,4 sein. Im Grenzfall von Minimum-Material-Maß kann die Koaxialtoleranz um alle mitwirkenden Toleranzen erweitert werden.

Fall 1: Maximumsituation



Fall 2: Minimumsituation


max. Koaxial. Abw. = $\frac{\text{Koaxial. Tol.}}{2} + \frac{\text{Maßtol.} \oslash 40}{2} + \frac{\text{Maßtol.} \oslash 20}{2}$

Stecklehre: Auslegung der beiden Durchmesser einer einfachen gestuften Lehre mit maximal zulässiger Koaxialitätstoleranz:

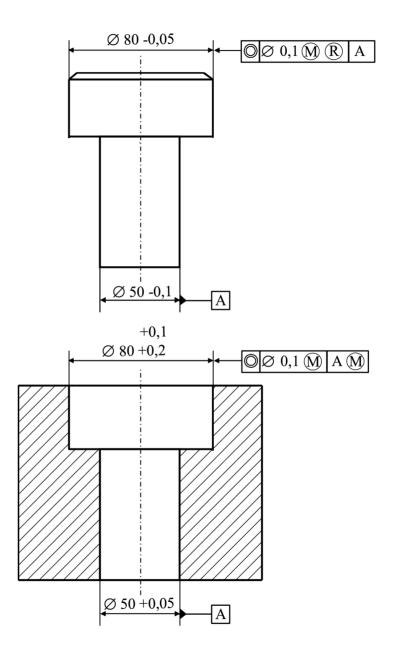
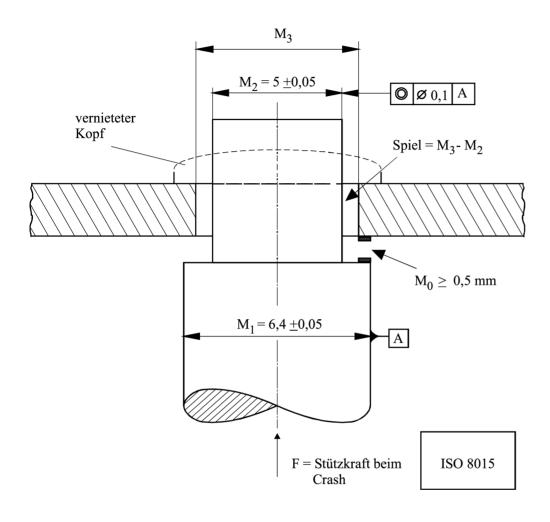
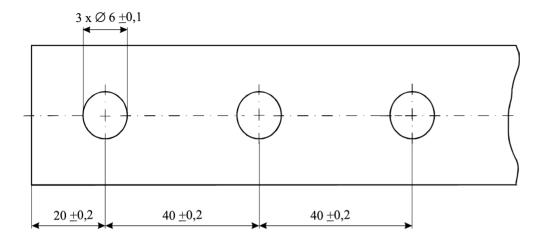
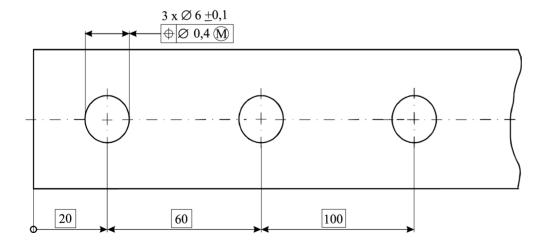


Abb. 21.3: Paarungsfall Kolben/ Führung mit Maximum-Material-Bedingung

 $\frac{d}{G}$

Abb. 21.4: Paarungsfall mit Zusammenwirken von zwei Kompensationsprinzipien


Abb. 21.5: Situation einer "vertaumelten" Zuhaltesperre

Situation 1: Angabe nach der alten Normung

Situation 2: Übertragung der Vermaßung auf neue Normung für die Positionstolerierung (ISO 5458)

Fallbeispiel 7

Toleranzdesign im Maschinen- und Fahrzeugbau, Bernd Klein ISBN 978-3-11-037344-8 © 2015 Walter de Gruyter GmbH, Berlin/München/Boston

 $\overset{\text{de}}{G}$

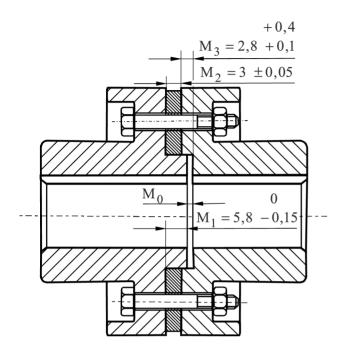


Abb. 21.6: Starre Scheibenkupplung

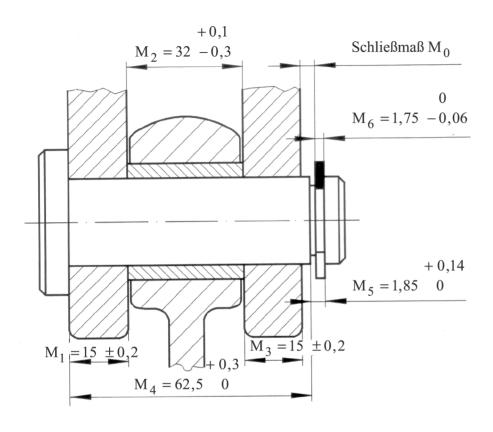


Abb. 21.7: Schwenkgelenk im Roboterarm

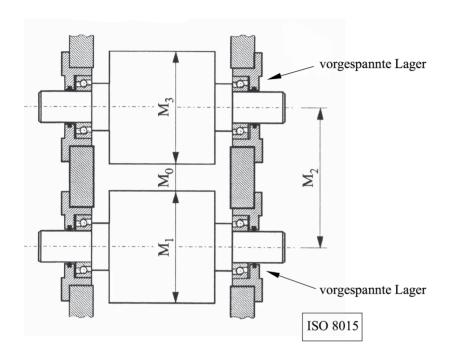


Abb. 21.8: Montagesituation Kalanderwalzstufen

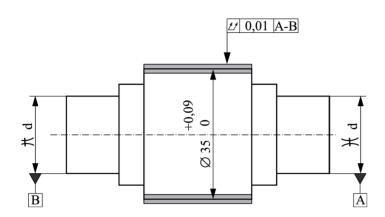
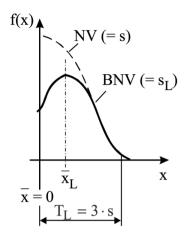



Abb. 21.9: Vermaßte Welle mit "Toleranzzone"

$$\mu_{L} = \frac{3 \cdot T_{L}}{3\sqrt{2\pi}}$$

$$s_{L} = \sqrt{\left(1 - \frac{2}{\pi}\right) \cdot \frac{T_{L}}{3}}$$

Abb. 21.10: Betrachtungsverteilung zur Berücksichtigung der Gesamtlauftoleranz