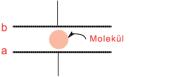
Grundlagen der Organischen Chemie

Joachim Buddrus / Bernd Schmidt ISBN: 978-3-11-030559-3


© 2015 Walter de Gruyter GmbH, Berlin/München/Boston

Abbildungsübersicht / List of Figures Tabellenübersicht / List of Tables

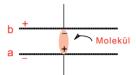
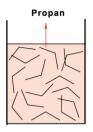
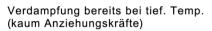
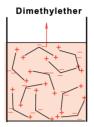

H 2,2						
Li 0,98	Be 1,6	B 2,0	C 2,5	N 3,0	O 3,5	F 4,0
Na 0,93	Mg 1,3	AI 1,6	Si 1,9	P 2,2	S 2,5	CI 3,0
K 0,82						Br 2,8
Rb 0,82						I 2,5
Cs 0,79						

Tabelle. Elektronegativität der Atome nach Pauling (bezogen auf Fluor gleich 4,0)







Anlegen einer Spannung: Im Molekül wird µ_i induziert.

Verdampfung erst bei höh. Temp. (Dipol-Dipol-Anziehungskräfte)

Substituenten mit -I-Effekt	Substituenten mit +I-Effekt
-F > -CI > -Br > -I	—MgХ, —Li
$-CH=CH_2$, C_6H_5-	$-CH_3$, $-C_2H_5$ etc.
—он, —оr	
$-NH_2$, $-NR_2$, $-NO_2$	

Tabelle. Induktive Effekte der wichtigsten Substituenten

 $\frac{\mathsf{DE}}{\mathsf{G}}$

Substituenten mit +M-Effekt	Substituenten mit –M-Effekt
$-\ddot{F}: > -\ddot{C}: > -\ddot{B}r: > -\ddot{I}:$	—BR ₂
−ÖR −NR2	c=o, −c≡n
—CH ₃ , —C₂H ₅ etc.	Ö: , Ö: ∷

Tabelle. Mesomere Effekte der wichtigsten Substituenten

D	E
7	7
L	J

Тур	Geometrie	Beispiele		
AX ₂	linear	H ₃ C—Hg—CH ₃	Cl—Zn—Cl	Cl—Be—Cl
AX ₃	trigonal	F F F	H ₃ C CH ₃	H ₃ C ⊕ CH ₃ C C CH ₃
AX ₄	tetraedrisch	H C H	CH ₃ Si-CH ₃ CH ₃	
AX ₅	trigonal-bipyramidal	F P F		
AX ₆	oktaedrisch	F F F		
AX_2E_2	V-förmig	H.,O,. H	HO. CH ₃	H ₃ C CH ₃
AX ₃ E	trigonal-pyramidal	H H	H₃C NCH₃ CH₃	

Tabelle. Geometrie der Moleküle vom Typ $\mathbf{AX}_{\mathbf{n}}$ und $\mathbf{AX}_{\mathbf{n}}\mathbf{E}_{\mathbf{m}}$

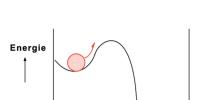

Hybridisierung	räumliche Anordnung	Beispiele
sp	linear	BeCl₂, H—C≡C—H
sp ²	trigonal	CH_3^+ , BF_3 , $H_2C=CH_2$
sp ³	tetraedrisch	CH_4 , $SnCl_4$, $Ni(CO)_4$
dsp ²	quadratisch	Ni(CN) ₄
sp³d	trigonal-bipyramidal	PCI ₅
sp³d²	oktaedrisch	SF ₆

Tabelle. Hybridisierung und räumliche Anordnung

 $\frac{\mathsf{DE}}{G}$

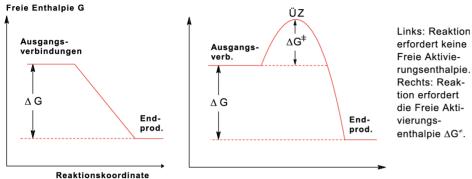
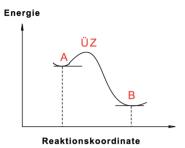
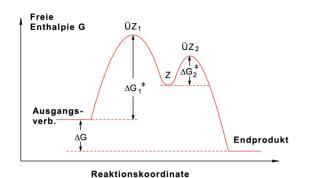
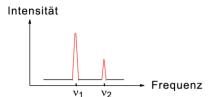

H–H	435	H₃C– <mark>H</mark>	435
H-F	565	H_5C_2-H	410
H-CI	431	$(H_3C)_2CH-H$	398
H–Br	364	$(H_3C)_3C-H$	385
H-I	297	$H_2C=CH-CH_2-H$	368
F-F	155	H ₃ C-CI	352
CI-CI	243	H ₅ C ₂ -CI	339
Br–Br	193	iso-H ₇ C ₃ -Cl	335
I–I	151	tert-H ₉ C ₄ -Cl	331
C-H	405	C-O	360
C-F	452	$C=O$ (in CO_2)	804
C-CI	340	C=O (Ketone)	748
C-Br	285	O-H	465
C-I	222	O–Br	201
C-C	348	O=O	498
C=C	611		
$C \equiv C$	837		

Tabelle. Bindungsenergien von Molekülen (oben) und von Molekülfragmenten (unten) in kJ/mol bei 25 °C

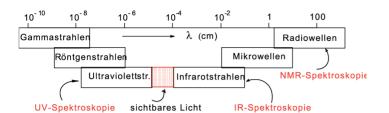


Bewegliche Kugel zur Veranschaulichung des Aktivierungsberges

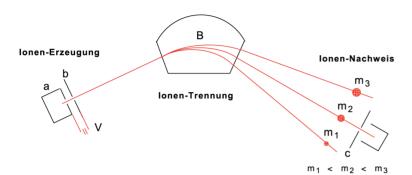




Die Reaktion $A \to B$ ist eine stark exotherme Reaktion, der Übergangszustand ÜZ ähnelt der Ausgangsverbindung A. Die Reaktion $B \to A$ ist dagegen eine stark endotherme Reaktion, der Übergangszustand ähnelt dem Endprodukt, das nunmehr A darstellt.

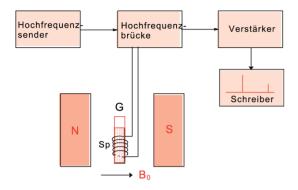


Die Reaktion verläuft über eine Zwischenstufe Z.


Bei den Frequenzen v_1 und v_2 tritt Absorption der elektromagnetischen Welle ein, bei den anderen nicht.

Elektromagnetische Strahlung und Molekülspektroskopie

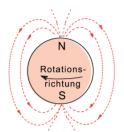
Schematischer Aufbau eines einfach fokussierenden Massenspektrometers mit magnetischer Ablenkung. Zur Bedeutung von a,b,c und B siehe Text.

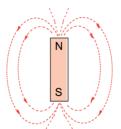

$$m/z = 71$$

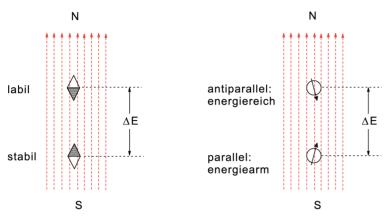
H₃C- \dot{C} H₂

+ \dot{C} H₃
 $m/z = 113$

Abb. Ein roter Pfeil weist auf das jeweilige Spaltprodukt, welches die positive Ladung trägt und damit ein Signal im Massenspektrum liefert.

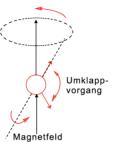

Aufbau eines NMR-Spektrometers

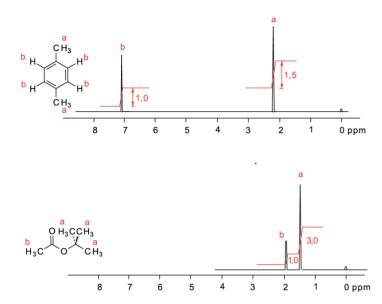

Atomkern ohne Spin: nicht magnetisch (¹²C, ¹⁶O)


Atomkern mit Spin: magnetisch (¹H, ¹³ C)

Stabmagnet

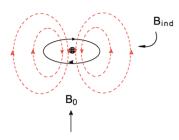
Links: Kompassnadel im Magnetfeld der Erde. Rechts: Proton im Magnetfeld



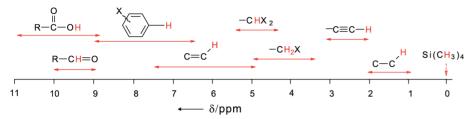


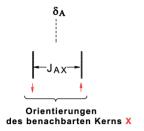
Schwerefeld

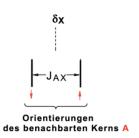
Richtung der Präzessionsbewegung

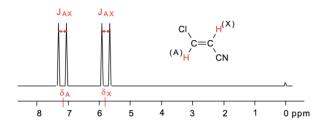


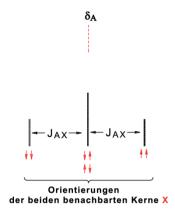
Präzession eines Protons um die Richtung des Magnetfeldes

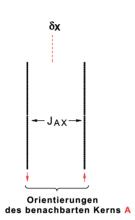

 1 H-NMR-Spektrum von 1,4-Dimethylbenzol (oben) und Essigsäure-tert-butylester (unten). Das Signal bei 0 ppm rührt von der Referenzverbindung (CH $_3$) $_4$ Si her.

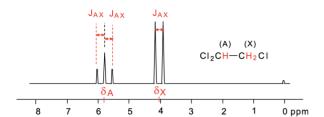



Am Ort des Protons (•) wird B₀ durch B_{ind} geschwächt. (Beachten Sie die an diesem Ort gegenläufigen Feldlinien der beiden Magnetfelder B₀ und B_{ind}.)



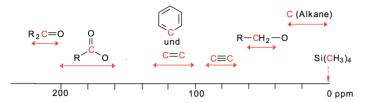

Bereich chemischer Verschiebungen von Protonen (X = CI, Br, OR, NR₂)



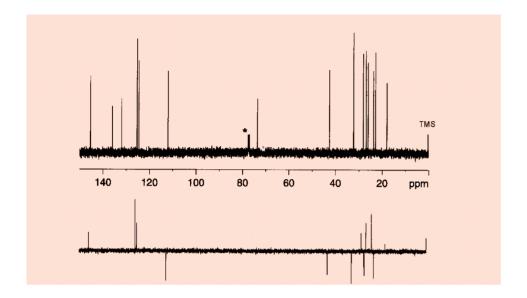


 $^1\text{H-NMR-Spektrum}$ von \textit{trans-}\$\beta\text{-ChloracryInitril}. δ_A und δ_X sind die Mittel der Dublettlinien, J_{AX} ist die Differenz derselben.

 1 H-NMR-Spektrum von 1,1,2-Trichlorethan. δ_A ist identisch mit der Lage des mittleren Signals des Tripletts, δ_X ist das Mittel des Dubletts.


D	E
	7
	_

Anzahl <i>n</i> (äquivalenter) benachbarter Protonen	Anzahl u. Intensität der Signale	Bezeichnung der Multipletts
0	1	Singulett
1	1:1	Dublett
2	1:2:1	Triplett
3	1:3:3:1	Quadruplett
4	1:4:6:4:1	Quintuplett
5	1:5:10:10:5:1	Sextett


Tabelle. Multiplizitäten der Signale

Isotop	natürliche Häufigkeit (%)	Kernsorte (Proton, Neutron)	Kernspinquantenzahl I
¹ H	99,984	u,g	1/2
² H	0,016	u,u	1
¹² C	98,9	g,g	0
¹² C ¹³ C	1,1	g,u	1/2
¹⁴ N	99,6	u,u	1
¹⁵ N	0,4	u,g	1/2
¹⁶ O	99,76	g,g	0
¹⁷ O	0,04	g,u	5/2
¹⁸ O	0,2	g,g	0
¹⁹ F	100	u,g	1/2

Tabelle. Häufigkeit und Spinverhalten einiger Isotope

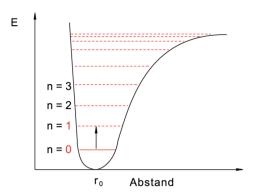
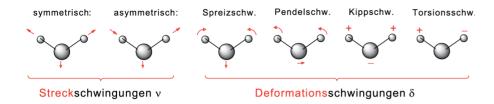

Bereich chemischer Verschiebungen von ¹³C-Kernen

Abb. 13 C-NMR-Spektrum eines Naturstoffs $C_{15}H_{26}O$. Oben: 1 H-entkoppeltes Spektrum. Unten: DEPT-Spektrum. * Signal des Lösungsmittels CDCl₃. TMS = Tetramethylsilan

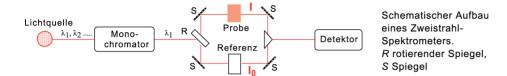

Abbildung. Energiediagramm eines zweiatomigen Moleküls. r_0 = Gleichgewichtsabstand der beiden Atome. Durch Absorption von Strahlungsenergie geht das Molekül vom Grundzustand n = 0 in den Anregungszustand n = 1 über (s. Pfeil).

D	E
(7]

Verbindung	Anzahl der Atome N	Anzahl der Grundschwingungen
H—CI	2	1
CH ₄ (Methan)	5	9
C ₂ H ₆ (Ethan)	8	18
C ₆ H ₆ (Benzol)	12	30

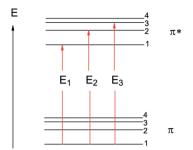
Tabelle. Anzahl der Grundschwingungen in kleinen Molekülen

DE —


C≡C, C≡N

Molekülfragment	IR-Bande in cm ^{−1}
C—H, N—H, O—H	2850 - 3600
C-C, C-N, C-O	800 - 1300
C=C, C=N, C=O	1500 - 1800

Tabelle. Streckschwingungen wichtiger Molekülfragmente


2000 - 2300

Chromophor	Art des Überganges	Wellenlänge (in nm) der absorbierten Strahlung
C—C oder C—H	σ → σ*	~ 150
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	$n \longrightarrow \sigma^*$	~ 175 bis 195
C=C H H H	π → π*	163
H	π → π*	ca. 220
H_3C $C=\ddot{O}$ H_3C	n → π*	~ 300

Tabelle. Chromophor und Wellenlänge der absorbierten Strahlung

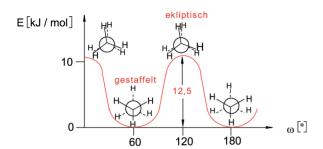
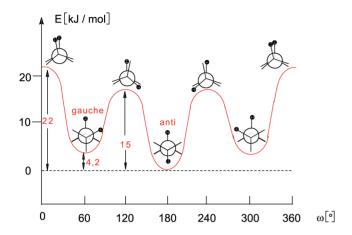
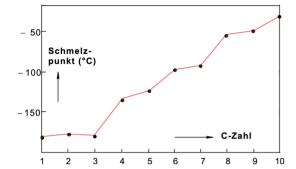
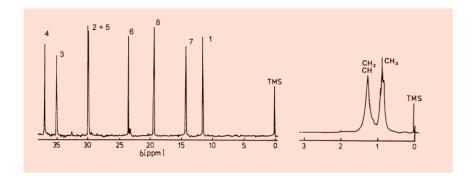


Abbildung. Zur Elektronenanregung $\pi \to \pi^*$ sind die Energiebeträge E_1 , E_2 , E_3 ... erforderlich, da zu einem Elektronenzustand mehrere Schwingungszustände (1, 2, 3 ...) und Rotationszustände (nicht eingezeichnet) gehören.


 $\frac{\mathsf{DE}}{\mathsf{G}}$

n	Struktur	Name	Schmelzpunkt (°C)	Siedepunkt (°C)
1	CH ₄	Methan	- 183	- 162
2	H ₃ C-CH ₃	Ethan	- 172	- 88
3	$H_3C-CH_2-CH_3$	Propan	– 187	- 42
4	$H_3C-CH_2-CH_2-CH_3$	Butan	- 138	0
5	$H_3C-(CH_2)_3-CH_3$	Pentan	- 130	36
6	$H_3C-(CH_2)_4-CH_3$	Hexan	- 95	69
7	$H_3C-(CH_2)_5-CH_3$	Heptan	- 90	98
8	$H_3C-(CH_2)_6-CH_3$	Octan	- 57	126
9	$H_3C-(CH_2)_7-CH_3$	Nonan	- 54	151
10	$H_3C-(CH_2)_8-CH_3$	Decan	- 30	174
11	$H_3C-(CH_2)_9-CH_3$	Undecan	- 26	196
12	$H_3C-(CH_2)_{10}-CH_3$	Dodecan	- 10	216
20	$H_3C-(CH_2)_{18}-CH_3$	Eicosan	36	343
30	$H_3C-(CH_2)_{28}-CH_3$	Triacontan	66	
40	H ₃ C-(CH ₂) ₃₈ -CH ₃	Tetracontan	81	


Tabelle. Geradkettige Alkane

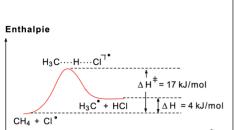


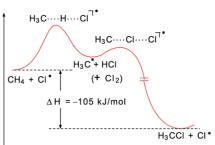
 $\textbf{Abbildung.} \ \ddot{\text{A}} \text{nderung der potentiellen Energie E des Ethans mit dem Diederwinkel } \omega.$

Abbildung. Änderung der potentiellen Energie E des Butans mit dem Diederwinkel ω . Die CH₃-Gruppen sind durch Punkte wiedergegeben.

Abb. ¹³C-NMR-Spektrum (links) und ¹H-NMR-Spektrum (rechts) von 3-Methylheptan. TMS = Tetramethylsilan (Bezugsverbindung)

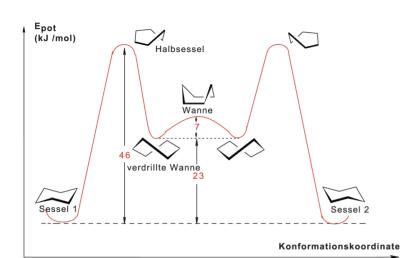
Abbildung. Einteilung von C-Atomen (oben) und H-Atomen (unten) in primär (p), sekundär (s), tertiär (t) und quartär (q).

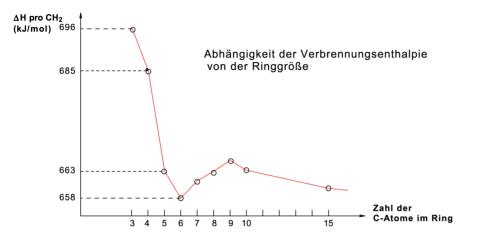

X.	RCH ₂ —H	R₂CH—H	R ₃ C—H
F.	1	1,2	1,4
CI.	1	3,7	5,0
Br '	1	72	890


Rel. Reaktivitäten prim., sek. und tert. H-Atome gegenüber Halogenradikalen

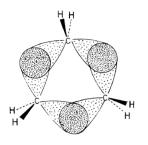
 $\frac{\mathsf{DE}}{G}$

		F ₂	Cl ₂	Br ₂	l ₂
CH ₃ —H + · X	——→ CH ₃ + H—X	-130	+4	+ 71	+ 138
CH ₃ · + X—X	——► CH ₃ —X + X	-297	-109	- 92	- 71
Summe: CH ₃ —H + X—X	——→ CH ₃ —X + H—X	- 427	-105	- 21	+ 67

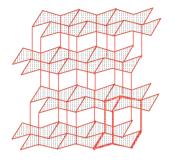

Tabelle. Reaktionsenthalpien ΔH (kJ/mol) der Halogenierung von Methan (berechnet aus den Bindungsenergien)



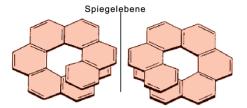
Anzahl der C-Atome	Bezeichnung
3,4	kleine Ringe
5,6,7	normale Ringe
8,9,10,11	mittelgroße Ringe
12,13 usw.	große Ringe

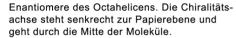


Energieprofil: Umwandlung der Konformeren von Cyclohexan

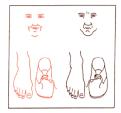

Gebogene Bindungen im Cyclopropanring. Links: Modell von Cyclopropan. Rechts: Röntgenkristallstruktur von cis-1,2,3-Tricyanocyclopropan. (Nach A. Hartman et al., Acta Crys. 1966, Copyright)

Überlappung stärker

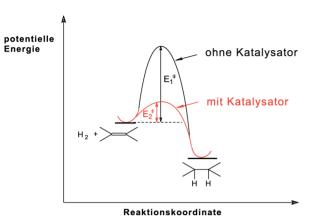

Überlappung schwächer



Ausschnitt aus dem Diamantgitter. Das Gitter enthält viele Cyclohexan- und viele Adamantanringe (einer davon fett hervorgehoben).



Linksgängige und rechtsgängige Helix als Enantiomerenpaar. Die Chiralitätsachse verläuft durch die Mitte der Windungen.



ם	E
(- 7 T

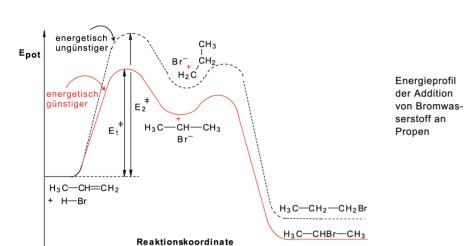

Konstitution	Name (Trivialname)	Siedepunkt (in °C)
$H_2C = CH_2$	Ethen (Ethylen)	- 104
	Propen (Propylen)	- 47
	1-Buten	- 6,5
	(<i>Z</i>)-2-Buten	3,7
	(<i>E</i>)- 2-Buten	1
	2-Methylpropen	- 6,6
	1-Penten	30
	2-Methyl-1-buten	31
	3-Methyl-1-buten	20
	Cyclopropen (unbeständig)	- 36
	Cyclobuten	2
	Cyclopenten	44
	(Z)-Cyclodecen	235

Tabelle. Alkene und Cycloalkene

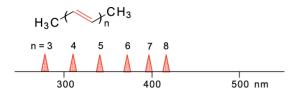
Herabsetzung der Aktivierungsenergie der Hydrierung von E_1^{\ddagger} auf E_2^{\ddagger} durch einen Katalysator

 $\frac{\mathsf{DE}}{\mathsf{G}}$

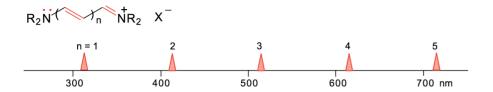
Konstitution	Name	Schmp. °C	Sdp.°C
H—C≡C—H	Ethin (Acetylen)		-85
H— <mark>C≡C</mark> —CH ₃	Propin	-101	-23
$H - C \equiv C - CH_2 - CH_3$	1-Butin	-125	9
H ₃ C— <mark>C≡C</mark> —CH ₃	2-Butin	-32	27
$H-C \equiv C-CH_2-CH_2-CH_3$	1-Pentin	-98	40
H_3C — C \equiv C — CH_2 — CH_3	2-Pentin	-101	55
$H - C \equiv C - (CH_2)_3 - CH_3$	1-Hexin	-132	71
$H - C \equiv C - C(CH_3)_3$	3,3-Dimethyl-1-butin	-81	38
$H - C \equiv C - (CH_2)_4 - CH_3$	1-Heptin	-80	100
$H-C \equiv C-(CH_2)_5-CH_3$	1-Octin	-70	126
$H-C \equiv C-(CH_2)_6-CH_3$	1-Nonin	-65	151
$H-C \equiv C-(CH_2)_7-CH_3$	1-Decin	-35	182

Tabelle. Alkine

	Н₃С—СН₃	H ₂ C=CH ₂	н—с≡с—н
Hybridisierung des Kohlenstoffatoms	sp³	sp²	sp
s-Anteil	25 %	33 %	50 %
Elektronegativität des Kohlenstoffatoms* (Fluor = 4.0)	2.5	2.75	3.1
pK _a -Werte (bezogen auf Wasser)	50	36	25
* hergeleitet aus den Atomradien der C-Atome in Ethan, Ethen oder Ethin			

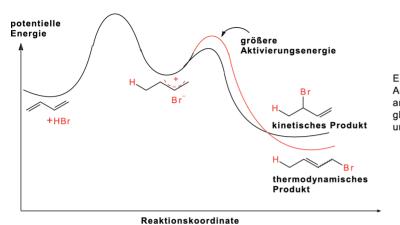

Tabelle. Hybridisierung, Elektronegativität und Aciditätskonstanten von Ethan, Ethylen und Acetylen

Konstitution	Name	Siedep.(°C)	$\lambda_{ extsf{max}}$ (nm) (ϵ)
$(H_2C = CH_2)$	(Ethen)	(-104)	(163) (16000)
$H_2C = C = CH_2$	Propadien (Allen)	-34	
///	1,3-Butadien	-4,5	217 (21000)
	2-Methyl-1,3-butadien (Isopren)	34	222 (10800)
CI	2-Chlor-1,3-butadien (Chloropren)	59,5	
	(Z)-1,3,5-Hexatrien	78	
	(<i>E</i>)-1,3,5-Hexatrien	78,5	268 (36300)
	(<i>E,E</i>)-1,3,5,7-Octatetr	aen	304 (33000)
	(<i>E,E,E</i>)-1,3,5,7,9-Decapentaen		
	"Polyacetylen"		
	Cyclopentadien	41	238 (4200)
3	1,3-Cyclohexadien	80,5	256 (8000)
4	1,4-Cyclohexadien	85,5	<200
H	Cholestadien		275


Tabelle. Mehrfach ungesättigte Kohlenwasserstoffe

absorbiertes Licht in nm	Farbe des absorbierten Lichts	Komplementärfarbe
400-430	violett	gelbgrün
430-480	blau	gelb
480-490	grünblau	orange
490-510	blaugrün	rot
510-530	grün	purpur
530-570	gelbgrün	violett
570-580	gelb	blau
580-600	orange	grünblau
600-680	rot	blaugrün
680-750	purpur	grün

Tabelle. Absorbiertes Licht und Komplementärfarbe



 $\boldsymbol{Abb.}$ Längstwellige Absorptionsmaxima $\boldsymbol{\lambda}_{max}$ von Polyenen

Abb. Längstwellige Absorptionsmaxima λ_{max} von Cyaninen (M. Klessinger, *Chemie i. u. Zeit* 1978)

Energieprofil der Addition von HBr an Butadien: Vergleich von 1,2und 1,4-Addition $\overset{\text{de}}{G}$

Konstitution	Name	Siedepunkt in °C	Dichte bei 20°C in g/ml
H ₃ C—F	Methylfluorid	-78	
H ₃ C—CI	Methylchlorid	-24	
H ₃ C—Br	Methylbromid	5	
H ₃ C—I	Methyliodid	43	
CI	Ethylchlorid	12	
CI	Propylchlorid	47	
	Isopropylchlorid	36.5	
CI	Butylchlorid	78.5	
	2-Butylchlorid	68	
CICI	Isobutychlorid	68	
CI	tert-Butylchlorid	51	0.85
CF ₄	Tetrafluormethan	-128	1.61 (-130°C)
CCI ₄	Tetrachlormethan	77	1.59
CBr ₄	Tetrabrommethan	189	3.42
CI ₄	Tetraiodmethan	subl.	4.32
CI	Vinylchlorid	–14	
Br	Vinylbromid	16	

Tabelle. Siedepunkte und Dichten einiger Halogenkohlenwasserstoffe

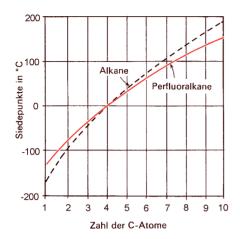
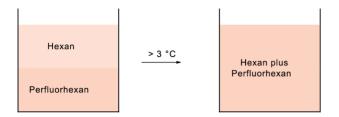
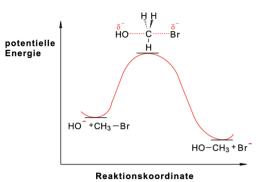
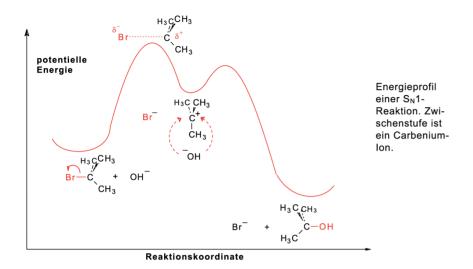



Abb. Siedepunkte von *n*-Alkanen und Perfluoralkanen. Ab C₅ sieden die Perfluoralkane tiefer als die Alkane, obwohl ihre Molekulargewichte viel höher liegen als die der Alkane.


unterhalb 3 °C: zwei Phasen

oberhalb 3 °C: eine Phase

Name	Formel S	Siedepunkt (°C)	Verwendung	
Chlordifluormethan	CHCIF ₂	- 41	Kältemittel, Kunststoffverschäumer	
Dichlorfluormethan	CHCI ₂ F	9		
Chloroform	CHCI ₃	61	Lösungsmittel	
Bromchlordifluormethan	CCIBrF ₂		früher Feuerlöschmittel	
Dichlordifluormethan	CCI ₂ F ₂	- 30		
Trichlorfluormethan	CCI ₃ F	24		
Tetrachlormethan (Tetrachlorkohlenstoff)	CCI ₄	77	als Fleckenwasser bis 1987 erlaubt	
Ethylchlorid	C ₂ H ₅ Cl	12	Localanästhetikum	
Bromchlortrifluorethan (Halothan)	BrCICH—CF ₃	50	Inhalationsnarcoticum	
Trichlorethylen	CI ₂ C=CHCI	87	Trockenreinigungs- mittel	
Tetrachlorethylen	Cl ₂ C=CCl ₂	121	Trockenreinigungs- mittel	
1,2-Dichlorethan	CI—H ₂ C—CH ₂ -	-CI 84	zur Herstellung von Vinylchlorid	


Tabelle. Siedepunkte und Verwendung einiger (Poly)halogenkohlenwasserstoffe

Energieprofil einer $S_N 2$ Reaktion. Es tritt keine Zwischenstufe auf.

 $\frac{\mathsf{DE}}{G}$

Nucleophil Substrat		Produkt	Name des Produkts
H— <u>Ö</u> :- + R—Br	- Br ⁻	H ^Ö R	Alkohol
R− <u>Ö</u> : + R−Br	- Br	R ^{∕Ö} ∖R	Ether
R- <u>S</u> : + R-Br	- Br_	R∕Ë∖R	Thioether
R ₃ N: + R—Br	- Br_	$R_3\overset{+}{N}-R$	Ammoniumsalz
R—C≡C: + R—Br	- Br_	R—C≡C—R	Alkin
:N≡C: + R—Br	- Br_	:N≡C-R	Nitril

Tab. Reaktion Nucleophil plus Substrat R-Br

	01	DI
Lösungsmittel	Strukturformel	DK
Wasser	H ₂ O	80
Ameisensäure	н-со-он	59
Dimethylsulfoxid	$H_3C-SO-CH_3$	49
Methanol	H ₃ C-OH	33
Ethanol	H_3C-CH_2-OH	24
Aceton	$H_3C-CO-CH_3$	21
Tetrachlormethan	CCI ₄	2

Tabelle. Dielektrizitätskonstanten (DK) gängiger Lösungsmittel

 $\frac{\mathsf{DE}}{G}$

	S _N 2	S _N 1
Reaktionsgeschwindigkeit v	v = k[RX] [Y [©]] (Reaktion <mark>2</mark> . Ordnung)	v = k[RX] (Reaktion 1. Ordnung)
Molekularität der Reaktion	bimolekular	monomolekular
Mechanismus	synchron	über Zwischenstufe
Stereochemie	Inversion	Racematbildung
Geschwindigkeit der Substitution bei: R—CH ₂ —X R ₂ CH—X R ₃ C—X H ₂ C=CH—CH ₂ —X	schnell langsam sehr langsam schnell	sehr langsam mäßig schnell sehr schnell schnell
H_5C_6 — CH_2 — X	schnell	schnell
geeignetes Lösungsmittel	(schwach) polar	stark polar

Tabelle. Vergleich von S_N 1- und S_N 2-Reaktionen

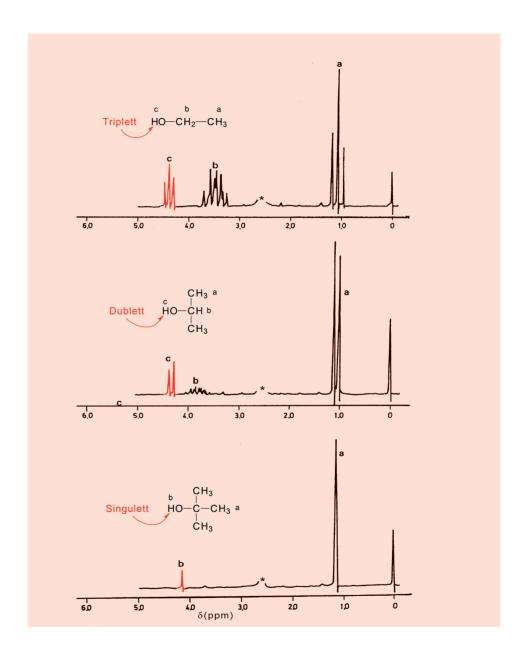

Mechanismus	Symbol	k_H/k_D
Synchron-Mechanismus	E2	2 - 8
Carbanion-Mechanismus	E1cB	1 - 2
Carbeniumion-Mechanismus	E1	1

Tabelle. Kinetische Isotopeneffekte k_H/k_D bei β -Eliminierungen

Struktur	Bezeichnung	Siedepunkt °C	Löslichkeit (g/100g Wasser)
H ₃ C—OH	Methanol	65	mischbar
H ₃ C—CH ₂ —OH	Ethanol	78	mischbar
$H_3C-CH_2-CH_2-OH$	1-Propanol	97	mischbar
$H_3C-CH_2-CH_2-CH_2-OH$	1-Butanol	118	7,8
$H_3C-(CH_2)_3-CH_2-OH$	1-Pentanol	138	2,3
H_3C — $(CH_2)_4$ — CH_2 — OH	1-Hexanol	156	0,6
H_3C — $(CH_2)_8$ — CH_2 — OH	1-Decanol	232	wenig lösl.
$H_3C-(CH_2)_{10}-CH_2-OH$	Laurylalkohol	259	wenig lösl.
$H_3C-(CH_2)_{16}-CH_2-OH$	Stearylalkohol	210/15 mm	wenig lösl.
H ₃ C—CH ₂ —CH(OH)—CH ₃	2-Butanol	100	12,5
(CH ₃) ₂ CH—CH ₂ OH	2-Methyl-1-propanol	108	10
(CH ₃) ₃ C—OH	<i>tert</i> -Butylalkohol	83	mischbar
H ₂ C=CH-CH ₂ OH	Allylalkohol	97	mischbar
H ₃ C—CH—CH—CH ₂ —OH	Crotylalkohol	118	17
→ OH	Cyclohexanol	161	3,6
ОН	Menthol	34 (Schme	lzp.)

Tabelle. Alkohole

Abb. ¹H-NMR-Spektren von Ethanol, 2-Propanol und *tert*-Butylalkohol jeweils in Dimethylsulfoxid gelöst. Signal des Lösungsmittels (*) nicht registriert

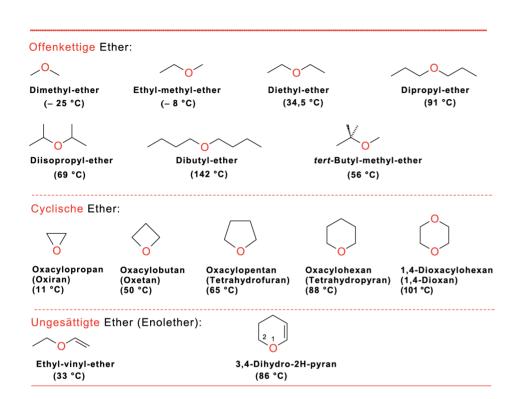
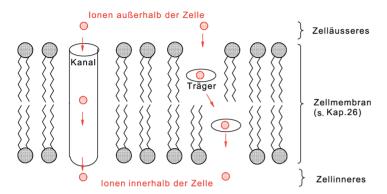
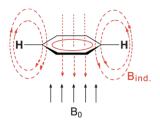
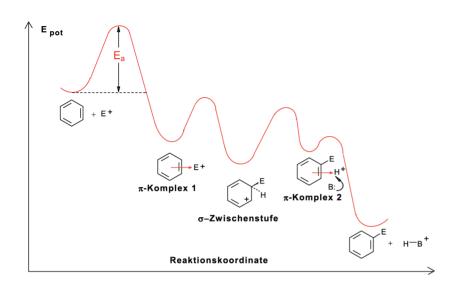
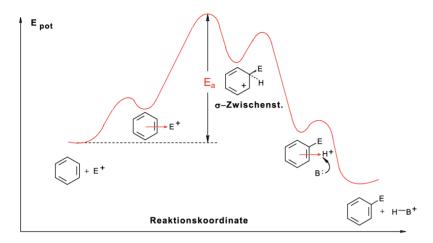




Tabelle. Ether





In der Mitte des Ringes wird das Magnetfeld B_0 durch $B_{\text{ind.}}$ geschwächt, am Ort der Protonen verstärkt.

Energieprofil einer aromatischen Substitution, bei der die Bildung des π -Komplexes 1 geschwindigkeitsbestimmend ist. E_a = Aktivierungsenergie. Diesem Profil folgt die Nitrierung von Benzol mit dem hoch reaktiven NO_2^+ BF $_4^-$ im Lösungsmittel Sulfolan.

Energieprofil einer aromatischen Substitution, bei der die Bildung der σ -Zwischenstufe geschwindigkeitsbestimmend ist: Bromierung von Benzol in Essigsäure.

D	E
7	7
	_

Substituent (R gleich Alkyl)	elektronischer Effekt	Geschwindigkeit der Zweitsubstituti	on Lenkunç	3
	+I, +M		o,p)	
 —ÖH —ÖR	−I, + M	sehr schnell	o,p	
$-\ddot{N}H_2$ $-\ddot{N}R_2$	−I, +M		o,p	Gruppe
-C ₆ H ₅	−I, +M	schnell	o,p	(o,p-diri- gierend)
—Alkyl	+I, +M*		o,p	
-F:, -Cl:, -Br:, -I:	−I, +M	langsam	o,p	Gruppe :
-CH ₂ CI	−I, +M	Ū	o,p	gierend)
Ο ^{δ-} δ ⁺ R	−I, −M		m	
$-\overset{\delta^+}{C} = \overset{\delta^-}{N}$	−I, −M		m	
$-CF_{3}^{\delta^{+}\delta^{-}}$	-I		m	Gruppe 3
$-\dot{N}R_3 X^-$	-I		m	√ (m-diri- gierend)
$ \begin{array}{c} O \\ \parallel \delta^+ \\ O \\ 0 \\ \delta^- \end{array} $ OH	−I, −M		m	
_N_O_	−I, −M	sehrlangsam	m	

Tabelle. Substituenteneffekte bei Substitution am Benzolring

Tabelle. Aldehyde und Ketone

Konstitution	Name (Trivialname)	Siedepunkt (°C)	Löslichkeit (g /100 g Wasser)
Н	Methanal (Formaldehyd)	-21	mischbar
H ₃ C H	Ethanal (Acetaldehyd)	20	mischbar
H ₃ C H	Propanal (Propionaldehyd)	49	16
H ₃ C H	Butanal (Butyraldehyd)	70	7
H	Benzaldehyd	178	0,3
OH OH	2-Hydroxybenzaldehyd (Salicylaldehyd)	197	1,7
H ₃ C CH ₃	2-Propanon (Aceton)	56	mischbar
H ₃ C CH ₃	2-Butanon oder Ethyl-methyl-keton	80	26
<u> </u>	Cyclohexanon	157	wenig löslich
H ₆ C ₅ CH ₃	Methyl-phenyl-keton (Acetophenon)	202	wenig löslich
H ₃ U	CH₃		
H ₃ C H H	Progesteron (ein Diketon)	127 (Schmp.)	wenig löslich

 $\frac{\mathsf{DE}}{G}$

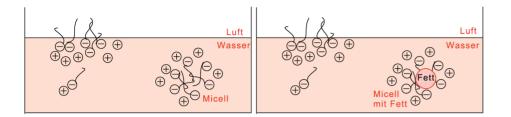

Konstitution	IUPAC-Name (Trivialname)	Sdp. in °C	pK ^{25°C} (in Wasser)
H—COOH	Methansäure (Ameisensäure)	100	3,75
H ₃ C—COOH	Ethansäure (Essigsäure)	118	4,76
H ₃ C—H ₂ C—COOH	Propansäure (Propionsäure)	141	4,87
H ₃ C—(CH ₂) ₂ —COOH	Butansäure (Buttersäure)	163	4,81
(H ₃ C) ₂ CH—COOH	2-Methylpropansäure (Isobuttersäure)	154	4,85
H ₃ C—(CH ₂) ₃ —COOH	Pentansäure (Valeriansäure)	187	4,82
H_3C — $(CH_2)_4$ — $COOH$	Hexansäure (Capronsäure)	205	4,84
H_3C — $(CH_2)_6$ — $COOH$	Octansäure (Caprylsäure)	223	
H_3C — $(CH_2)_8$ — $COOH$	Decansäure	31 (Sch	mp.)
H_3C — $(CH_2)_{10}$ — $COOH$	Dodecansäure	44 (Schmp.)	
H ₃ C—(CH ₂) ₁₄ —COOH	Hexadecansäure (Palmitinsäure)	63 (Sch	mp.)

Tabelle. Gesättigte Carbonsäuren

Konstitution	Name	Sdp. in °C	pKa ^{25°C} (in Wasser)
(H ₃ C—COOH)	(Essigsäure)	(118)	4,76
CIH ₂ C-COOH	Chloressigsäure	189	2,86
Cl ₂ CH—COOH	Dichloressigsäure	194	1,48
CI ₃ C-COOH	Trichloressigsäure	196	0,70
F ₃ C-COOH	Trifluoressigsäure	72	0,22

Tabelle. Halogenierte Carbonsäuren

Abbildung. Links: Lösung einer Seife in Wasser. Die Seifenmoleküle halten sich hauptsächlich in der Grenzfläche Wasser/ Luft oder in Micellen auf. Rechts: Wirkungsweise einer Seifenlösung. Nach dem Waschvorgang befindet sich das vom Gewebe abgelöste Fetttröpfchen im Inneren eines Micells. $\overset{\text{de}}{G}$

Konstitution	Trivialname (IUPAC-Name)	Schmp. in °C	pK _a ^{25°C} (1.Stufe)	pK _a ^{25°C} (2.Stufe)
(H ₃ C—COOH)	(Essigsäure)		(4,76)	
HOOC-COOH	Oxalsäure	189	1,27	4,2
ноос соон	(Ethandisäure) Malonsäure (Propandisäure)	136	2,85	5,7
ноос	Bernsteinsäure (Butandisäure)	185	4,18	5,6
ноос соон	Glutarsäure (Pentandisäure)	98	4,34	5,4
ноос	Adipinsäure (Hexandisäure)	151	4,43	5,5
Ungesättigte Dicarbonsäure	n:			
H COOH	Maleinsäure ((Z)-Butendisäure)	130	1,92	6,1
HCOOH				
ноос	Fumarsäure ((<i>E</i>)-Butendisäure)	302	3,02	4,4
	ortho: Phthalsäure	231	2,95	5,4
COOH	meta: Isophthalsäure	348	3,62	4,6
The Cool	para: Terephthalsäur	e 300	3,54	4,8

Tabelle. Dicarbonsäuren

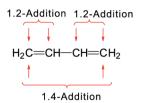
DE	
G	
IZ =	

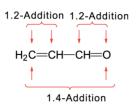
Konstitution	Trivialname	Schmp. (in °C)	pK _a (25°C) (1., 2., 3. Stufe)
он он	Salicylsäure (als Methylester in ätherischen Ölen)	159	2,99
СООН	Mandelsäure (als Nitril in Mandeln)	119 (<i>rac</i>)	3,89
OH V	Milchsäure (im Sauer- kraut, in sauren Gurken)	17 (<i>rac</i>)	3,83
CO ₂ H CO ₂ H	Brenztraubensäure (Stoffwechselprodukt)	12	2,48
HO HO	Shikimisäure (in vielen Pflanzen)	190	4,15
но он соон	Gallussäure (in Eichenrinde)	133	4,33
HO ₂ C OH	Äpfelsäure (in unreifen Äpfeln)	100	3,46 (5,10)
OH HO_2C CO_2H	Weinsäure (in vielen Früchten)	159 (meso)	3,22 (4,82)
OH OH	(iii vieleii i laeiiieii)	169 (<i>rac</i>)	3,04 (4,36)
HO_2C OH O_2H	Zitronensäure (im Zitronensaft)	153	3,10 (4,76) (6,4)

Tabelle. Carbonsäuren mit zusätzlicher Sauerstoffgruppe

Tabelle. Reaktion zwischen Carbonylverbindung und Grignardverbindung R'MgX

Carbonylverbindung	Produkt	Hydrolyseprodukt
ң	H 	H
C=O H Formaldehyd	R┴COMgX H	R—Ç—OH
H Formaldehyd	H	H prim. Alkohol
,o	OMgX R—C—R' H	OН
R—C H Aldehyd	R—Ç−R′	R— <mark>¢</mark> —R′
H Aldehyd	н	R—C—R′ H sek. Alkohol
,o	ϘMgX	ÓН
∹ –c(′	R—C—R′ R	R—Ç−R′
Q R—C R Keton	R	R—C—R′ R tert. Alkohol
O OR Ester	ϘMgX	OН
R—Ç [∥]	R—Ç−R′	R— <mark>¢</mark> —R′
OR Ester	R—C—R′ R′ (2 mol R′MgX)	R—C—R′ R′ tert. Alkohol
O R—C Carbonsäure- CI chlorid	R—C (1 mol R'MgX, -30°C))
	ŌМgХ	ÓН
	OMgX R—C—R' (2 mol R'MgX, R' Raumtemp.)	OH R—C—R′ R′ tert. Alkohol
.0	ϘMgX	Q
R—Ç Carbonsäure- R—C amid	R—Ç−R′	R' Keton
Carbonsäure- amid N(CH ₃) ₂	R—Ç—R′ N(CH ₃)₂	K K Keton
		Ĭ
R—C≡N NitriI	NMgX C R	R R' Keton
		Q
D 0(0D)	OR R—C—R´ OR Ketal	D DI vi
R—C(OR) ₃	K-C-K	R R' Keton
Orthocarbonsäureester		
D=C=0	R∕−C⊄O OMgX	R—C
Sohlendioxid	OMgX	OH
	-	Carbonsäure


Säure	konjugierte Base	pK _a (25°)	C)
O H ₃ C OH Essigsäure	H ₃ C O	4,8	
H ₃ C-NO ₂ Nitromethan	$H_2 \dot{\overline{C}} - NO_2$	8,6	
H H O O 2,4-Pentandion	H	8,9	Z u n a
H H OR O O O O O O O O O O O O O O O O O	H O O	11	h m e d e r
RO OR OR Malonsäure-diester	RO H OR	13	A c i d
H ₅ C ₂ —OH Ethanol	$H_5C_2-O^-$	16	t ä t
H ₃ C—CHO Acetaldehyd	H ₂ Ċ-CHO	17	
H ₃ C CH ₃	 H ₂ С СН ₃	20	
O H ₃ C OR Essigsäure-ester	H ₂ C OR	24	
H ₃ C−C≡N Acetonitril	H₂Ċ¯C≡N	25	


Tabelle. pK_a -Werte einiger CH-acider Verbindungen und Vergleichsverbindungen

Grundlagen der Organischen Chemie, Joachim Buddrus / Bernd Schmidt ISBN 978-3-11-030559-3 © 2015 Walter de Gruyter GmbH, Berlin/München/Boston

Abb. Aldolreaktion zwischen dem C_3 -Keton Dihydroxyaceton-phosphat und dem C_3 - Aldehyd D-Glycerinaldehyd-phosphat. Katalysator ist das Enzym Aldolase II (als roter Halbring dargestellt). (His)₃- und -CO₂ - rühren von den Aminosäureresten Histidin bzw. Asparaginsäure der Aldolase her.

Grundlagen der Organischen Chemie, Joachim Buddrus / Bernd Schmidt ISBN 978-3-11-030559-3 © 2015 Walter de Gruyter GmbH, Berlin/München/Boston

Abbildung. 1.2- und 1.4-Addition an Butadien (links) und Acrolein (rechts). Im Falle von Acrolein sind zwei Arten von 1,2-Addition möglich.

Michael- <mark>Donoren</mark>		Michael- <mark>Akze</mark>	ptoren
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Malonsäure-diester	0	Methy-vinyl-keton
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Acetessigsäure-ester	0	Acrylsäure-ester
O = C	2,4-Pentandion	OR O	2-Cyclopenten-1-on
H ₃ C CH ₃	Aceton	CN	Acrylnitril
O C C H ₂	3-Ketobutyronitril	NO ₂	Nitroethen
N_2 NO ₂	Nitroethan		

Tabelle. Einige Michael-Donoren und -Akzeptoren

 $\frac{\mathsf{DE}}{G}$

Konstitution	Name	Sdp. in °C	pK _a ^{25 °C} (in Wasser)
(NH ₃)	(Ammoniak)	(- 33)	(9,3)
$H_3C-\ddot{N}H_2$	Methylamin	- 6,5	10,6
(H ₃ C) ₂ NH	Dimethylamin	7,5	10,7
(H ₃ C) ₃ N	Trimethylamin	3,5	9.8
$H_3C-CH_2-\ddot{N}H_2$	Ethylamin	17	10,7
$H_3C-(CH_2)_2-\ddot{N}H_2$	Propylamin	49	10,6
$H_3C-(CH_2)_3-NH_2$	Butylamin	78	10,6
$H_2 \ddot{N}$ — CH_2 — CH_2 — $\ddot{N}H_2$	Ethylendiamin	116	10,7
H_2 N—(CH ₂) ₆ —NH ₂	Hexamethylendiamin	205	10,9
H_5C_6 — NH_2	Anilin	184	4,6
H_5C_6 — $\ddot{N}(CH_3)_2$	N,N-Dimethylanilin	194	5,0
N	Pyridin	115	5,3
H CH ₃	Nicotin	246	

Tabelle. Amine

Tabelle. Methoden zur Darstellung von Aminen

Grundlagen der Organischen Chemie, Joachim Buddrus / Bernd Schmidt ISBN 978-3-11-030559-3 © 2015 Walter de Gruyter GmbH, Berlin/München/Boston

primäres Amin

Tabelle. Phenole

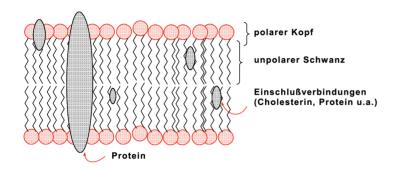

Strukturformel	Bezeichnung	Schmelz- punkt °C	Siede- punkt °C	Löslichkeit (g/100g Wasser)
OH	Phenol	43	181	9,3
OH CH ₃	2-Methylphenol (o-Kresol)	31	190	etwas löslich
OH CH ₃	3-Methylphenol (<i>m-</i> Kresol)	11,5	201	etwas löslich
OH CH ₃	4-Methylphenol (p-Kresol)	35	202	etwas löslich
ОН	1,2-Dihydroxybenzol (Brenzcatechin)	104	246	45
	1,3-Dihydroxybenzol (Resorcin)	110	281	123
ÓН	1,4-Dihydroxybenzol (Hydrochinon)	173	286	8
	1-Naphthol	96	288	unlöslich
OH	2-Naphthol	123	295	unlöslich

Abbildung. Acyclische D-Glucose im Gleichgewicht mit Pyranosen und Furanosen. Angriff der OH-Gruppe in 5-Stellung auf die Aldehydgruppe führt zu zwei Pyranosen und Angriff der OH-Gruppe in 4-Stellung zu zwei Furanosen.

 $\overset{\text{de}}{G}$

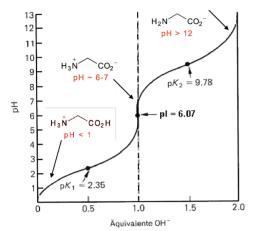

Konstitution	Trivialname und IUPAC-Name	Schmp (°C)
CO_2H	Myristinsäure (Tetradecansäure) C ₁₄ H ₂₈ O ₂	58
CO_2H	Palmitinsäure (Hexadecansäure) C ₁₆ H ₃₂ O ₂	63
CO_2H	Stearinsäure (Octadecansäure) C ₁₈ H ₃₆ O ₂	70
9 8 7 6 5 4 3 2 CO ₂ H	Ölsäure (Z-9-Octadecensäure) C ₁₈ H ₃₄ O ₂	13
9 CO ₂ H	Linolsäure (<i>Z</i> , <i>Z</i> -9,12- Octadecadiensäure) C ₁₈ H ₃₂ O ₂	-5
15 9 CO ₂ H	α -Linolensäure (Z , Z , Z -9,12,15-Octadecatriensäure) $C_{18}H_{30}O_2$	-11
CO ₂ H	Arachidonsäure (Z,Z,Z,Z-5,8,11,14- Eicosatetraensäure) C ₂₀ H ₃₂ O ₂	-50

Tabelle. Fettsäuren

Aufbau einer Zellmembran aus zwei Phospholipid-Schichten. Polarer Kopf: Phosphatidylanteil. Unpolarer Schwanz: Fettsäureanteil.

Titrationskurve von Glycinhydrochlorid mit verdünnter NaOH-Lösung. Nach Zugabe von 0.5, 1 und 1.5 Äquiv. OH $^-$ stellen sich pH-Werte ein, die identisch sind mit pK $_1$, pl bzw. pK $_2$.

Aminosäure	pK _a (α-CO₂H)	pΚ _a (α-ΝΗ ₃ +)	pK _a (Seitenkette)	p l (isoelektr. Punkt)
Glycin	2,35	9,78	-	6,06
Alanin	2,35	9,87	-	6,11
Valin	2,28	9,72	-	6,00
Leucin	2,33	9,74	-	6,02
Isoleucin	2,32	9,76	-	6,04
Prolin	1,95	10,64	-	6,29
Serin	2,19	9,44	-	5,81
Threonin	2,59	9,10	-	5,59
Methionin	2,17	9,27	-	5,72
Phenylalanin	2,58	9,24	-	5,91
Tryptophan	2,43	9,44	-	5,93
Asparagin	2,02	8,80	-	5,41
Glutamin	2,17	9,13	-	5,65
Cystein	1,86	8,35	10,34	5,10
Tyrosin	2,20	9,11	10,07	5,05
Asparaginsäure	1,99	10,00	3,90	2,95
Glutaminsäure	2,13	9,95	4,32	3,22
Lysin	2,16	9,20	10,80	10,00
Arginin	1,82	8,99	13,20	11,10
Histidin	1,81	9,15	6,05	7,6

Tabelle. pK_a -Werte und isoelektrische Punkte von Aminosäuren

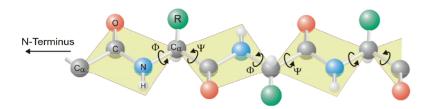
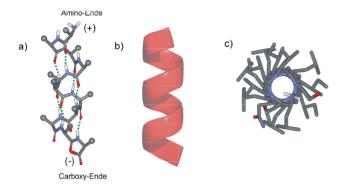

Protease	Angriffspunkt der Hydrolyse
Trypsin	Carboxyende von Lys, Arg
Chymotrypsin	Carboxyende von Phe, Tyr, Trp
Carboxypeptidase	C-terminale Aminosäure
Pronase (Proteasengemisch)	alle Peptidbindungen

Tabelle. Proteasen und ihre spezifische Wirkung

```
Ile-Gly-Asp-Leu-Tyr-Ala-Ala-Phe-Asp-Glu-Met-Arg-Gln-Ser-Val
Met-Gly-Gln-Leu-Ala-Glu-Ser-Leu-Arg-His-Met-Gln-Gly-Glu-Leu
Met-Gly-Asp-Leu-Ala-Gln-Ser-Val-Ser-His-Met-Gln-Arg-Ser-Leu
```


Abb.: Sequenzvergleich einiger Proteine. Identität: rot, Homologie: gestrichelt.

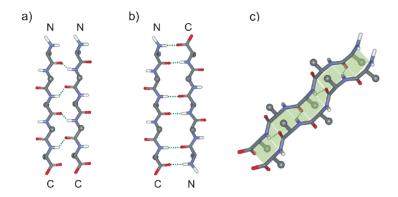


Abb.1. Konfiguration einer Peptidbindung. Die 6 zu einer Peptidbindung gehörenden Atome liegen in einer Ebene (gelb). Bindungen mit freier Drehbarkeit sind durch Pfeile hervorgehoben. Seitenketten (grün) voneinander abgewandt

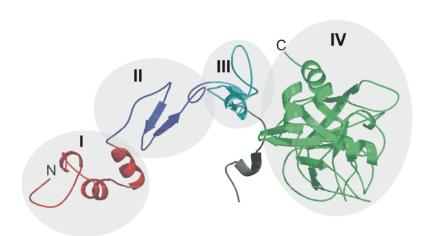


Abb. 2. a) Schema einer α -Helix. Wasserstoffbrücken sind grün gestrichelt. Die Pole des Dipols werden durch (+) und (-) angezeigt. Der N-Terminus entspricht dem (+)-Pol. b) Wendelmodell der α -Helix. c) Aufsicht auf eine α -Helix parallel zur Helixachse

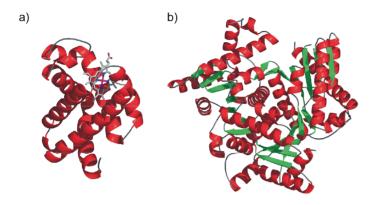
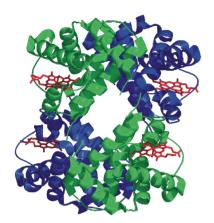


Abb. 3. a) Paralleles β-Faltblatt, Draufsicht. b) Antiparalleles β-Faltblatt, Draufsicht. c) Paralleles β-Faltblatt, Seitenansicht. - Die N- und C-terminalen Enden sind jeweils durch N und C markiert. Wasserstoffbrücken sind grün gestrichelt.


Abb. 4. Tertiärstruktur des Blutgerinnungsfaktors IX. Die vier Domänen I - IV üben unterschiedliche biologische Aktivitäten aus. Domäne II besteht aus einem β-Faltblatt mit antiparalleler Ausrichtung gemäß Abb. 3b.

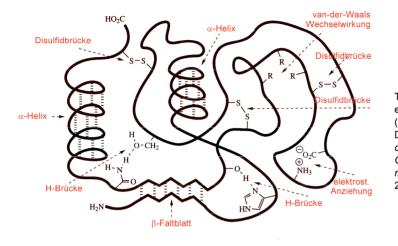

Abb. 5. Tertiärstrukturen von Proteinen. (a) Myoglobin bestehend aus einem Protein mit α-Helix-Struktur (rot) und einer Häm-Gruppe (grau). (b) Adenylatkinase mit α-Helix-Struktur (rot), β-Faltblatt-Struktur (grün) und einigen wenigen Schleifen (das sind Proteinketten ohne Sekundärstruktur).

Abb. 6. Quartärstruktur des tetrameren Hämoglobin-Moleküls. Die zwei verschiedenen Untereinheiten (α, β) sind unterschiedlich farbig hervorgehoben (grün, blau). Die prostethische Gruppe (Häm) ist in der Mitte jeder Untereinheit zu erkennen (rot). Häm ist über nichtkovalente Wechselwirkungen an das Protein gebunden.

Tertiärstruktur eines Proteins (nach P.W. Dewick, Fundamentals of Organic Chemistry, Wiley 2006)

Konjug. Protein	prosthetische Gruppe	physiologische Funktion
Lipoprotein	Lipid	Verankerung in der Membran
Glykoprotein	Kohlenhydrat	Stabilisierung, Oberflächenveränd.
Phosphoprotein	Phosphat	Veränderung der Aktivität
Chromoprotein	Farbstoff	Elektronentransport, Lichtumwandl.
Metalloprotein	Metallion	Elektronentransport, Katalyse (Proteolyse)

Bezeichnung des Terpens	Anzahl der Isopren-Bausteine	Anzahl der C-Atome
Monoterpen	2	C ₁₀
Sesquiterpen	3	C ₁₅
Diterpen	4	C ₂₀
Sesterpen	5	C ₂₅
Triterpen	6	C ₃₀
Tetraterpen	8	C ₄₀

Tabelle. Einteilung von Terpenen

Hormon	erzeugendes Organ	Wirkung
Thyroxin	Schilddrüse	stoffwechselregulierend
Adrenalin	Nebennierenmark	blutdrucksteigernd
Noradrenalin	Nebennierenmark	blutdrucksteigernd
Insulin	Bauchspeicheldrüse	Regulierung des Kohlenhydratstoff- wechsels (bei Mangel: Zuckerkrank- heit)

Tabelle. Einige Hormone nebst Wirkung

Abbildung. Sauerstofftransport durch Hämoglobin. Die vier mit einer Ellipse verbundenen N-Atome symbolisieren den Hämteil des Hämoglobins.

Vitamin	Name	Konstitution	täglicher Bedarf	Mangelkrankheit
Α	Retinol	CH ₂ OH	1-2 mg	Nachtblindheit, Erkrankung der Haut
B ₁	Thiamin	H ₃ C N H S CI - OH	1.1-1.5 mg	Beriberi-Krankheit (Müdigkeit, Lethargie
B ₂	Riboflavin	CH ₂ OH HO—H HO—H HO—H CH ₂ H ₃ C N NH O	1.5-1.8 mg	Hauterkrankungen
B ₆	Pyridoxin $(R = CH_2OH)$ Pyridoxal $(R = CHO)$ Pyridoxamin $(R = CH_2 - NH_2)$	HO CH_2OH H_3C	ca. 2 mg	unspezifisch

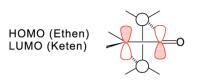
Tabelle. Vitamine

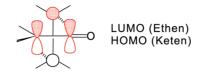
Vitamin	Name	Konstitution	täglicher Bedarf	Mangelkrankheit
B ₁₂	Cyanocobalamin	$H_{2}N-OC$ $H_{3}C$ $H_{3}C$ $H_{3}C$ $H_{3}C$ $H_{3}C$ $H_{3}C$ $H_{3}C$ $H_{3}C$ $H_{4}C$ $H_{5}C$ $H_{5}C$ $H_{5}C$ $H_{5}C$ $H_{7}C$	°O—NH₂	perniziöse Anämie

Tabelle (Fortsetzung)

С	Ascorbinsäure	HO OH OH	75 mg	Skorbut (Haut- und Zahn- fleischblutung)
D ₂	Calciferol	HO	0.005 mg	Rachitis
Е	α-Tocopherol	HO	12 mg	unbekannt (bei Ratte: Sterilität)
н	Biotin	HN NH HH CO ₂ H	ca. 0.25 mg	Hautkrankheit
K ₁	Phyllochinon		ca. 50 μg	Beeinträchtigung der Blutgerinnung

Tabelle (Fortsetzung)


Anzahl beteiligter Elektronen		thermische Anregung	photochemische Anregung
4 n	(n = 1, 2, 3)	konrotatorisch	disrotatorisch
4 n + 2	(n = 0, 1, 2)	disrotatorisch	konrotatorisch


Tabelle. Woodward-Hoffmann-Regeln für elektrocyclische Reaktionen

Anzahl beteiligter Elektronen	th ermische Anregung	photochemische Anregung
4 n (n = 1, 2, 3)	verboten	erlaubt
4 n + 2 (n = 1, 2, 3)	erlaubt	verboten

Tabelle. Woodward-Hoffmann-Regeln für Cycloadditionen

Abb. Orthogonale Annäherung von Keten an Ethen führt zu einer bindenden Wechselwirkung, gleichgültig welches HOMO/LUMO überlappt.

Anzahl beteiligter Elektronen*	thermische Anregung	photochemische Anregung		
4 n (n = 1, 2, 3)	antarafacial	suprafacial		
4 n + 2 (n = 0, 1, 2)	suprafacial	antarafacial		
* Zahl der $\pi\text{-Elektronen}$ plus 2. Die 2 Elektronen beziehen sich auf die wandernde $\sigma\text{-Bindung}.$				

Tabelle. Woodward-Hoffmann-Regeln für die sigmatrope Wasserstoffwanderung