Contents

Preface —	-v	
Ethan Akin		
Furstenberg	g Fractals —— 1	
1	Introduction —— 1	
2	Furstenberg Fractals —— 3	
3	The Fractal Constructions — 9	
4	Density of Non-Recurrent Points —— 12	
5	Isometries and Furstenberg Fractals —— 14	
Idris Assani	and Kimberly Presser	
A Survey of	the Return Times Theorem —— 19	
1	Origins —— 19	
1.1	Averages along Subsequences —— 21	
1.2	Weighted Averages —— 23	
1.3	Wiener-Wintner Results —— 25	
2	Development —— 26	
2.1	The BFKO Proof of Bourgain's Return Times Theorem —— 27	
2.2	Extensions of the Return Times Theorem —— 29	
2.3	Unique Ergodicity and the Return Times Theorem —— 31	
2.4	A Joinings Proof of the Return Times Theorem —— 33	
3	The Multiterm Return Times Theorem —— 35	
3.1	Definitions —— 37	
4	Characteristic Factors —— 41	
4.1	Characteristic Factors and the Return Times Theorem —— 42	
5	Breaking the Duality —— 44	
5.1	Hilbert Transforms —— 45	
5.2	The (L^1, L^1) Case —— 48	
6	Other Notes on the Return Times Theorem —— 50	
6.1	The Sigma-Finite Case —— 50	
6.2	Recent Extensions —— 51	
6.3	Wiener-Wintner Dynamical Functions —— 52	
7	Conclusion —— 54	
Joseph Auslander		
Characterizations of Distal and Equicontinuous Extensions —— 59		
Zoltán Buczolich		
Averages Along the Squares on the Torus —— 67		
1	Introduction and Statement of the Main Results —— 67	

2	Preliminary Results and Notation —— 69
3	Proofs of the Main Results —— 70
Nicolas Che	vallier
Stepped Hy	perplane and Extension of the Three Distance Theorem —— 81
1	Introduction —— 81
2	Kwapisz's Result for Translation —— 82
3	Continued Fraction Expansions —— 84
3.1	Brun's Algorithm — 84
3.2	Strong Convergence —— 86
4	Proof of Theorem 1.1 —— 87
5	Appendix: Proof of Theorem 2.4 and Stepped Hyperplane —— 88
Jean-Pierre	Conze and Jonathan Marco
Remarks on	Step Cocycles over Rotations, Centralizers and Coboundaries —— 93
1	Introduction —— 93
2	Preliminaries on Cocycles —— 94
2.1	Cocycles and Group Extension of Dynamical Systems —— 94
2.2	Essential Values, Nonregular Cocycle —— 95
2.3	\mathbb{Z}^2 -Actions and Centralizer —— 97
2.4	Case of an Irrational Rotation —— 98
3	Coboundary Equations for Irrational Rotations —— 100
3.1	Classical Results, Expansion in Basis $q_n \alpha$ —— 101
3.2	Linear and Multiplicative Equations for φ_{β} and $\varphi_{\beta,\gamma}$ —— 101
4	Applications —— 104
4.1	Non-Ergodic Cocycles with Ergodic Compact Quotients —— 104
4.2	Examples of Nontrivial and Trivial Centralizer —— 106
4.3	Example of a Nontrivial Conjugacy in a Group Family —— 108
5	Appendix: Proof of Theorem 3.3 —— 109
Danijela Da	mjanović
Hamilton's	Theorem for Smooth Lie Group Actions —— 117
1	Introduction —— 117
2	Preliminaries —— 118
2.1	Fréchet Spaces and Tame Operators —— 118
2.2	Hamilton's Nash–Moser Theorem for Exact Sequences —— 119
2.3	Cohomology —— 119
3	An Application of Hamilton's Nash-Moser Theorem for Exact Sequences
	to Lie Group Actions —— 120
3.1	The Set-Up —— 120
3.2	Tamely Split First Cohomology —— 121
3.3	Existence of Tame Splitting for the Complex $(Lin)_{(\lambda,H,\pi)}$ —— 122
3.4	A Perturbation Result —— 125

3.5	A Variation of Theorem 3.6 —— 126	
4	Possible Applications —— 126	
Krzysztof Fr	ączek, Agata Piękniewska, and Dariusz Skrenty	
Mixing Auto	omorphisms which are Markov Quasi-Equivalent but not Weakly	
Isomorphic	 129	
1	Introduction —— 129	
2	Gaussian Automorphisms and Gaussian Cocycles —— 130	
3	Coalescence of Two-Sided Cocycle Extensions —— 132	
4	Main Result —— 134	
Joanna Kuła	ga-Przymus	
On the Strong Convolution Singularity Property —— 139		
1	Introduction —— 139	
2	Definitions —— 142	
2.1	Spectral Theory —— 142	
2.2	Joinings —— 143	
2.3	Special Flows —— 143	
2.4	Continued Fractions —— 143	
3	Tools —— 144	
4	Smooth Flows on Surfaces —— 146	
5	Results —— 147	
5.1	New Tools – The Main Proposition —— 147	
5.2	New Tools – Technical Details —— 148	
5.3	Application —— 180	
Carlos Math	eus	
Fractal Geor	metry of Non-Uniformly Hyperbolic Horseshoes —— 197	
1	Part I – A Survey on Homoclinic/Heteroclinic Bifurcations —— 197	
1.1	Transverse Homoclinic Orbits and Smale's Horseshoes —— 199	
1.2	Homoclinic Tangencies and Newhouse Phenomena —— 203	
1.3	Homoclinic Bifurcations Associated to Thin Horseshoes —— 213	
1.4	Homoclinic Bifurcations Associated to Fat Horseshoes and Stable	
	Tangencies —— 218	
1.5	Heteroclinic Bifurcations of Slightly Fat Horseshoes after J. Palis and	
	JC. Yoccoz —— 220	
1.6	A Global View on Palis-Yoccoz Induction Scheme —— 223	
2	Part II – A Research Announcement on Non-Uniformly Hyperbolic	
	Horseshoes —— 232	
2.1	Hausdorff Dimension of the Stable Sets of Non-Uniformly Hyperbolic	
	Horseshoes —— 233	
2.2	Final Comments on Further Results —— 236	

Omri Sarig and Martin Schmoll		
Adic Flows, Transversal Flows, and Horocycle Flows —— 241		
1	Introduction —— 241	
2	Adic Flows —— 243	
2.1	Ergodic Properties of Adic Flows —— 251	
3	Application to Horocycle Flows —— 252	
3.1	The Compact Case —— 257	
Kelly B. Yancey		
Uniform Rigidity Sequences for Topologically Weakly Mixing		
Homeomorphisms —— 261		
1	Introduction —— 261	
2	Uniform Rigidity Sequences —— 263	
2.1	Proof of Theorem 1.2 —— 264	