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Although more than 30 years have
passed since the discovery of neu-

rochemical alterations in individuals with
Alzheimer disease, development of effec-
tive treatments remains challenging.
Alzheimer disease is characterized by a
progressive decrease in cognitive func-
tion and loss of short-term memory.
Pathologic changes include accumula-
tion of the neurotoxic peptide �-amyloid
in plaques and of neurofibrillary tangles
containing the protein tau, as well as
massive cholinergic degeneration, which

correlates closely with decline in cogni-
tive function.1-2 Thus, initial attempts to
treat patients focused on augmenting
cholinergic function,3 and the first suc-
cessful treatments used acetyl-
cholinesterase inhibitors.4-6 In 2003, the N-
methyl-D-aspartate (NMDA) receptor
antagonist memantine hydrochloride
became available.7-9 Although, in many
cases, acetylcholinesterase inhibitors and
memantine—alone or in combination—
have produced improvements in symp-
toms and in tests of cognition, their effec-
tiveness wanes as Alzheimer disease
progresses.  

A number of new medications are
under investigation for treating patients
with Alzheimer disease. The present
review focuses on new approaches for

Alzheimer disease treatment that are cur-
rently being tested in clinical trials or in
animal studies. These investigational
medications are categorized by thera-
peutic target or by mechanism of action.
Among the drugs discussed are those
that interact with cholinergic receptors,
those that target �-amyloid, and those
that are currently approved for other
purposes (Figure).

Drugs That Stimulate Cholinergic
Receptors
Muscarinic Agonists
The acetylcholinesterase inhibitors were
developed in response to the observa-
tion that a severe loss of cholinergic path-
ways is a consistent finding in patients
with Alzheimer disease. These agents

Development of effective treatments for patients with Alzheimer
disease has been challenging. Currently approved treatments include
acetylcholinesterase inhibitors and the N-methyl-D-aspartate receptor
antagonist memantine hydrochloride. To investigate treatments in
development for patients with Alzheimer disease, the author con-
ducted a review of the literature. New approaches for treatment or
prevention focus on several general areas, including cholinergic
receptor agonists, drugs to decrease �-amyloid and tau levels, anti-
inflammatory agents, drugs to increase nitric oxide and cyclic guano-
sine monophosphate levels, and substances to reduce cell death or pro-
mote cellular regeneration. The author focuses on medications
currently in clinical trials. Cholinergic agents include orthostatic and
allosteric muscarinic M1 agonists and nicotinic receptor agonists.
Investigational agents that target �-amyloid include vaccines, anti-
bodies, and inhibitors of �-amyloid production. Anti-inflammatory
agents, including nonsteroidal anti-inflammatory drugs, the natural
product curcumin, and the tumor necrosis factor � inhibitor etanercept,
have also been studied. Some drugs currently approved for other
uses may also show promise for treatment of patients with Alzheimer
disease. Results of clinical trials with many of these investigational
drugs have been disappointing, perhaps because of their use with
patients in advanced stages of Alzheimer disease. Effective treat-
ment may need to begin earlier—before neurodegeneration becomes
severe enough for symptoms to appear. 
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are effective in many patients, particu-
larly those in early stages of Alzheimer
disease. However, because they rely on
intact cholinergic nerve terminals, which
continue to degenerate as the disease
progresses, acetylcholinesterase inhibitors
become less effective over time. In addi-
tion, acetylcholinesterase inhibitors are
incapable of providing receptor selec-
tivity—an inability that is problematic
because research has shown that stimu-
lation of M1 receptors, but not M2 recep-
tors, is beneficial in decreasing levels of
�-amyloid.10-11

Direct-acting muscarinic agonists
exert their effects postsynaptically,
requiring no cholinergic terminals. Thus,
these agonists should be effective much
longer than acetylcholinesterase
inhibitors. Muscarinic agonists may also
slow the progression of Alzheimer dis-
ease by decreasing �-amyloid accumu-
lation. 

The M1 muscarinic receptor sub-
type represents an important therapeutic
target, because it is abundant in the hip-
pocampus and cerebral cortex, the brain
regions where the cholinergic deficit is
most pronounced in Alzheimer disease.
This receptor subtype is involved in
short-term memory.12 Furthermore, stim-
ulation of M1 muscarinic receptors
decreases production of �-amyloid by
activation of �-secretase.13-15

The muscarinic agonist AF267B
(NGX267; Torrey Pines Pharmaceutical
Inc, Del Mar, California) decreased levels
of �-amyloid and prevented its accu-
mulation following lesion of cholinergic
neurons in rabbits. It also decreased �-
amyloid levels in a mouse model of
Alzheimer disease.16-18 Long-term treat-
ment with the selective M1 agonists
cevimeline hydrochloride (AF102B) and
talsaclidine decreased �-amyloid levels in
cerebral spinal fluid (CSF) of patients
with Alzheimer disease.13,19 Conversely,
use of cholinergic antagonists in patients
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� Muscarinic M1 Receptor Agonists
� Orthostatic
—AF267B (NGX267)16-18,26-27

—Cevimeline hydrochloride (Evoxac, AF102B)13

—Talsaclidine19

—Xanomeline with tacrine hydrochloride22-25

� Allosteric
—AC-42 (4-n-butyl-1-[4-(2-methylphenyl)-4-oxo-1-butyl]-piperidine)30

—77-LH-28-1 (1-[3-(4-butyl-1-piperidinyl)propyl]-3,4-dihydro-2(1H)-quinolone)30,33

—AC-260584 (4-[3-(4-butylpiperidin-1-yl)-propyl]-7-fluoro-4H-benzo[1,4]oxazin-3-one)32

—TBPB (1-(1´2-methylbenzyl)-1,4´-bipiperidin-4-yl)-1H-benzo[d]imidazol-2(3H)-one)33,34

—BQCA (benzylquinoline carboxylic acid)35

� Nicotinic Receptor Agonists
� ABT-089 (2-methyl-3-(2-(S)-pyrrolidinylmethoxy)pyridine dihydrochloride)42,43

� A-582941 (2-methyl-5-(6-phenyl-pyridazin-3-yl)-octahydro-pyrrolo[3,4-c]pyrrole)49

� ABT-107 (5-(6-[(3R)-1-azabicyclo[2,2,2]oct-3-yloxy]pyridazin-3-yl)-1H-indole)50,51

� EVP-612452,53

� Vaccines Against b-Amyloid
� AN179254-62

� CAD-10663

� ACC-00152,64

� ACI-2452,64

� UB-31152,64

� V-95052,64

� Humanized Monoclonal Antibodies Against �-Amyloid
� Bapineuzumab (AAB-001)66-69

� Solanezumab (LY2062430)70-72

� Ponezumab (PF-04360365)73-75

� GSK-93377652,69

� Gantenerumab (R-1450)52,69

� MABT-5102A52,69

� �-Secretase Inhibitors
� Semagecestat (LY-450139)78-80*

� Begacestat (GSI-953)81,82

� BMS-70816383

� PF-3084014 ([(S)-2-((S)-5,7-difluoro-1,2,3,4-tetrahydronaphthalen-3-ylamino)-N-(1-(2-
methyl-1-(neopentylamino)propan-2-yl)-1H-imidazol-4-yl)pentanamide])84

� Other secretase inhibitors
—Etazolate (EHT-0202)85,86

—Pioglitazone hydrochloride (Actos)87,88,115

—Rosiglitazone maleate (Avandia)87,88,115

� Anti-inflammatory Agents
� Nonsteroidal anti-inflammatory drugs89-96

� Curcumin100-104

� Drugs Targeting Tau
� NAP (Asn-Ala-Pro-Val-Ser-Ile-Pro-Gln; NAPVSIPQ)106-108

� Antibodies to tau116

� Lithium chloride112,113

� Methylene blue (Rember)117

� Drugs Approved for Other Purposes
� Latrepirdine (Dimebon)119-121

� Etanercept (Enbrel)125-127

� Sildenafil citrate (Viagra)128

� Lovastatin (Mevacor)114

Figure. Investigational medications for Alz -
heimer disease in clinical trials or animal
studies. *The semagecestat clinical trials (ie,
IDENTITY and IDENTITY-2) were stopped in
August 2010 because cognitive function
appeared to decline more rapidly in treated
patients than in control groups.80



with Parkinson disease increased CSF
levels of  �-amyloid,20 and M1 receptor
knockout in amyloid precursor protein
(APP)-transgenic mice also increased �-
amyloid deposition.21 These results indi-
cate that treatments that increase cholin-
ergic function may slow progression of
Alzheimer disease by decreasing �-amy-
loid accumulation.  

The M1/M4 agonist xanomeline
improved cognition and decreased
behavioral disturbances in patients with
Alzheimer disease, but adverse gas-
trointestinal effects limited its use.22,23

Xanomeline is currently being tested for
its usefulness in treating individuals with
schizophrenia.24 Unfortunately, stimu-
lation of M4 receptors by xanomeline
might mitigate the drug’s beneficial
effects on �-amyloid.11 Nevertheless, a
combination of xanomeline and tacrine
hydrochloride (the first of the acetyl-
cholinesterase inhibitors to be clincially
used for Alzheimer disease) is now being
tested.25

The orthostatic agonist AF267B is
more selective for M1 receptors than is
xano-meline.10,26 It was originally tested
in patients with Alzheimer disease, but it
caused excessive salivation. As a result,
it has since gone through phase 1 and
phase 2 clinical trials for treatment of
patients with xerostomia.27

� Allosteric M1 Agonists—Many G
protein–coupled receptors contain
allosteric binding sites that are separate
from the orthostatic binding site for the
neurotransmitter.28 The orthostatic mus-
carinic binding site is highly conserved,
making development of agonists with
strong receptor selectivity difficult.28,29

For this reason, a number of newer
agents have been developed to target the
allosteric sites associated with M1 recep-
tors.30,31

Allosteric sites might differ more
between different receptor subtypes than
do orthorstatic sites, allowing for the
development of highly specific drugs.
Stimulation of an allosteric site may
enhance the binding of an agonist, or it
may have distinct actions of its own to
increase signal transduction. Issues that
need to be clarified with allosteric M1
agonists include the degree to which they
are orally available and the effect of their

interaction with the allosteric receptor.
Allosteric M1 agonists that have been
developed and tested in animal tests or
clinical trials include AC-42 (4-n-butyl-1-
[4-(2-methylphenyl)-4-oxo-1-butyl]-
piperidine; Acadia Pharmaceuticals Inc,
San Diego, California) and its analogue
77-LH-28-1 (1-[3-(4-butyl-1-piperidinyl)
propyl]-3,4-dihydro-2(1H)-quinolone;
GlaxoSmithKline, Brentford, England),30

as well as AC-260584 (4-[3-(4-butyl -
piperidin-1-yl)-propyl]-7-fluoro -4H-
benzo[1,4]oxazin-3-one; Acadia Phar-
maceuticals Inc),32 TBPB (1-(1´2
-meth  ylbenzyl)-1,4´-bipiperidin-4-yl)-1H-
benzo[d]imidazol-2(3H)-one; Merck &
Co Inc, Whitehouse Station, New
Jersey),33,34 and BCQA (benzylquinoline
carboxylic acid; Merck & Co Inc).35

The allosteric agonists AC-42 and
77-LH-28-1 have similar activity in vitro,
but 77-LH-28-1 has been shown to have
better penetration into the CNS and to
stimulate rat hippocampal activity.33

Also, AC-260584 has been shown to
increase cognitive performance in an
animal model,32 but this compound has
not yet been tested in humans.  

The allosteric agonist TBPB is active
in vivo, it is highly selective for M1 recep-
tors,34 and it does not appear to cause
serious peripheral adverse effects, which
are often mediated by M3 receptors.27

This agent also induces NMDA-
receptor–mediated receptor currents in
the hippocampus, which is important
for learning and memory.34 In vitro
studies also show that TBPB decreases
the processing of APP into �-amyloid34—
an effect similar to that produced by pre-
vious M1 agonists. The allosteric agonist
BCQA produces no direct agonist
activity, but it shifts the dose-response
for acetylcholine on M1 receptors. It is
systemically active and reverses cognitive
impairment induced by scopolamine.35

The allosteric agonists may provide
a highly selective means of activating M1
receptors. This area of research continues
to be developed. Some of these drugs, if
they directly activate G protein–medi-
ated signal transduction, may overcome
the problem of M1 receptor uncoupling,
which has been shown to occur in
Alzheimer disease and which may limit
the effectiveness of orthostatic muscarinic
agonists.36-39

Nicotinic Receptor Agonists
The early findings of cholinergic loss sug-
gested that nicotinic receptors might be
a viable therapeutic target in patients
with Alzheimer disease. Indeed, nico-
tine was shown to produce some
improvement in attention and learning in
such patients.40,41 One subtype of nico-
tinic receptor, the �4�2 receptor, was tar-
geted with a nicotinic receptor agonist
called ABT-089 (2-methyl-3-(2-(S)-pyrro-
lidinylmethoxy)pyridine dihydrochlo-
ride; Abbott Laboratories, Abbott Park,
Illinois), which has been shown to reverse
scopolamine memory loss, targets the
�4�2 nicotinic receptor subtype.42 How-
ever, ABT-089 produced no statistically
significant improvement in patients with
Alzheimer disease in clinical trials.43

More recently, attention has focused
on the �7 subtype of nicotinic receptor,
because it is predominant in brain areas
showing cholinergic degeneration in
Alzheimer disease. �-amyloid binds to
this receptor, and its stimulation may
improve cognitive function.44-46 Stimu-
lation of the �7 nicotinic receptor has
also been shown to protect cells from �-
amyloid–induced degeneration,47 and
chronic administration of nicotine
decreases �-amyloid levels and prevents
loss of short-term memory in rats
receiving long-term �-amyloid infu-
sions.48 Thus, a number of new selective
agonists for the �7 receptor have been
developed. 

One �7 nicotinic receptor agonist,
A-582941 (2-methyl-5-(6-phenyl-pyri-
dazin-3-yl)-octahydro-pyrrolo[3,4-c]pyr-
role; Abbott Laboratories), decreased
hyperphosphorylation of tau protein in
Tg2576-transgenic mice that overpro-
duced APP.49 Another agonist, ABT-107
(5-(6-[(3R)-1-azabicyclo[2,2,2]oct-3-
yloxy]pyridazin-3-yl)-1H-indole; Abbott
Laboratories), improved cognition in
monkeys, rats, and mice, and it also
improved short-term recognition
memory when administered with the
acetylcholinesterase inhibitor donepezil
hydrochloride.50 Continuous infusion of
ABT-107 in tau/APP-double-transgenic
mice also reduced spinal tau hyper-
phosphorylation, suggesting that this
approach may be useful in treating
patients with Alzheimer disease.49 This
drug has recently been tested in normal
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plaques, solanezumab binds to soluble
�-amyloid and should be able to increase
clearance of �-amyloid from the body.71

Early studies suggest that solanezumab
decreases the amount of �-amyloid in
neuritic plaques.72 

A number of other monoclonal anti-
bodies are in various stages of develop-
ment and testing. Ponezumab (PF-
04360365), an antibody targeted to the
free carboxy terminus of �-amyloid 1-
40,73 has undergone preliminary human
trials and has been shown to increase
CSF �-amyloid.74,75 Monoclonal anti-
bodies in earlier stages of development
include GSK-933776, Gantenerumab (R-
1450), and MABT-5102A, as well as an
immunoglobulin G2 antibody to �-amy-
loid.52,69

As with the vaccine approach, it
seems likely that drugs targeting �-amy-
loid would need to be given to patients
early in the course of disease—before
neurodegeneration becomes severe
enough to impair cognitive function.

Secretase Inhibitors
Another area of drug development
involves the targeting of �-secretase, one
of the enzymes required for production
of �-amyloid from APP.76,77 Developing
specific drugs to inhibit this enzyme is
complicated by the fact that �-secretase
has many functions in the body. For
example, it interacts with several neu-
ronal factors, as well as with the Notch
receptor, which is involved in cell dif-
ferentiation.76 Thus, toxicity may be a
problem with these drugs. Nevertheless,
a number of �-secretase inhibitors are
being tested.  

Semagecestat (LY-450139), a �-sec-
retase inhibitor that reduces �-amyloid
levels in the CNS, was being studied in
two clinical trials.78,79 However, these
trials (ie, IDENTITY and IDENTITY-2)
were recently stopped because cognitive
function appeared to decline more
rapidly in the treated patients than in the
control groups.80 It is possible that the
failure of this drug may also be a result
of insufficient selectivity for �-secretase as
opposed to Notch. 

Some types of �-secretase inhibitors
currently under development have less
harmful effects on the Notch receptor
than previously tested types. One of these

to be at high risk. 
The CAD-106 vaccine, currently in

clinical trials, was found to cause
decreases in levels of �-amyloid in ani-
mals, and it did not cause CNS inflam-
mation in early trials with humans.63 Sev-
eral other Alzheimer disease vaccines
(eg, ACC-001, ACI-24, UB-311, V-950)
have been developed and are in early
stages of clinical trials.52 Short peptides
that mimic parts of �-amyloid are also
currently being tested.64 A nonviral amy-
loid vaccine has shown promise in ani-
mals,65 but it has not yet been tested in
humans.

Humanized Monoclonal Antibodies 
Another approach to decreasing levels
of �-amyloid is passive immunization
with antibodies targeting portions of the
�-amyloid molecule. Bapineuzumab
(AAB-001) is a humanized monoclonal
antibody to the N-terminus of �-amy-
loid. Two phase 2 trials have been con-
ducted with this drug. In one trial, cortical
�-amyloid load was decreased.66 In the
other trial, no statistically significant dif-
ference in cognitive function was found
between the treatment group and the
placebo group.67 Interestingly, bap-
ineuzumab appeared to produce some
beneficial cognitive effects in individuals
who did not have the e4 allelle of the
apolipoprotein E (ApoE) gene, but those
results were not statistically significant.66 

The most serious adverse effect in
both bapineuzumab studies66,67 was cere-
bral vasogenic edema, which occurred
in almost 10% of study participants. This
adverse effect seemed to correlate with
higher doses of bapineuzumab and with
presence of the ApoE e4 allele. This
finding is unfortunate, because the ApoE
e4 allele is a risk factor for Alzheimer dis-
ease. 

Treatment with bapineuzumab has
also been found to reduce tau levels in
patients with Alzheimer disease in two
clinical trials.68 A phase 3 clinical trial is
currently being conducted with bap-
ineuzumab.69

Solanezumab (LY2062430), a mon-
oclonal antibody to a fragment of �-amy-
loid (�-amyloid 13-28), may recognize
some variants of �-amyloid that are
unrecognized by bapineuzumab.70 In
contrast to bapineuzumab, which targets

human controls, in whom it appeared to
be well tolerated, with good pharma-
cokinetic findings and only mild adverse
effects.51

Another �7 nicotinic receptor ago-
nist, EVP-6124 (Elan Pharmaceuticals,
Dublin, Ireland), has undergone one clin-
ical trial,52 and a phase 2 trial of this drug
is currently recruiting participants (Clin-
icalTrials.gov identifier No. NCT010
73228). In the initial trial, 48 participants
with mild to moderate Alzheimer dis-
ease were treated for 1 month with EVP-
6124, in addition to an acetylcholin -
esterase inhibitor that they had
pre v iously been taking.53 No serious
adverse effects occurred in the study par-
ticipants, and some improvement was
observed in assessments of attention,
verbal fluency, and executive func-
tion.52,53 Thus, agonists of the nicotinic
�7 receptor may have potential for treat-
ment of patients with Alzheimer disease.

Agents That Target �-Amyloid
Vaccines
As previously noted, one of the patho-
logic hallmarks of Alzheimer disease is
the presence of neuritic plaques con-
taining the neurotoxic peptide �-amy-
loid. Thus, reducing levels of �-amyloid
in the brain might slow the progression
of Alzheimer disease. A vaccine devel-
oped against �-amyloid, AN1792, was
found to be effective in mouse models
in which �-amyloid was overproduced.54

Transgenic mice with amyloid deposits
that were given the vaccine showed a
substantial decrease in �-amyloid levels
in their brains, as well as improvement in
cognitive function.55,56

In a human trial with the AN1792
vaccine, levels of �-amyloid appeared to
decrease. Unfortunately, meningoen-
cephalitis developed in some patients,
leading to termination of the trial.57-59

Levels of �-amyloid and tau were found
to be low in autopsies of 2 patients who
had received the vaccine.59-61 However,
cognitive function was not significantly
improved in the overall study popula-
tion.62 These findings suggest that over-
production of �-amyloid occurs for many
years before the onset of Alzheimer dis-
ease symptoms, and that—to be effec-
tive—vaccine administration would need
to occur much earlier in patients deemed



�-secretase inhibitors, begacestat (GSI-
953), decreased plasma levels, but not
CSF levels, of �-amyloid in humans.81,82

Another �-secretase inhibitor, BMS-
708163, decreased CSF levels of �-amy-
loid in humans.83 A third �-secretase
inhibitor, PF-3084014 ([(S)-2-((S)-5,7-
difluoro-1,2,3,4-tetrahydronaphthalen-3-
ylamino)-N-(1-(2-methyl-1-(neopenty-
lamino)propan-2-yl)-1H-imidazol-4-yl)pe
ntanamide]), decreased plasma and CSF
levels of �-amyloid in animals, but only
plasma levels in humans.84

Stimulation of �-secretase leads to
non-amyloidogenic processing of APP.
Muscarinic agonists increase �-secretase
activity, and a number of other drugs
are being investigated for this potential.52

Etazolate (EHT-0202) is a �-aminobutyric
acid (GABAA) receptor modulator that is
in a phase 2 trial in patients with
Alzheimer disease.85,86

Inhibition of �-secretase (�-site APP-
cleaving enzyme [BACE1]), which
cleaves APP to produce �-amyloid, is
another approach to treatment of patients
with Alzheimer disease.52 As with �-sec-
retase, this enzyme has multiple func-
tions, and selective drugs have not yet
been developed. The type 2 diabetes mel-
litus drugs rosiglitazone maleate
(Avandia; GlaxoSmithKline, Brentford,
England) and pioglitazone hydrochlo-
ride (Actos; Takeda Pharmaceuticals
North America, Deerfield, Illinois) inhibit
�-secretase, but thus far beneficial effects
have not been reported in clinical trials of
these drugs for Alzheimer disease.87,88

Anti-inflammatory Agents
Inflammation is considered to be an
important component of Alzheimer dis-
ease, and epidemiologic studies have
suggested a beneficial effect from nons-
teroidal anti-inflammatory drugs
(NSAIDs) in decreasing the risk of
Alzheimer disease.89-91 Some NSAIDs
have been shown to decrease �-amyloid
and tau levels in animal models92—
effects that may be the result of inhibition
of APP-associated �-secretase.76,93 Clinical
trials have been conducted with several
of these NSAIDs.  

The ADAPT study found no
improvement from treatment with the
NSAIDs naproxen or celecoxib on cog-
nitive function in older adults, and the

trial was stopped early because of car-
diovascular adverse effects associated
with naproxen.94,95 A trial investigating
ibuprofen for use against Alzheimer dis-
ease was also disappointing, showing
no statistically significant decrease in cog-
nitive decline, though that trial did detect
a small, but not statistically significant,
beneficial effect in patients who had the
ApoE e4 genotype.96 

Research results suggest that the
neuroprotective effects of NSAIDs occur
primarily in younger patients (ie, those
younger than 65 years),89 and that
NSAIDs may actually increase neuronal
damage in some patients with Alzheimer
disease.97

Interestingly, the incidence of
Alzheimer disease is lower in India than
in many developed countries.98,99 Evi-
dence shows that levels of �-amyloid
and tau are lower in people who con-
sume large amounts of curcumin,100,101 a
component of turmeric that inhibits �-
secretase.102 Evidence further shows that
curcumin protects against �-amyloid tox-
icity,103 and decreases �-amyloid in
Tg2576 transgenic mice.104 Thus far, how-
ever, clinical trials of curcumin have
demonstrated no improvement in cog-
nitive function in patients with Alz -
heimer disease.105

These approaches to decreasing �-
amyloid production may work best as
preventive measures, before symptoms
appear, because once the plaques and
tangles have formed, neuronal damage is
irreversible.

Drugs That Target Tau
Much of the discussion in the present
article has focused on drugs that affect
production of �-amyloid. However, the
other hallmark of Alzheimer disease is
the presence of neurofibrillary tangles
containing the tau protein. Tau stabilizes
microtubules in neurons and is normally
phosphorylated. In Alzheimer disease,
tau appears to become hyperphospho-
rylated, which may contribute to desta-
bilization of microtubules.106 The hyper-
phosphorylated tau may be incorporated
into neurofibrillary tangles.

One approach used with transgenic
mice has involved NAP (Asn-Ala-Pro-
Val-Ser-Ile-Pro-Gln; NAPVSIPQ), an
octapeptide that prevents disruption of

microtubules by binding to tubulin.
Administration of this compound
decreased hyperphosphorylation of tau
and improved cognitive function in
mice.107,108 This drug has entered a clin-
ical trial.106

Another approach focuses on
enzymes involved in phosphorylating
tau. One kinase, glycogen synthase
kinase-3 (GSK-3), has been shown to
cause hyperphosphorylation of tau when
overexpressed in transgenic mice,109,110

and inhibition of this enzyme decreases
levels of �-amyloid.111 Lithium chloride
inhibits GSK-3, and chronic administra-
tion of this substance has been shown to
decrease hyperphosphorylation of tau
and improve cognition.112,113 Lovastatin
(Mevacor; Merck & Co Inc)114 and the
thiadiazolidinones115 may also inhibit
GSK-3.

Inhibition of tau aggregation is yet
another approach. Immunotherapy with
antibodies directed at tau decreased tan-
gles in the Tg P301L mouse model.116

Methylene blue (Rember), which may
prevent aggregation of tau, displayed
promising results in a phase 2 clinical
trial,117 and it decreased levels of �-amy-
loid and cognitive deficits in 3xTg-AD-
transgenic mice.118 Other drugs are being
investigated for their ability to inhibit
tau aggregation, to target heat shock pro-
tein and increase clearance of tau, or to
stabilize the microtubules.106

Tau clearly presents a potential ther-
apeutic target in Alzheimer disease.
However, as with other medications,
treatment would be most useful if initi-
ated early in the course of disease, before
the onset of massive neurodegeneration.

New Uses for Old Drugs
Latrepirdine
Latrepirdine (Dimebon; Medivation Inc,
San Francisco, California; Pfizer Inc, New
York, New York) is a nonselective anti-
histamine that was marketed in Russia
for a number of years. Latrepirdine
inhibits acetylcholinesterase and blocks
NMDA receptors, and it has been shown
to improve cognitive function in rats with
cholinergic loss.119 Thus, some re -
searchers thought that this drug might
combine the beneficial effects of an acetyl-
cholinesterase inhibitor with those of
memantine.  
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Results of a clinical trial of 14
patients with Alzheimer disease in Russia
suggested that latrepirdine produced
substantial improvement in cognitive
function.119 A subsequent clinical trial in
Russia with 89 patients showed statisti-
cally significant improvement in cogni-
tion and activities of daily living with
latrepirdine.120 These findings led to the
establishment of a similar, but larger (598
participants), clinical trial of latrepirdine
for Alzheimer disease in the United
States. In that US trial, no statistically sig-
nificant difference was detected between
the treatment and placebo groups.120,121

Ongoing studies are attempting to deter-
mine reasons for the discrepancies
between the Russian and US studies.

Etanercept 
A number of studies have suggested that
the inflammatory cytokine tumor
necrosis factor � (TNF-�) may play a role
in the pathogenesis of Alzheimer dis-
ease.122 TNF-� increases the production
of �-amyloid,123 and blockade of TNF-�
decreases toxicity of �-amyloid.124 Etan-
ercept (Enbrel; Amgen Inc, Thousand
Oaks, California), a TNF-� inhibitor, is
currently approved by the US Food and
Drug Administration for treatment of
patients with rheumatoid arthritis. Two
reports have found improvement in
aphasia, verbal fluency, and cognition in
patients with Alzheimer disease after
perispinal administration of entera-
cept.125-127 Another clinical trial on the
use of enteracept for Alzheimer disease
is scheduled but has not begun recruiting
participants (ClinicalTrials.gov identifier
No. NCT01068353).

Phosphodiesterase-5 Inhibitors
In a study of double transgenic (ie,
human APP/presenilin 1) mice with
pathologic characteristics of Alzheimer
disease, treatment with sildenafil citrate
(Viagra; Pfizer Inc, New York, New
York), a drug that increases cyclic guano-
sine monophosphate (cGMP) levels by
inhibiting phosphodiesterase-5,
improved memory and decreased �-
amyloid levels in the brain.128 Cyclic
guanosine monophosphate levels are
also increased by drugs that increase
nitric oxide levels. Nitric oxide synthase
knockout mice that overexpressed APP

showed increased �-amyloid pathologic
characteristics.129 

Cyclic guanosine monophosphate
increases phosphorylation of cyclic
adenosine monophosphate (cAMP)-
responsive element binding factor
(CREB). By contrast, �-amyloid inhibits
CREB phosphorylation, which may be
one of the mechanisms involved in �-
amyloid–mediated neuronal stress. The
effect of �-amyloid on CREB phospho-
rylation can be prevented by analogues
of cGMP or by medications that increase
nitric oxide levels, suggesting that
increasing nitric oxide might be another
potential therapeutic approach. 

Selective inhibitors of phosphodi-
esterase-5 are being developed for pos-
sible use in Alzheimer disease. Because
phosphodiesterase-5 inhibitors are
widely used in older men for erectile
dysfunction, epidemiologic evidence
may demonstrate whether the incidence
of Alzheimer disease is decreased over
time in this population.

Diabetes Mellitus Drugs
A postmortem analysis of patients who
were treated with insulin and other med-
ications for diabetes mellitus revealed
that levels of neuritic plaques were sub-
stantially lower in individuals given a
combination of insulin and oral agent
than in other individuals.130 Other
research has suggested that patients with
Alzheimer disease who take diabetes
mellitus medications show less cogni-
tive decline than other patients with
Alzheimer disease.131 The diabetes mel-
litus drugs rosiglitazone and pioglita-
zone are known to inhibit the �-secre-
tase that is involved in production of
�-amyloid.88 These findings have led to
suggestions that insulinlike hormones
might provide a new avenue for treat-
ment of patients with Alzheimer dis-
ease.132 However, as previously indi-
cated, clinical trials of these drugs have
not shown any effectiveness for
Alzheimer disease.133

Statins
The presence of neuritic plaques is cor-
related with high cholesterol levels,134

and elevated cholesterol may increase �-
amyloid production.135,136 Several clin-
ical trials have been conducted to deter-

mine whether using statins (3-hydroxy-
3-methylglutaryl coenzyme A reductase
inhibitors) to decrease cholesterol levels
will also reduce the incidence or decrease
symptoms of Alzheimer disease. Unfor-
tunately, results of these studies have
not been encouraging, though it is likely
that the studies initiated drug treatment
too late in the course of the disease.137,138

Perhaps aggressive management of high
cholesterol levels, which now occurs
commonly in clinical practice, may lead
to an overall decline of Alzheimer dis-
ease over the next few decades.  

Other Approaches
A number of other approaches to the
treatment of patients with Alzheimer dis-
ease are being pursued. Some of these
approaches include drugs to decrease
aggregation of �-amyloid; new NMDA
antagonists designed to reduce excito-
toxicity; various antioxidants; and drugs
or cytokines that may stimulate neuronal
regeneration.52,139,140

Summary
Many of the newer treatments discussed
in the present article have not been effec-
tive in ameliorating the symptoms of
Alzheimer disease. One conclusion that
could be drawn is that these treatments
do not address appropriate targets in
Alzheimer disease. With the exception
of the cholinergic receptor agonists,
which target neuronal dysfunction, many
treatments are designed to affect degen-
erative processes that probably begin
many years before symptoms are seen.  

Therefore, a number of approaches
are under investigation to develop new
treatments for patients with Alzheimer
disease. The present review has focused
primarily on medications that have
entered clinical trials. A key consideration
with the majority of approaches dis-
cussed in the present review is the impor-
tance of initiating treatment early, before
clinical symptoms of Alzheimer disease
appear. Prevention of the neuropatho-
logic cascade is likely to be more suc-
cessful than attempts to manage the dis-
ease after neurodegeneration is sub -
stantial enough to cause impairment of
cognitive function.  

For this reason, an early diagnostic
tool that can reliably predict the likeli-
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hood of development of Alzheimer dis-
ease is crucial to the success of treatment.
Recently, a method was reported that
holds great promise for early diagnosis.
By analyzing a mixture of �-amyloid 1-42,
phosphorylated tau, and total tau in CSF,
De Meyer and colleagues141 were able to
classify patients with Alzheimer disease
or with mild cognitive impairment that
eventually developed into Alzheimer dis-
ease. Nevertheless, until such diagnostic
markers are widely available, it is imper-
ative that patients begin treatment early—
as soon as they begin to manifest symp-
toms of cognitive impairment.
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host a peer reviewer seminar during the American Osteopathic Association’s 115th Annual
Osteopathic Medical Conference and Exposition in San Francisco, California. Osteopathic physi-
cians, researchers, and others interested in best practices in peer review are invited to attend this
event, which will be held in room 250-262 in the Moscone Center from 2:00 PM to 4:00 PM. Con-
tact JAOA staff at jaoa@osteopathic.org for more information.


