ILLUSTRATIONS

Plates

Following page 204

- 1 Main tropical deforestation fronts in the 1980s and 1990s
- 2 Natural and modified soils from Amazonia
- 3 View of a blowdown area north of Manaus, Amazonas, Brazil, and Giuliano Guimarães assessing vegetation dynamics in a blowdown plot
- 4 Age classes of second-growth forests regrowing following agricultural abandonment north of Manaus, Amazonas, Brazil
- 5 Map of forest areas serving as carbon sources, sinks, or neutral areas within La Selva Biological Station, Costa Rica
- 6 Second-growth forests dominated by several *Vismia* species and by *Cecropia sciadophylla* in canopy in central Amazonia
- 7 Aerial view of Anak Krakatau volcano, 2005
- Time series of regeneration following a landslide at Luquillo Experimental Forest, Puerto Rico
- 9 Scar of the landslide and mudslide on Casita volcano in western Nicaragua caused by Hurricane Mitch
- Mamore River in lowland Bolivia at the foot of the Andes, from the International Space Station, 2003
- 11 Examples of arrested succession
- 12 Early forest regeneration on cleared land in Atewa Range Forest Reserve, Ghana
- 13 Tracks of all tropical cyclones that formed worldwide, 1985–2005
- 14 Regeneration of burned forest in East Kalimantan
- 15 Experimental cut-and-burned Río Negro plot
- 16 Photos of the Xiaoliang reforestation experiment
- 17 One-year-old experimental planting of balsa in a field infested with invasive bracken fern in Chiapas, Mexico
- 18 Assisted natural regeneration practices in *Imperata* grasslands of the Philippines

Figures

- 1.1 Benuaq Dayak phases of forest regeneration / 2
- 1.2 Six stages of forest regeneration as defined by the Maya people / 3
- 1.3 Geographic distribution of humid tropical forest areas in 2005 / 8

- 1.4 Distribution of primary forests, naturally regenerated forests, and planted forests in 2010 / 9
- 2.1 Dispersal of modern humans out of Africa / 15
- 2.2 Photographs and drawings of projectile points from multiple *terra firme* sites in the Amazon basin / 20
- 2.3 Paleoenvironmental reconstruction for Kuk swamp catchment, Upper Wahgi valley, Papua New Guinea / 25
- 2.4 Late Holocene pollen data from Nyabessan, southern Cameroon / 27
- 2.5 Pollen percentage diagram for Lake Petén Itzá, Guatemala, over 8,305 calibrated years / 31
- 3.1 Chronology of practices and forms of plant exploitation in Upper Waghi valley, Papua New Guinea / 34
- 3.2 Reconstruction of landscape complex of causeways, canals, and raised fields in Llanos de Mojos, Bolivia / 36
- 3.3 Geoglyphs from Fazenda Colorada site in the Rio Branco region of Acre State, Brazil, and map of 281 earthworks in Acre State, Brazil / 38
- 3.4 Known occurrence of *terra preta* sites in central Amazonia and representation of *terra preta* sites and settlements on pre-Columbian river bluffs in Amazonia / 46
- 4.1 Schematic diagram illustrating qualitative trends in characteristics of disturbances that impact tropical forests / 58
- 4.2 Size frequency distribution of canopy gaps in old-growth forest at La Selva Biological Station, Costa Rica / 59
- 4.3 Spatial distribution of forest patches exhibiting disturbance in oldgrowth tropical rain forest at Los Tuxtlas, Veracruz, Mexico / 68
- 5.1 Conceptual illustration of criteria for defining early successional forest, late successional forest, and old-growth forest / 85
- 5.2 Changes in density, establishment, and mortality of trees during succession following shifting cultivation near San Carlos de Río Negro, Venezuela / 86
- 5.3 Successional trajectories in the relative abundance of second-growth specialists, old-growth specialists, and generalists in regenerating wet tropical forest in lowland Costa Rica / 88
- 5.4 Changes in forest structure and composition during succession in Nizanda, Oaxaca State, Mexico / 92
- 6.1 Conceptual framework for comparing conditions that initiate successions / 99
- 6.2 Basal area and average density of stems in upper and lower zones of landslides in Luquillo Experimental Forest, Puerto Rico / 102

xii: Illustrations

- 6.3 Primary succession along a simplified meander loop transect at Cocha Cashu Biological Station, Peru / 109
- 7.1 Diversity of shrubs and trees parallel to a remnant forest patch following forest clearance and gold mining in Mato Grosso, Brazil / 116
- 7.2 Decline in the density of early successional trees as a function of the number of prior cycles of shifting cultivation in Kalimantan, Indonesia / 117
- 8.1 Effects of tree size on bark thickness and effects of bark thickness on fire-induced tree mortality in Sungai Wain forest in East Kalimantan, Indonesia / 140
- 9.1 Most common potential fates of postextraction forests in Indonesia / 147
- 9.2 Maps of forest areas subjected to conventional and reduced-impact logging at Fazenda Cauaxi, Pará, Brazil / 149
- 9.3 Average percent difference in species richness between logged and unlogged forests in Sabah, Malaysia, after 18 years of natural regeneration / 158
- 9.4 The mean density of recruits in two logged and two unlogged forests in northeastern India / 161
- 9.5 Interactions among climate change, logging, drought, and forest fire that lead to positive feedbacks and Amazon forest dieback / 163
- 10.1 Changes in environmental conditions during a 60-year chronosequence of secondary succession in 17 dry forest sites following shifting cultivation / 171
- 10.2 Density and species richness of holo-epiphytes and hemi-epiphytes in the Barro Colorado Nature Monument in central Panama / 174
- 10.3 Variation in leaf traits across 15 rain forest tree species in eastern Bolivia in relation to a species successional index / 182
- 10.4 Species composition of different canopy strata across a successional chronosequence in two study areas of the Bolivian Amazon / 186
- 10.5 Community-level abundance-weighted mean of 23 functional traits during forest succession in Nizanda, Oaxaca, Mexico / 188
- 10.6 General scheme for community assembly during succession within a single tropical forest area / 193
- 11.1 Coordinated changes in biodiversity, forest structure, and ecosystem functions during forest regeneration / 197
- 11.2 Dynamics of carbon and nitrogen in aboveground biomass and mineral soil pools in intact old-growth forests, pastures, cornfields,

- and second-growth forests in the Los Tuxtlas Region of Veracruz, Mexico / 202
- 11.3 Mean absolute and relative change in soil organic carbon stocks during different types of land-use changes / 203
- 11.4 Annual rainfall and the rate of aboveground biomass accumulation in tropical dry forests / 210
- 12.1 Species interactions during a plant's life cycle / 224
- 12.2 Rank-abundance plots for all ants in three ages of regenerating forest and mature forest / 228
- 12.3 Plant traits and herbivore abundance in second-growth and old-growth forests in Papua New Guinea / 234
- 12.4 The percentage of vertebrate-dispersed species in different ages of forest regrowth following shifting cultivation in southeastern Atlantic Forest of Brazil / 236
- 12.5 The percent of species and stems of trees with different modes of pollination in five second-growth and three old-growth forests in northeastern Costa Rica / 242
- 13.1 The restoration staircase / 247
- 13.2 Diverse stakeholder groups and their goals in tropical reforestation / 248
- 13.3 Experimental reforestation treatments on degraded pasture land near Las Cruces Biological Station in southern Costa Rica / 267
- 14.1 Changes in forest cover in the Chorotega region of Costa Rica, 1960-2005 / 282
- 14.2 Hierarchical framework for viewing causal factors affecting forest regeneration and land-use change / 285
- 14.3 Changes in forest cover in Vietnam, 1900-2005 / 289
- 14.4 Gain and loss of woody vegetation in four vegetation zones across Latin America and the Caribbean, 2001–2010 / 292
- 14.5 Carbon certificate issued to Michael Bloomberg by Plan Vivo, February 2008 / 299
- 15.1 Graphical depiction of the gap in policies and guidelines for managing natural forest regeneration and reforestation / 306

Tables

- 2.1 Late Quarternary geological periods described in this book / 14
- 5.1 Causes, processes, and specific factors that drive variation in successional pathways within a region or climate zone / 75
- 5.2 Ecological criteria for characterizing forest successional stages and their ecological determinants / 76

xiv: Illustrations

- 5.3 Comparison of successional stages of tropical forests under several proposed classification schemes / 77
- 5.4 Common pioneer tree species from tropical forests regions of the world / 78
- 5.5 Vegetation dynamics processes associated with stages of secondary succession in tropical forests / 84
- 7.1 Ten local and landscape conditions that favor rapid and diverse colonization of former cultivated fields or pastures in tropical regions / 112
- 7.2 Effects of intensity of pasture management on woody regeneration eight years after pasture abandonment in Paragominas, Pará State, Brazil / u_5
- 8.1 Classification of tree species based on level of damage sustained during a hurricane and posthurricane responsiveness / 128
- 10.1 Seed and seedling traits of pioneer and shade-tolerant tree species in tropical forests / 176
- 10.2 Leaf and wood traits of postseedling stages of pioneer and shadetolerant tree species / 179
- 11.1 Concentrations of nitrogen, carbon, sulfur, and phosphorus in components of aboveground biomass in second-growth forests of the Los Tuxtlas region, Mexico / 209
- 11.2 Estimated time required to reach old-growth forest levels of aboveground biomass during forest regeneration in different regions and forest types / 211
- 13.1 Principal tree species planted or selectively managed in enriched fallow systems in tropical regions of the world / 257
- 13.2 Merits of different ecological forest restoration approaches / 262
- 14.1 Biophysical and landscape factors that are expected to favor spontaneous forest regeneration in tropical regions / 280
- 14.2 Socioeconomic drivers of reforestation success / 286
- 14.3 Socioeconomic drivers associated with forest regeneration / 288
- 15.1 Ecosystem services provided by natural regeneration and reforestation in tropical forest watersheds / 313

Boxes

- 2.1 Arboriculture, Forest Gardening, and Anthropogenic Forests / 18
- 2.2 Species Extinctions Linked to Prehistoric Human Colonization / 22
- 3.1 Did Postcontact Forest Regrowth Contribute to the Little Ice Age? / 42
- 4.1 Aubréville's Forest and the Mosaic Theory of Forest Regeneration / 62
- 5.1 Forest Pioneers / 80

- 6.1 Regrowth of Vegetation on the Krakatau Islands, Indonesia / 104
- 7.1 Arrested and Deflected Successions / 118
- 7.2 Remnant Trees and Nucleation of Postagricultural Land / 122
- 8.1 Forest Regeneration following Hurricane Joan in Southern Nicaragua / 130
- 8.2 Drought, Fire, and Postfire Regeneration of Rain Forests in East Kalimantan, Indonesia / 142
- 9.1 Vegetation Succession on Logging Roads and Skid Trails / 150
- 9.2 Multiple Disturbances, Positive Feedbacks, and Forest Dieback in Amazonia / 164
- 10.1 The Growth-Survival Trade-Off in Tropical Forests / 168
- 10.2 Establishment of Endemic Tree Species and Old-Growth Specialists during Succession / 189
- 11.1 A Pioneering Study of Nutrient and Biomass Dynamics following Shifting Cultivation in the Río Negro Region of Venezuela / 200
- 11.2 Carbon Sequestration in Tropical Regrowth Forests / 204
- 12.1 Interaction Networks and Mobile Links / 222
- 12.2 Dung Beetles, Secondary Seed Dispersal, and Forest Regeneration / 230
- 13.1 Reforestation of Degraded Land in Guangdong, China / 254
- 13.2 Assisted Natural Regeneration of Grasslands in the Philippines / 260
- 13.3 Reforestation in the Atlantic Forest Region of Brazil / 264
- 14.1 Socioecological Drivers of Forest Regrowth in Puerto Rico / 276
- 14.2 Incentives for Reforestation and Forest Regeneration in Tropical Countries / 296
- 15.1 Raising Forests and Hope through Reforestation and Restoration Concessions / 314

xvi : Illustrations