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Treatment of solutions of NasSny in liquid ammonia with
CuMes (Mes = mesityl) and 18-crown-6 afforded crystals of
the composition Nag[Sng]-(NH3)13. The structure features
anionic units {Na7[Sng]p} and separate Na cations, both
fully solvated by ammonia molecules.
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Introduction

The solution chemistry of nine-atomic group 14
Zintl clusters [E9]*~ (E = Si—Pb) shows a fascinating
diversity. Mild oxidation or oxidative coupling of these
clusters lead to free radicals or dimeric, oligomeric and
polymeric structures of the elements [1-5]. Further
oxidation even results in new element allotropes with
tetrahedrally connected tetrel atoms [6], and structures
that are exclusively built up from Ey clusters are pre-
dicted to be stable [7, 8]. Additionally, Eg clusters can
serve as ligands in transition metal complexes or form
more complex intermetalloidal clusters [1-5, 9, 10].

Regarding the chemistry of the tetrahedral group
14 Zintl clusters [E4]*~, the number of species iso-
lated from solution-based reactions is rather limited,
even though A4E, Zintl phases (A = alkali metal) with
tetrahedral units have been known since 1953 [11].
[Pbs]* is the only known tetrahedral cluster anion that
has been extracted from an A4E4 phase. Crystals of

RbyPbs(NH3), were obtained from ammonia solutions
of Rb4Pb4 [12]

Recently tetrahedral [Sis]*~ and [Ge4]*~ clusters
as well as heteroatomic clusters with the composition
[Sis_.Ge,]*~ have been isolated from Ay E}7 — a Zintl
phase that simultaneously contains four-atomic [Es]*
and nine-atomic [E9]*~ clusters — as CuMes-stabilized
complexes [E4(CuMes)2]4’ (Mes = mesityl) [13—15].
Bare [Sna]*~ clusters are further accessible from re-
actions of alkali metals and elemental Sn or Ph4Sn in
liquid ammonia [12]. Related reactions of alkali met-
als and elemental Sn in molten 18-crown-6, in con-
trast, lead to the formation of nine-atomic [Sng]*~
clusters [16]. The isolation of a tetrahedral tetrastan-
nide from an ammonia solution of A4Sn4 has not yet
been described in the literature. In the course of our
investigations on soluble tetrahedral E4 clusters we re-
port here on results of reactions of A4Sny (A = Na, K)
phases and CuMes in liquid ammonia.

Results and Discussion

Addition of liquid ammonia to solid mixtures of
freshly prepared A4Sny phases (A = Na, K), CuMes
and 18-crown-6 yields deep-red suspensions. After
storing these reaction mixtures at —70°C for sev-
eral weeks, black crystals with hexagonal symme-
try can be isolated. In the case of A = K a single-
crystal X-ray structure determination has revealed
strongly disordered Sny4 clusters and no further elec-
tron density indicative of Cu atoms [17]. From
a mixture of NasSng, 18-crown-6 and CuMes, black
block-shaped crystals could be isolated after several
weeks of storage. A structure determination led to
the composition NagSns(NH3)13 (1, Fig. 1 and Ta-
ble 1). Next to two tetrahedral tetrastannide anions
eight sodium atoms and 26 solvate ammonia molecules
are present. Fragments of the initially used reac-
tant (CuMes)s or the sequestering agent 18-crown-
6 are absent. The bond lengths within the [Sna]*~
polyanion range between 2.946(1) and 2.950(1) A
and perfectly match those in the starting material
NasSnys (Sn—Sn distance: 2.975(2)—2.981(2) A) [18]
and also in A4Sny(NH3), (A = Rb, Cs; Sn—Sn dis-
tance: 2.896(1)—2.963(1) A) [12]. The bond angles are
in the narrow range between 59.97(1)° and 60.00° and
show that the structure of the [Sns]*~ clusters only
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Fig. 1. Structure of two tetrahedral tetrastannide anions
[Sn4]4* and their direct sodium coordination sphere in
Nay[Sng]-(NH3);3, 1. Atoms are drawn at the 70 % probabil-
ity level at 120 K. Solvate ammonia molecules are omitted
for clarity.

slightly deviates from an ideal tetrahedron (60°). Each
face of the [Sny]*~ tetrahedron is capped by a sodium
atom (Nal, Na2) with Sn—Na distances ranging be-
tween 3.321(3) and 3.423(1) A (Fig. 1, compare Na—
Sn distances in solid NasSny4: 3.355-3.534 A) [18].
Nal coordinates to two triangular faces of two [Sng]*~
clusters with the triangles having an eclipsed con-
formation. The coordination sphere of the Nal and
Na2 atoms is completed by three solvate ammonia
molecules each. A further Na atom is present in the
crystal structure (Na3, see Fig. 2). Na3 coordinates to
the N atoms of five ammonia molecules and shows
no direct interaction with the Sn atoms of the [Sns]*~
clusters. The Na-N distances in the range between
2.405(9) and 3.001(18) A are indicative of coordinat-
ing ammonia molecules rather than amide ions. Thus
a four-fold negative charge results for the cluster. In
NasSny each alkali metal atom directly coordinates to
the Sn atoms of tetrahedral Sny4 clusters [18]. The struc-
tural motif [Na;Sng]™ (see Fig. 1) is unique for tetra-
hedral Zintl clusters isolated from solution reactions,
but equivalents are already known in the neat solids
NaRb;Sig or NaRb;Ges [19, 20].

Conclusion

We investigated the solubility of A4Sng4 phases
(A =Na, K) in liquid ammonia. In the presence of
CuMes and 18-crown-6, NasSny was found to be sol-
uble with formation of deep-red suspensions, from
which crystals of the composition NasSngs(NH3);3 can
be grown. The role of CuMes and the sequestering

ammonia molecules are shown as open circles.

Table 1. Selected crystallographic and refinement data for

compound 1.

1
Empirical formula H39N;3NasSny
Formula weight, g mol~! 788.16
Temperature, K 120(2)
Crystal size, mm?> 0.3x0.2x0.2
Crystal system hexagonal
Space group P63/m
Unit cell dimensions
a, A 10.5623(4)
b, A 10.5623(4)
c A 29.6365(16)
Volume, A3/Z 2863.3(2) /4
Calculated density, gcm ™3 1.83
Absorption coefficient, mm ! 3.5
F(000), e 1496
0 range, deg 3.04-26.23
Refl. measured / unique / Rjp 28083 /1972 /0.0599
Completeness, % 99.7

Refinement method
Data / restraints / parameters

Full-matrix least-squares on F>
1972/ 0 / 73

Goodness-of-fit on F2 1.058

Ry / wRy [I >20(1)] 0.040/0.115
Ry / wRy (all data) 0.056/0.120
Largest diff. peak / hole, e A=3 3.948 / —0.671

agent for the formation of soluble Sny clusters is cur-

rently under investigation.

Experimental Section

General

All experiments were performed under argon atmosphere

using standard Schlenk and glove box techniques. CuMes
was prepared according to literature [21]. 18-Crown-6 was
sublimed under dynamic vacuum at 80 °C. Liquid ammonia
was dried and stored over sodium metal.



734

Note

Precursor synthesis

The binary Zintl phases A4Sny (A = Na, K) [18, 22-24]
were synthesized in fused tantalum tubes filled with a mix-
ture of 184 mg (8.00 mmol) Na and 950 mg (8.00 mmol) Sn
or 313 mg (8.00 mmol) K and 950 mg (8.00 mmol) Sn. Each
tantalum tube was heated to 500 °C for 48 h and afterwards

cooled to room temperature with a rate of 1.0 °C min~!.

Powder X-ray diffraction

Phase analysis of A4Sngy was performed using a Stoe
STADI P diffractometer (Ge(111) monochromator; Cu K
radiation) equipped with a linear position-sensitive detector.
For sample preparation the products were finely ground in an
agate mortar and filled into sealed glass capillaries. The sam-
ple was measured in Debye-Scherrer mode (26max = 60°).
Data analysis was carried out using the Stoe WINXPOW soft-
ware package [25].

Compound 1

NasSng (42.5mg; 0.075 mmol), 18-crown-6 (36 mg;
0.135 mmol) and MesCu (14 mg; 0.075 mmol) were weighed
into a Schlenk tube and dissolved in approximately 1 mL of
liquid ammonia at —78 °C. The resulting deep-red suspen-
sion was kept at —70 °C. 1 crystallized as black blocks after

19 weeks with approximately 25 % yield. The analogous re-
action leads in the case of A = K to a few crystals with hexag-
onal symmetry [17].

Single-crystal structure determination

The air- and moisture-sensitive as well as thermally very
unstable crystal of 1 was transferred from the mother liquor
into perfluoropolyalkyl ether oil at 213 K under a cold stream
of N». The selected single crystal was fixed in a glass cap-
illary and positioned in a cold stream of Ny (120 K) using
the crystal cap system. Data collection: Oxford-Diffraction
Xcalibur3 diffractometer (MoK, radiation). The structure
was solved by Direct Methods (SHELXS-97) [26] and re-
fined by full-matrix least-squares calculations against F2
(SHELXL-97) [27].

Further details of the crystal structure investigation
of 1 can be obtained from the Fachinformationszentrum
Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (fax:
(+49)7247-808-666; e-mail: crysdata@fiz-karlsruhe.de,
http://www.fiz-karlsruhe.de/request_for_deposited_data.html)
on quoting the depository number CSD-425862 (1).
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