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By heating of FeCl, and MnCl, in the ionic liquid [BMIm][OTf] (BMIm: 1-butyl-3-
meth%/limidazolium, OTT: trifluoromethanesulfonate), the compounds [BMIm][M(OTf)3] (M: Fetll,
Mn™ I) have been obtained as colorless crystals. Similarly, [BMIm][Li(OTf),] was synthesized b;/
heating of LiCl in [BMIm][OTf]. While the crystal quality of the [BMIm][M(OTf)3] (M: Fetll
Mn*1 products thus obtained is low, mild oxidation of Fe(CO)s or Mn;,(CO);o with Gely applied as
an alternative in the same ionic liquid allowed a slow growth of well-formed, needle-shaped crystals.
According to X-ray structure analysis based on single crystals, [BMIm][M(OTf)3] (M: Fe™ MntH)
crystals are monoclinic, and [BMIm][Li(OTf),] crystals are triclinic. All compounds form infinite
L [M(OTf)3] (M =Fe, Mn) and L[Li(OTf),] chains. The compounds have further been characterized
by FT-IR spectroscopy, energy-dispersive X-ray analysis (EDX), differential thermal analysis (DTA),
thermogravimetry (TG), and magnetic measurements.
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Introduction

Ionic liquids have become highly relevant to chem-
ical synthesis, including the preparation of com-
pounds and materials such as metal-organic coordi-
nation complexes, metal-organic frameworks, zeolites,
or nanoparticles [1 —4]. Recently, imidazolium-based
ionic liquids have received specific interest in inor-
ganic synthesis, due to their excellent redox stabil-
ity and their good solvent properties for many in-
organic compounds [5—7]. Depending on the prop-
erties of the counterion, several coordination com-
plexes and coordination polymers could already be ob-
tained [1-3,5-7]. Quite often unique coordinative
bonding and/or structural building units are observed
for compounds prepared in ionic liquids. This is due to
the non-coordinating properties of some ionic liquids,
favoring a coordination of ligands that is typically not
observed in the presence of conventional, coordinating
solvents (e. g., alcohols, amines).

Coordination complexes with the — in principle
— weakly coordinating [OTf]~ or [NTf,]” anions

were recently presented by Mudring and coworkers.
The octanuclear europium cluster [BMPyr]g[Eug(u4-
O)(u3-OH)12(2-OTH) 14 (11 -Th)2[(HOTT), 5 was syn-
thesized in the ionic liquid [BMPyr][OTf] (BMPyr:
butylmethylpyrrolidinium, OTf: trifluoromethanesul-
fonate) [8]. This polynuclear complex is surrounded
by a total of sixteen triflate anions, of which four-
teen coordinate as Up-ligands via corner-sharing of
two oxygen atoms of the europium-centered polyhe-
dron. The two remaining triflate anions coordinate as
Ui-ligands. In addition, a series of compounds with
the composition [MPPyr|,[AE(NTf),] (AE: alkaline
earth metal; x = 1, 2; y = 3,4) were obtained under
similar conditions [9]. Here, [MPPyr],[AE(NTf;)4]
(AE: Ca, Sr) exhibits separated [AE(NTf2)4]2_ com-
plex anions. As expected, [OTf]™ or [NTf;]~ do
not coordinate the metal center in the presence of
more strongly coordinating ligands. For example,
[Mny(bet)1o(H,O)4][Tf,N]g with a linear [Mng(bet);q
(H>0)4]" cationic complex (bet: MesNCH,COO, be-
taine) and [Nis(bet);2(H,O)¢][Tf2N];o with a chain-
like [Nis(bet);2(H2O)g]" cation contain [NTf,]~
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only as a non-coordinating anion [10]. There are
only few reports on complexes comprising [OTf]™
or [NTf,]” as a bidentate bridging ligand. Thus,
[MPPyr][Ba(NTf)3] contains infinite L[Ba(NTf,)3]~
chains [9]. Moreover, alkali and alkaline earth metal
triflates as well as silver triflate are known to exhibit
[OTf]™ as a bridging ligand in layers [11—14].

As part of our studies regarding the potential of ionic
liquids in inorganic synthesis [15, 16], we obtained
the new coordination compounds [BMIm][Fe(OTf)3],
[BMIm][Mn(OTf)3] and [BMIm][Li(OTf);]. The title
compounds were prepared by simple heating of FeCl,,
MnCl, and LiCl in [BMIm][OTf] as the ionic liquids
(BMIm: 1-butyl-3-methylimidazolium). Well-shaped
crystals of [BMIm][M(OTf)3] (M: Fet I, Mn™) were
alternatively obtained by mild oxidation of Fe(CO)s
or Mny(CO);o with Gely in the respective ionic lig-
uid. All compounds contain infinite LM(OTH)3] (M:
Fe, Mn) or L[M(OTf);] chains (M: Li), in which
iron/manganese and lithium are coordinated by six and
four [OTf]™ anions, respectively, which serve as biden-
tate bridging ligands.

Results and Discussion

For optimal crystal growth, the compounds [BMIm]
[M(OTf)3] (M: Fe, Mn) were prepared by mild ox-
idation of Fe(CO)s; or Mny(CO);y with Gely in
[BMIm][OTTf] as the ionic liquid. During the reaction,
Fe™"/Mn*® (in Fe(CO)s/Mn;,(CO)¢) were oxidized
according to the following equation to Fe*!l/Mn*!I
([BMIm][M(OTf)3], [BMIm][Mn(OTf)3]) whereas
Ge™V (Gely) was reduced to Ge™

2Fe(CO)s 4 Gely — 2Fe*™ + Ge® +41 +10CO
Mn, (CO) 10+ Gely — 2Mn>* 4+ Ge® 4+ 41~ 4+10CO

In this convenient redox reaction, the formation
of Fel/Mn*!l and the crystallization of [BMIm]
[MHL(OTS);] are obviously retarded, which favors
crystal growth. The synthesis resulted in moisture-
sensitive colorless and well-shaped needles of the title
compounds. Crystals of [BMIm][Li(OTf),] were syn-
thesized by direct heating of dried LiCl in [BMIm]
[OTf] and led also to the formation of moisture-
sensitive, colorless and well-shaped needles. Interest-
ingly, simple heating of FeCl, and MnCl, in [BMIm]
[OTf] — analogous to the reaction of LiCl in [BMIm]

[OTf] — only led to small, irregularly formed and con-
joined crystals of [BMIm][M(OTf)3] (M: Fe, Mn).

The chemical composition of all title compounds
was verified, aside from X-ray structure analysis, by
EDX, FT-IR and DTA-TG. Thus, EDX analysis ev-
idences the presence of iron and manganese as well
as of sulfur and fluorine for [BMIm][M(OTf)3;] (M:
Fe, Mn). The measured metal-to-sulfur ratio of 1 : 2.8
([BMIm][Fe(OTf)3]) and 1 : 2.4 ([BMIm][M(OTf)3])
matches within the significance of measurement with
the expected ratio (1 : 3). For [BMIm][Li(OTf),], with
lithium as a light element, EDX analyses is not mean-
ingful. The presence of lithium was therefore verified
via flame spectroscopy, indicating the red emission
and the characteristic emission lines of lithium. FT-
IR spectroscopy evidences the presence of the cation
([BMIm]™) and the anion ([OTf]™) (Fig. 1). Due to
coordination of the oxygen atoms to the metal cen-
ter, the S—O valence vibrations between 1300 and
1100 cm~! are more expanded and slightly shifted to
higher wavenumbers compared to the pure ionic liquid.
According to TG analysis, all compounds show a one-
step decomposition at temperatures of 320—350 °C.
In addition, DTA exhibits weak endothermal peaks at
100-150 °C, indicating the melting points of the com-
pounds (Table 1).

X-Ray structure analyses based on single crystals
revealed [BMIm][M(OTf)3] (M: Fe, Mn) to crystal-
lize with monoclinic lattice symmetry and [BMIm]
[Li(OTf),] to crystallize in the triclinic space group P1
(Table 2, Fig. 2). The compounds are composed of in-
finite L [M(OTf),] chains. Herein, the metal atoms are

1.0 A

[BMIm][OTf] H.{ l [ | T

0.8

{JBMIm][Fe(OTf)]
0.6— }(\A

=
o (BMImIIMn(OTH),) 'y
g 04 ‘~
< |
2 02
E
'_

0.0-

4000 3000 2000 1000

Wavenumber (cm™)

Fig. 1. FT-IR spectra of [BMIm][M(OTf)3] (M: Fe, Mn) and
of the pure ionic liquid [BMIm][OT(] as a reference.
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Table 1. Melting points and decomposition temperatures
of [BMIm][Fe(OTf);], [BMIm][Mn(OTf);] and [BMIm]
[Li(OTf),] as well as of the ionic liquid [BMIm][OTf] as
a reference.

Compound Melting Decomposition
point temperature
(4] (§®)
[BMIm][OTf] —12 400
[BMIm][Li(OTf),] 98 300
[BMIm][Fe(OTf)3] 142 360
[BMIm][Mn(OTf)3] 153 350

interlinked by six (M: Fe, Mn) and four (M: Li) [OTf]~
anions that act as bidentate bridging ligands (Figs. 3,
4). The infinite chains are oriented parallel to each
other along the crystallographic b ([BMIm][M(OTf)3]
(M: Fe, Mn)) and c¢ axis ([BMIm][Li(OTf);]). In all
cases, the cations [BMIm]* are located between the
one-dimensional M(OTY), chains.

In [BMIm][M(OTf)3] (M: Fe, Mn), each metal cen-
ter is coordinated distorted octahedrally by six oxygen
atoms from six different [OTf]~ anions. The O-M-
O angles range from 83.2(1) to 93.3(1)° for [BMIm]
[Fe(OTf)3] and from 83.6(1)° to 95.9(2)° for [BMIm]
[Mn(OTf)3]. The trans-angles deviate slightly from
180° with 174.9(1)-178.2(1)° for [BMIm][Fe(OTf)3]
and 174.6(1)-178.2(1) for [BMIm][Mn(OTf)3]. In
[BMIm][Li(OTf),], the lithium atoms are coordi-
nated in distorted tetrahedra. Compared to the tetra-
hedral reference angle of 109.5°, the angles are al-
ternately widened and narrowed (104.9(2)-115.5(2)°).
The M-O distances with 206.0(1)-210.2(1) pm in
[BMIm][Fe(OTf)3] are slightly shorter than in [BMIm]
[Mn(OTf)3] (212.1(1)-215.6(1) pm), which corre-
lates with the radii of the divalent cations (Fe2*:
77 pm; Mn?t: 80 pm [17]). In the case of [BMIm]
[Li(OTf),]), the Li-O distances — as expected —
are much smaller (187.8(1)—193.0(1) pm). With re-
gard to known compounds that contain [OTf]™ as
a bidentate bridging ligand, the above M—O dis-
tances are comparably short (e.g. the mean Eu—
O distance is 239.8 pm in [BMPyr]g[Eug(t4-O)(uUs-
OH) 12(t2-OT1)14(pt1-TH)2J(HOTH); 5) [8].

The parallel L [M(OT¥f),] chains of all title com-
pounds are interconnected via C-H:---F hydrogen
bonds between H atoms of the cations and fluorine
atoms of the triflate anions. In the case of the Mn
compound, three short hydrogen bonds are observed
with distances around 263 pm (F3---H9A: 262.6(1);
F6--H11A 262.7(1), F3---H11C: 264.0(1) pm), one

Fig. 2 (color online). Unit cells of [BMIm][Mn(OTf)3] (top),
[BMIm][Fe(OTf)3] (middle) and [BMIm][Li(OTf);] (bot-
tom).

with 269.8(1)pm (F7---H10B), and the longest
ones with 274.6(1) (F4---H7B) and 287.1(1)pm
(F4---H10A). The situation is similar for [BMIm]
[Fe(OTf)3], however, the shortest hydrogen bond with
257.1(1)pm (F8---H11A) is even slightly shorter. For
[BMIm][Li(OTf);], there are three hydrogen bonds of
very different lengths. With 256.8(1), 263.0(1) and
263.3(1) pm, the shortest of these distances are ob-
served for the Fe/Mn compounds. According to liter-
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Fig.3 (color online). Anionic one-dimensional coordina-
tion chains in [BMIm][Mn(OTf)3] (top), [BMIm][Fe(OTf)3]
(middle) and [BMIm][Li(OTf),] (bottom) with the coordi-
nation polyhedra around Mn, Fe and Li. Cations have been
omitted.

ature, all these values are in the range of moderate hy-
drogen bonding [18, 19].

The metal-to-metal distances in the chain-like
[BMIm][M(OTf)3] compounds are 463.3(1) (Fe---Fe)
and 470.1(1) pm (Mn---Mn) (Figs. 3, 4), significantly

exceeding the doubled covalent radii of 304 pm (Fe*!)
and 322 pm (Mn™) [17]. Consequently, any attrac-
tive metal-metal interaction can be excluded. The ¢
axis in the manganese compound is slightly elon-
gated as compared to the iron compound due to the
larger radius of the Mn>* cation. In view of the small
size of Li* (59 pm) and due to its preferred tetra-
hedral coordination, the Li---Li distances in [BMIm]
[Li(OTf),] of 442.4(1) pm are much smaller as com-
pared to [BMIm][M(OTf)3] (M: Fe, Mn). Although the
metal-to-metal distances are too long for any bond-
ing interaction, for [BMIm][M(OTf);] (M: Fe, Mn)
magnetic coupling might occur between the paramag-
netic metal centers. To study such interactions, mag-
netic measurements of [BMIm][Fe(OTf);] were per-
formed with a SQUID magnetometer (Fig. 5). Curie-
Weiss behavior and strong antiferromagnetic coupling
were observed, the experimental room temperature y T’
value being 3.04 cm® K mol~!. These data are consis-
tent with what is expected for high-spin Fe* ! ions (d®,
§=2,C=3.0cm? Kmol™!). Since the preparation of
phase-pure [BMIm][Mn(OTf)3] turned out to be much
more difficult than for the Fe compound, and since
analogous antiferromagnetic coupling can be assumed
for Mn** as well, magnetic measurements of [BMIm]
[Mn(OTf)3] were not performed.

Conclusion

Tonic-liquid-based syntheses resulted in [BMIm]
[Fe(OTf)3], [BMIm][Mn(OTf);] and [BMIm]
[Li(OTf);] as new coordination compounds that
contain infinite [M(OTf),]~ chains. Their bidentate
bridging coordination by weakly coordinating [OTf]™

Fig. 4. Coordination of the metal centers in [BMIm][Mn(OTf)3] (left), [BMIm][Fe(OTf)3] (middle) and [BMIm][Li(OTf),]
(right).
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Table 2. Crystallographic data of [BMIm][Fe(OTf)3], [BMIm][Mn(OTf)3] and [BMIm][Li(OTf),].

Compound [BMIm][Fe(OTf)3] [BMIm][Mn(OTf)3] [BMIm][Li(OTf),]
Empirical formula FeS3F9O9N,C;His MnS3F9yO9N,C;1Hys LiS;FsO¢N,CoHy5
Formula weight 642.3 g mol ! 641.4 g mol ™! 444.30 gmol !
Crystal system monoclinic monoclinic triclinic

Space group P2 /n P2y /c Pl

Lattice parameters

Formula units per cell, Z
Density (calculated)
Absorption correction
Absorption coefficient
Measurement conditions

Measurement limits

Number of reflections

a=1293.3(3) pm
b=932.2(2) pm
¢ =2281.3(5) pm

a=12943(3)pm
b=917.8(2) pm
€=2262.4(5)pm

B =123.14(3)° B =123.23(3)°

V =2250.4 x 10 pm? V = 2300.6 x 10 pm?

4 4
1.90gcm™3 1.85gcm™3
numerical numerical
1.1mm™! 1.0mm™!

a=1120.0(2) pm
b= 1140.0(2) pm
¢=1530.0(3) pm

o =99.00(2)°

B =103.40(3)°
Y=99.01(3)°

V = 1836.8 x 10 pm?
4

1.61gem™3
numerical

0.4mm™!

Image plate diffractometer IPDS II (STOE)

A(MoKgy) =71.073pm; T =200K

—17<h<17;-10<k <12
—31 <1<31; 26ax = 58.70°
8884 (independent 6096)

—17<h<17,-12<k<0;
—16 <1 <31;26max = 58.47°
17988 (independent 16 189)

—15<h<13; -15<k<13;
—20 <1<20;26max = 58.57°
21332 (independent 17 946)
Rin =0.055

Merging Rine =0.068 Rin = 0.050
Refinement method Full-matrix least-squares on F?
Total number of least 319 318

squares parameters
Figures of merit R1=0.053[3926 F, > 4 o(F,)]
R1 (all data) =0.163
wR2=0.130

GooF=0.816

Largest diff. peak / hole 0.49/—0.77 ¢~ x 1076 pm?

R1=0.037 [1747F, > 4 6(F,)]
R1 (all data) =0.166

wR2 =0.078

GooF=0.511

0.29/—0.34 ¢~ x 10-° pm?

491

R1=0.055[9152 F, > 4 6(F,)]
R1 (all data) = 0.0864
wR2=0.164

GooF = 1.029

0.54/—0.45¢ x 1076 pm?

35 15,
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anions is still rare. Although [BMIm][Fe(OTf)s] and
[BMIm][Mn(OTf)3] can be obtained by simple heating
of FeCl, and MnCl, in [BMIm][OT(], a significantly
improved crystal quality is achieved by applying
the mild oxidation of Fe(CO);/Mn,(CO);9 by Gels
in the ionic liquids. The decelerated formation of
[BMIm][Fe(OTf);] and [BMIm][Mn(OTf)3] favors
a controlled crystal growth in the highly viscous

ionic liquid. Crystal structure and phase composition
of all title compounds were validated by crystal
structure analysis, EDX, FT-IR and DTA-TG. DTA
indicates a melting of the title compounds in the
range 98—150°C and the thermal decomposition at
300-350°C. Magnetic measurements show Curie-
Weiss behavior with strong antiferromagnetic coupling
for [BMIm][Fe(OTf)3].
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Experimental Section
General considerations

All sample handling was carried out under standard
Schlenk and argon glove-box techniques. Reactions took
place in argon-filled and sealed glass ampoules that were
dried under reduced pressure (1 x 10~3 mbar) at 300°C
before use. The commercially available starting materi-
als FeCl, (98 %, Sigma Aldrich), MnCl, (> 99 %, Sigma
Aldrich) and LiCl (> 99 %, Aldrich) were dried overnight
by heating to 150 °C in vacuum; Fe(CO)s (99.999 %, Sigma
Aldrich), Mny(CO);9 (98%, Sigma Aldrich) and Gely
(99.99% Sigma Aldrich) were used as received. The ionic
liquid [BMIm][OT{] (Merck, 99 %) was dried under vacuum
at 100 °C for 48 h before use.

Syntheses
[BMIm][Fe(OTf)3]

FeCl, (100 mg) was dissolved in the ionic liquid [BMIm]
[OTf] (1 mL) and heated in a sealed glass ampoule at 130 °C
for 4d. After cooling to room temperature with a rate of
1 Kh~!, very small and conjoined colorless crystals of lim-
ited quality were obtained. Well-shaped transparent crystals
were alternatively obtained by reacting Fe(CO)s (0.02 mL,
0.15 mmol) and Gely (100 mg, 0.17 mmol) in the ionic lig-
uid [BMIm][OTf]. This solution was left in a sealed glass
ampoule at 130 °C for 10 days. After cooling to room tem-
perature with a rate of 1 Kh™!, well-shaped colorless, trans-
parent crystals were obtained in large quantities (about 70 %
yield according the total amount of iron). In addition, a dark-
grey residue was observed that according to X-ray diffrac-
tion analysis turned out to be elemental germanium. Crystals
of the title compound were separated manually for crystal
structure analysis.

[BMIm][Mn(OTf)3]

[BMIm][Mn(OTf)3] was synthesized similarly. Instead
of FeCl, MnCl, was used. For high-quality crystals,
Mn,(CO)19 (48 mg, 0.12 mmol) was reacted with Gely
(100 mg, 0.17 mmol) in 1 mL ionic liquid. The compound
crystallizes as colorless, transparent needles, but, in contrast
to [BMIm][Fe(OTf)3], with limited yield of only about 10 %.

Analytical tools
Crystal structure determination

Single-crystal structure analyses of all title compounds
were performed on an IPDS II diffractometer (Stoe, Darm-

stadt) using graphite-monochromatized MoK, radiation
(A =71.073 pm). Suitable crystals were isolated in inert oil
and mounted on a glass capillary. Structure solution and
refinement were conducted based on the program package
SHELX [20]. The results are listed in Table 2. A numeri-
cal absorption correction was applied; hydrogen atoms were
geometrically constructed [20]. All illustrations were created
with DIAMOND [21].

CCDC 900307 ([BMIm][Fe(OTf)3]), CCDC 900309
((BMIm][Mn(OTf)3]) and CCDC 900308 ([BMIm]
[Li(OTf),]) contain the supplementary crystallographic data
for this paper. These data can be obtained free of charge
from The Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/data_request/cif.

Energy-dispersive X-ray analysis

EDX was carried out using an AMETEC EDAX device
mounted on a Zeiss SEM Supra 35 VP scanning electron mi-
croscope. For measurement, single crystals were fixed with
conductive carbon pads on aluminum sample holders.

Fourier-transformed infrared spectroscopy

FT-IR spectra were recorded on a Bruker Vertex 70 FT-
IR spectrometer; the samples were measured as pellets in
KBr. For this purpose, 300 mg of dried KBr and 2 mg of the
sample were carefully pestled together and pressed to a thin
pellet.

Differential thermal analysis/thermogravimetry

DTA/TG were performed with a Netzsch STA 409C in-
strument applying o-Al,O3 as a crucible material and ref-
erence sample. The samples were heated under N, flow to
800 °C with a heating rate of 5 K min~—.

Magnetic measurements

Magnetic measurements were performed with a Quan-
tum Design MPMS-XL SQUID magnetometer using sam-
ples composed of single crystals at temperatures between 1.8
and 300 K with magnetic fields up to 7 T. The susceptibility
was measured with 1000 Hz and 3 Oe oscillating alternating
magnetic field (1 Oe =79.6 Am™~!). Corrections for sample
holder and diamagnetic contribution were applied.
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