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The natural modes for one-dimensional (1D) twin square potentials of complex strength g are stud-
ied. A global analysis of the natural modes based on the construction of the Riemann surfaces Ri, and
Ri,l of the multiple valued function k = k(g), where k(g) defines the poles of the transmission coef-
ficient, is done. To each nonradiative or radiative mode a sheet of the Riemann surface is associated.
All the natural modes of the system are identified and treated in a unified way. New classes of res-
onant state poles with exotic properties are identified on the k-plane images of the sheets of Ri, and
Ré,l and the properties of the exotic modes are studied. The traversal time through the 1D twin square
potentials is analysed. Subluminal and superluminal traversal times are evidenced. An approximate
formula for the frequencies k for which the maximal superluminal velocities are gained as a function

of the potential parameters is given.
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1. Introduction

Tunnelling is a fundamental process related to the
dynamics of various kinds of waves and it is frequently
encountered in physics. Tunnelling, described by the
Schrodinger equation with a potential barrier higher
than the particle’s total energy, is allowed by quan-
tum mechanics theory and is probably the most im-
portant physical process. There is a formal similarity
between the stationary Schrodinger equation and the
usual wave equation. As with quantum mechanics, so-
lutions of wave equation lead to a discrete set of bound
modes and a continuum of radiation modes. Photonic
barriers are produced in undersized wave guides, frus-
trated total internal reflection, or photonic lattice (peri-
odic dielectric heterostructure). The optical tunnelling
process has been studied in the range of frequencies
from microwaves to ultraviolet (UV) region. A de-
tailed overview of the entire field of optical tunnelling
and its relation to massive-particle tunnelling is given
in [1, 2].

A different, but related, issue is that of particle tun-
nelling through a double barrier potential structure.
Exploiting the analogy between electron and photon

tunnelling [2], resonant tunnelling phenomena through
double barrier structures have been studied. Resonant
tunnelling observed in [3] became an important tool
for studying the properties of semiconductors, met-
als, and superconductors. Anderson localization, Mott
hopping, Josephson effect, field emission, Coulomb
blockade, and tunnelling chemical reactions are only
several examples of phenomena where the resonant
tunnelling is important. The development of nanotech-
nology and electronic devices based on resonant tun-
nelling (see e. g. [4, 5]) has made quantum-mechanical
tunnelling in one dimension an area of interest in ap-
plied science. The theoretical approach in the studies
concerning the tunnelling is the analysis of the trans-
mission coefficient. In the 1D problem, the transmis-
sion coefficient T manifests in its variation as a func-
tion of energy the existence of resonant states. The
resonant and bound states are the radiative and non-
radiative natural modes, respectively, of the quantum
system. The natural modes are intrinsic distinctive
marks of the system, that characterize the system like
a fingerprint. The studies on the double barrier poten-
tials [6 — 8] are nonglobal. In the present paper, we give
a global analysis of the natural modes, based on the
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Riemann surface approach, that allows the simultane-
ous treatment of the cases of two wells or two bar-
riers, with absorption or emission, and gives an uni-
tary treatment to bound and resonant states. In other
words, we analyze all the natural modes of the system.
All the poles of the transmission coefficient are iden-
tified, no pole is lost, no accidental jump (as it hap-
pens in the pole trajectory method) from one pole to
another pole is possible. Whenever the Riemann sur-
face approach was used for a three-dimensional (3D)
potential, new information on the resonant states has
been obtained [9—-11]. A new class of resonant state
poles (exotic poles), having unusual properties, has
been identified for a 3D potential made of a well plus
a barrier. In the case of a 3D potential made of a well
plus a Coulomb barrier [10], it has been shown that the
di-nuclear parent quasimolecular states are a particu-
lar case of exotic resonant states for this potential. All
the properties of the di-nuclear parent quasimolecular
states result in a natural way from the properties of the
exotic resonant states.

The renewed interest in the study of the tunnel ef-
fect occurred mainly due to the data on the traversal
time in tunnelling. A comparison of numerical traver-
sal times [12] for a narrow and for a thick barrier to
the semi-classical time [13], to the phase-time [14],
and to the dwell time [15, 16] results shows that the
best overall description is given by the phase-time re-
sult. In the present paper, the traversal time for the
twin square potentials model will be determined by
the phase-shift method. It will be shown that a faster
traversal in comparison with that of a free particle is
possible. It is not a surprising result, as the experi-
ments revealed superluminal (faster than light) veloci-
ties. Experimentally it has been shown that the traver-
sal time is independent of the barrier length [17], as
Hartmann [18] has predicted fifty years ago. New ex-
perimental and theoretical data on superluminal tun-
nelling could be found in [19]. The problem of su-
perluminal velocity is not only of academic interest,
but a problem of technology development too. For ex-
ample, the superluminal ring laser gyroscope first pro-
posed by Yum et al. [20] improves the sensitivity of
a gyroscope by a factor 10°—10° and can be used
for improving the sensitivity of accelerometers by the
same factor. This technology can be used for applica-
tion to precision navigation, precision measurement of
vibration, strain and magnetic field, and gravitational
wave detectors.
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Fig. 1. Parameters of the potential.

2. Tunnelling Through One-Dimensional Twin
Complex Square Potentials

Let us consider the one-dimensional potential
gV (x), g € C, represented in Figure 1: g is the strength,
and V (x) is the form-factor with the values V (x) =0 in
the regions x <0, a <x < a+d, and x > d + 2a, while
in the regions 0 < x < a and a+d < x < d + 2a, we
have V(x) = —1. This represents twin square barriers
(Re(g) < 0), or twin square wells (Re(g) > 0) poten-
tials with an absorptive (Im(g) > 0) or emissive part
(Im(g) < 0), having equal strength for the two barriers
(wells). a is the width of the potential wells (barriers),
d is the distance between the two wells (barriers). For
the sake of simplicity, the notation k and g is used for
the dimensionless variables ka and ga®, respectively.
By I, III, and V the regions of the free wave are de-
noted. The wave function in the regions denoted by I,
IL I, TV, and V are

i = ek Re IRy = €y ko 4 e ot
v = Gz e 4 CyeiF (D

Vv = Cs eikox +Cs efikox’ Yy = Teikx’

where ko = (k* 4 g)'/2. The coefficients R, C, Cs, .. .,
Cs, and T can be determined by imposing the con-
dition of continuity to the wave function, i.e. by im-
posing that y; = yi; and dy;/dx = dyg/dx at x = 0,
Vi = Y and dl[/H/d)C = dl//m/dx at x = a, and so on.
The amplitude of the incident wave is considered unity,
R is the amplitude of the reflected wave, and T is the
amplitude of the transmitted wave. The poles of T are
the S-matrix poles.

The transmission coefficient 7' can be written as

16/((%](2 e2ikoa ef2ika
(s2—s1)(s2+s1)

T=T\/T,= (2)
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with sy = (k —ko)?e?1k0% — (k+ko)? and 51 = (>0 —
1)(k—ko) (ko +k)e'*. As T, can be written as product
of two terms, two families of S-matrix poles are ob-
tained. They are the solutions of the equations

sp—s51 =0, so+s51=0. 3)

By using the relation cotx = i(e** + 1)/(e** — 1)
in (3), the following pole equations are obtained:

cot(koa) + —— | — ek (12 —k2) K2~ k2| =0, @)
2kko

cot(koa) + —— | e (R — k) — K2~ k| =0. (5
2kkg

In order to construct the Riemann surface of the pole

function k = k(g) for the twin complex square poten-

tials, the knowledge of the branch points is necessary.
3. Branch Points
3.1. Algebraic Branch Points

The singular points are solutions of the system
of equations made of the pole equation and of its
derivative with respect to k. In the case of the poten-
tial represented in Figure 1, there are two pole equa-
tions (4) and (5). Correspondingly there are two equa-
tions representing the derivatives with respect to k of
the pole equations The equations obtained by eliminat-
ing cot(koa) between (4) and its derivative with respect
to k, and between (5) and its derivative with respect to
k, respectively, are even-functions with respect to k.
By introducing k(z) obtained by solving these equations
in (4) and (5), respectively, the equations that give the
k-plane images Kﬁj‘q, of the singular points are obtained:

cos(kaA) + i% sin(kaA) =0, (6)
cos(kaB) + i% sin(kaB) = 0. ™)

where the following notations are used: S = 2i + ka —
kde'*, U = (2i +ka-+kd)e** V = 2i +ka+kae?*,
X = (2i +2ka)el*, Y = (2i + 2ka + 2kd)el¥, Z =
2i+ka+kde*, A= ((—X+V)/(Y +V))'/2, B =
(X+V) /(=Y +V))I12.

Once the solutions k are determined from (6)
and (7), respectively, the corresponding g are deter-
mined by solving (4) and (5), respectively. Among
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these singular points g;, the branch points are found
by permitting the variable g to describe successive
small circles around each singular point g; and observ-
ing whether the function k = k(g) returns to its ini-
tial value. Being zeros of a system of analytical func-
tions, the branch points form at most a countable infi-
nite set.

New quantum numbers p, g, U, and v are neces-
sary in order to label the branch points. In order to
understand their meaning, in Figure 2 the k-plane im-
ages Kj, "} of the branch points are shown. The label
p = LIl indicates the set of equations that has |’} as
solution. Kb?‘, are obtained as solutions of (6), while
Kg;“f are obtained as solutions of (7). The k-plane im-
ages of the branch points are distributed along two dis-
tinct curves labeled by ¢ = 1 and g = 2, respectively.
The k-plane images of the branch points with the same
value for the labels p and ¢ are clustered in groups,
each of the groups being labeled by the quantum num-
ber u. By v the various branch points with the same
P, g, and u are labeled. These branch points are char-
acterized by the same position in the k-plane, but dif-
ferent values of the potential strength as one can see
from Figure 3.
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Fig.2. k-plane images Ky
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Fig. 3. Branch points gj%, with Re(gl%,) < 650 and —40 <
Im(gh%) < 8 for a = 0.25, d = 4. The quantum numbers p,
g, L, and v have the same meaning as in Figure 2.
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3.1.1. Asymptotic Approximation for the k-Plane
Images of the Algebraic Branch Points

In the exact numerical calculation of the branch
points, (6) and (7) have to be solved, and it is impor-
tant to have a good starting point for k. Consequently
approximate values for the k-plane images of the al-
gebraic branch points are necessary. In order to get
these approximate values, only the main term for large
ko (i.e. for large g) has been kept in the equations
obtained by eliminating cotkgpa between (4) and its
derivative with respect to k, and between (5) and its
derivative with respect to k, respectively. Two second-
degree equations in respect to exp (ikd) are obtained.
To distinguish between these two equations, the label
p = L 11 will be used:

ake*™ £ (2kd +2i + 2ak)e™ +2i+ka=0. (8

Each of the equations (8) has two solutions with re-
spect to k, labeled by ¢ = 1,2. Asymptotic expansions
of the two solutions of each of (8) for large d have
been taken and solved with respect to k. The obtained
approximate expressions of the algebraic branch points
for large d and g are

KP4~ —;{ln [:Fz(d—ka)} +2i(n—2+q)7r}

n=123,...

"9

KP4 —;LambertW(n,:I:I :cm;LambertW(n,:tl)> ,

n=1,2,3,... (10)
Table 1. First complex algebraic branch points gﬁ"ff, and their
k-plane images kj;'} (u = 1,2 and v = 1,2) for a = 0.25 and

p g B v Re(ghd) Im(eld) Re(xiy) Im(xfh)
I 1 1 1 158.496 1.769 0.822  —0.847
I 1 1 2 632235 1.774 0.823  —0.847
I 2 1 1 4449  —8.636 0.979 0.372
I 21 2 167.626  —16.879 1.008 0.391
I 121 153.617 5.321 2372 —0.883
I 1 2 2 627319 5.307 2376 —0.876
122 1 2343 22743 2.521 0.556
I 22 2 167.487  —43.939 2.591 0.591
m1 11 156.669 3.536 1596  —0.871
M1 1 2  63039% 3.538 1599  —0.868
m2 1 1 3978  —15.755 1.759 0.485
mn21 2 168272 —30.549 1.810 0.512
mi1 2 1 149.346 7.135 3150  —0.893
1 2 2 623012 7.084 3156 —0.881
m2 2 1 0277  —29.641 3.277 0.606
mn2 2 2 165.632  —57.203 3.366 0.649
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Table 2. First three real algebraic branch points g} and gI! and
their k-plane images for a = 0.25, d = 4.

1 11

n 8 Ky on & K,
1 156.8882 —0.282711 1 159.0947 —0.797371
2 630.6305 0282751 2  632.6405 —0.79802i
3 14201991 —0.28276i 3 14224066  —0.79895i

The LambertW function satisfies the equation
Lambert W (x) exp(Lambert W(x)) = x [21]. As the
equation y(x)exp(y(x)) = x has an infinite num-
ber of solutions y for each (nonzero) value of x,
Lambert W has an infinite number of branches denoted
Lambert W(n,x), where n is any nonzero integer. The
label n is the same as u for the exact k-plane images
k"% of the branch points. With &;;¢ as starting points,
exact numerically calculated k-plane images of the
algebraic branch points &’} are obtained from (6)
and (7), and then the corresponding branch points g%,
are calculated from (4) and (5). In Table 1 the first
complex algebraic branch points gﬁ’{, are given in the
case a =0.25and d =4.

Besides the complex algebraic branch points there
are real algebraic branch points, listed in Table 2,
whose images are situated on the negative imaginary
k-axis.

3.2. Transcendental Branch Points

Besides the algebraic branch points there is a tran-
scendental branch point, namely g = 0, where all the
Riemann sheets are joined. As the k-plane images of
this branch point are the starting points in construct-
ing the k-plane images of Riemann sheets, it is im-
portant to find approximate values for the k-plane im-
ages of the transcendental branch point. By taking
atwo terms expansion for small g in the pole equa-
tions (4) and (5), the following two equations are
obtained:

Table 3. k-plane images of transcendental branch points with
Re (k) < 5.5 for the values of the parameters a = 0.25 and

p m s n Re(xpn) Im(K} )
I 1 2 1 0.7911 —2.8964
I 1 1 2 2.3416 —2.9600
I 2 2 3 3.8498 —3.0415
I 2 1 4 5.3331 —3.1256
m 1 1 1 1.5725 —2.9236
m 2 2 2 3.0999 —3.0001
m 2 1 3 4.5932 —3.0834
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2 2
4k efikd e2iku _ _4k efikd

e21ka _ ,
8

(11)

Each of the equations (11) has two solutions with re-
spect to k. The solutions of (11) have a label p = 1,11
to indicate the equation and alabel s = 1,2 in or-
der to distinguish between the two solutions of each
equation:

2iLambertW(— m, (_ziitgl/z(%l +d)>

~

Kpm,s (Za T d) )

m=1,2,..., (12)
where t = 1 for p =1 and r = 2 for p = II. The
values of K, given by (12) are used as starting
points for the calculations of the exact values of the
transcendental branch points. In the following, for
practical reasons, we will drop the labels m,s and use
for k two labels: p = I,1I (that indicates the Riemann
surface) and n = 1,2... that orders the k-plane images
of g — 0 with respect to their distance to the imaginary
k-axis (see Tab. 3).

4. Riemann Surfaces of the Pole Function k(g)

In the case studied in the present paper, there are
two families of S-matrix poles, solutions of (4) and (5),
respectively, corresponding to the zeros of each factor
occurring in the denominator 7»(g,k) of the function
T(g,k) (see (2)). We will write

To(g.k) =1 (g,k)1¥ (g,k), (13)
where (1) (g, k) = sy — 51, and 1) (g, k) = 52+ 1. The
functions ¢()(g,k) and 1(®)(g,k) are entire functions
with respect to g and k and they are irreducible. Each
of the relations (") (g,k) = 0 and 1 (g,k) = 0 de-
fines the implicit function k = k(g) which is a mul-
tivalued function. Due to the fact that the equation
1) (g,k) t?) (g, k) = 0 that defines the pole function
k = k(g) is reducible, the analytic manifold R, on
which the function k = k(g) is single valued and an-
alytic is made of two Riemann surfaces R% (p = 1,1I).
This means that 1(V)(g, k) = 0 defines the function k =
k(g) on the Riemann surface ng, while 1) (g, k) = 0
defines the function k = k(g) on the Riemann sur-
face Ri,l. The function k = k(g) becomes single val-
ued and analytic when defined on Riemann surfaces

R, and RY. In order to construct the Riemann sur-
faces R, and Ry of the pole function k = k(g) for
the studied potential, the general properties of an im-
plicit function k(g) defined by an irreducible relation
F(g,k) = 0, where F(g,k) is an entire function with
respect to k and g, will be used. These properties have
been studied by Julia [22] and Stoilow [23, 24] and
in the present case they are applied to the irreducible
functions ¢(!)(g, k) and 1) (g, k). Taking into account
the expressions of the functions 7j (g,k), 1V (g, k), and
1) (g,k) given by (2) and (3), respectively, it results
that at g = 0 (i.e. ko = k), we have Tj(g,k) = —16k*,
1) (g, k) =1®)(g,k) = —4k>. Tt results that 1)) (g, k) =
0 and r®)(g,k) = 0 have no solution at g = 0, except
k =0, but k = 0 is also solution for the numerator
of T(g,k). Then the boundary set E (the points g for
which the equation F(g,k) = 0 has no solution in k)
has only one element, namely g = 0.

In order to illustrate the construction of the Riemann
surfaces Ri, and Ri,l, some particular values for a and d
have been chosen, namely a = 0.25 and, d = 4. It is
not possible to take into account all the branch points,
nor their k-plane images. Indeed, there is an infinity of
k-plane images of the branch points ;% and their dis-
tance from the imaginary k-axis increases indefinitely
as U increases, as it can be seen from Figure 2. Cor-
respondingly, both the real part and the imaginary part
of the branch points g}, increases indefinitely as
or v increase (see Fig. 3). Consequently we can con-
sider only a part of each Riemann surface, choosing
a large radius circle in the g-plane (|g| = 650) and tak-
ing into account only the branch points that are situated
inside the chosen circle. In fact this corresponds to the
physical situation because the strength of the potential
barriers (wells) is supposed to be finite. Moreover, the
k-plane images of the branch points should be situated
in a finite region of the k-plane. In Table 1 the first al-
gebraic branch points g%, (u = 1,2), (v = 1,2) are
given. They are the branch points that determine the
separation of the first sheets of the Riemann surfaces
Ri, and R}’,I. For a given Riemann surface the construc-
tion of each Riemann sheet starts at g = 0. At g =0,
there is an infinity of sheets that are joined. By per-
mitting the variable g to describe successive small cir-
cuits round g = 0, starting from g = 0+ i€, the cor-
responding starting point in the description of each of
the k-plane image is obtained. The labelling of the Rie-
mann sheets and of their k-plane images is done by two
quantum numbers. The first one is p = I,1I that indi-
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cates the Riemann surface. The second quantum num-
ber n=1,2,... is the label of images K}, of the tran-
scendental branch point g = 0 that orders them accord-
ing to their distance from the imaginary k-axis. The k-
plane image of g = 0 which is the closest to the imag-
inary k-axis takes the label n = 1, the next takes the
label n = 2, and so on. The procedure is identical for
both Riemann surfaces Ry, and Ry,

The border of a sheet is made by the edges of the
cuts that start at the transcendental branch point g =0
and at those branch points that are branch points for
the sheet under discussion, and by a circle of large ra-
dius joining the cuts In order to determine which of the
branch points g v are branch points on each particu-
lar Riemann sheet successive small circuits have been
taken round the given branch point. If after a complete
rotation the pole reaches the same value as the initial
value, than g” v 1s not a branch point on the chosen
Riemann sheet. If the pole reaches after a complete ro-
tation a value that is different from the initial one, than
gﬁ’flv is a branch point on the chosen Riemann sheet,
and this sheet is joined at g}/, to another Riemann
sheet. In order to separate the sheet, a cut starting from
gﬁ’ﬂ, must be taken on the Riemann sheet under discus-
sion. Once the branch points are determined, cuts are
taken in the g-plane that join them, so that to separate
the Riemann sheets.

The Riemann sheets Xy, and their k-plane images
X[, with n = 1,2 are shown in Figure 4. When g goes

(@
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along the border of the Riemann sheet i ,, the corre-
sponding k describes the border of the k-plane image
of the Riemann sheet Z’ The borders of the sheets
are shown in Figures 4a and d. The k-plane images
of the sheet-borders are shown in Figures 4b and e.
The hatched regions of X, (n = 1,2) on Figures 4a
and d are mapped by the function k = k(g) into the
bound regions of the k-plane images El’n marked by
the same hatching. In Figures 4c and f, the regions of
the k-plane where the bound regions marked by hatch-
ing on Figures 4b and e are situated, are represented
at an enlarged scale. The label n is determined by
the k-plane image of the pole for g — 0, as explained
above.

On the sheet 21, there are three cuts that start
at g =0, g1 1 and glz1 (denoted by a, d, and s on
Fig. 4a). For g — 0, the corresponding pole is situ-
ated at k7, given in Table 3 and indicated by A on Fig-
ure 4b. All the points of Xj; with Img > Im(g1 v) are
mapped onto a bound region of 211 situated in the
fourth quadrant of the k-plane and marked by hatching.
Moreover, all the pomts of 21 with negative Im(g)
and |Im(g)| > |Im(g1 V)| are mapped onto a bound
region of X[, situated in the first quadrant of the k-
plane. Poles situated inside the hatched regions have
special properties that will be discussed in the next
section.

On the sheet X, there are ﬁve cuts determlned by
the branch points g = 0, g1 1, g2 1 g1 1» and g21 All

650

gf////////@

X Z|1v

\\\\r

-650+

—650 650
) Re g

650 / ////g h
—

): 0_
L2 Vis——rt

-650} \\\\\ oq

Img

-850  Re g 650 0

Fig.4. Riemann sheets Xy, and their
k-plane images Xy , with n = 1,2.
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the points of Xy, with Im(g) > Im (glz’lv) are mapped
onto a bound region of X , situated in the fourth quad-
rant of the k-plane. Moreover, all the points of Xy, with
[Im(g)| > |Im (g122v)| are mapped onto a bound region
of X/, situated in the first quadrant of the k-plane.
The situation is similar for the Riemann surface Rg,
with the difference that the cuts on the Riemann sheets
are determined by the branch points with the label p =
II in Tables 1, 2, and Table 3 and the positions of the
bound regions on the k-plane images Xy, , are different.

5. New Class of Resonant Poles (Exotic Poles)

It has been shown that on each of the Riemann
sheets, for both Riemann surfaces RZ, and Rg, there are
large regions that are mapped by the function k = k(g)
onto small bound regions of the corresponding k-plane
images of the sheets. In other words, by varying the
potential strength g in alarge domain in the com-
plex plane, the corresponding pole remains inside this
bound region. This pole and the corresponding reso-
nant state have unusual properties, and we will call
them ‘exotic resonant state pole’ and ‘exotic resonant
state’, respectively. An exotic resonant state pole does
not become bound or virtual state pole if the depth of
the wells is increased, in contrast to the old-class poles.
On each k-plane image Z,’,"n, there are two bound re-
gions, one corresponding to absorptive potentials, the
other to emissive potentials, where the exotic resonant
state poles are located. The region of the k-plane that
is occupied by the exotic poles on Zl’,,n is empty on the
other Riemann sheet images Z;,’m (m # n) of the same
Riemann surface.

In Figure 5, the aggregate obtained by superposing
the sheet images X, ,, with p =I,Il and n = 1,2,3, is
shown in the case d =4, a = 0.25. Only the bound re-
gions of the exotic poles are represented. Each bound

CACACACACAS.

Fig.5. Bound regions in the k-plane where ‘exotic’ poles
are situated. The labels of the Riemann sheet images on
which these bound regions occur are indicated. By e and «,
the branch point images and the attractors, respectively, are
indicated.
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o lmk
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region lies on a pair of points: a branch point image
and a point that we call ‘attractor’ (or stable point) for
the reason shown in the following. We denote the at-
tractor point by K2, where n and p are the labels of
the Riemann sheet image 2[’,’,, to which belongs the at-
tractor. The way the exotic resonant state pole on Zj; ,
approaches the attractor is illustrated in Figure 6a for
d =4, a = 0.25. The shown trajectory corresponds to
g varying as g = A(20+ i), where A takes values in
the range 7 — 150. The domain of variation for g in Fig-
ure 6a is chosen so that the strength of the potential
well |g| increases inside the region characterized by
Im(g) > Im(gg‘}) The corresponding pole is an ex-
otic resonant state pole. One can see that the pole has
a spiral trajectory that shrinks towards the attractor as
the strength of the potential wells increases. In Fig-
ure 6b, the pole trajectories on X}, obtained when g
goes in the g-plane along paths with constant Im(g) for
various values of Im(g) are shown. Re(g) varies from
150 to —400, i. e. one passes from a well of decreasing
depth to a higher and higher barrier. It is shown that if
g varies along a path with constant Im(g), the trajec-
tories of the old-class poles are convergent to the at-
tractor when the strength of the barrier increases, even
though Im(g) < Im (glzl‘}) In other words, an old-class
pole coming from outside the bound region goes to the
attractor when the strength of the potential barriers in-
creases.

Asymptotic approximations for large g of the at-
tractors have been obtained taking into account that
at the attractor, we have dk/dg — O for g — . By
expanding the derivatives with respect to g of (4)
and (5) for large g and by solving the obtained equa-
tions with respect to k, the following asymptotic ap-
proximations for the attractors on the k-plane sheet im-
ages of the Riemann surfaces R}g and R};,I, respectively,
result:

KL~Q@n—1r/d, Kl ~2nm/d, n=1,2... (14)
The attractors are situated on the real k-axis. The res-
onant states (radiative modes) corresponding to poles
in the neighbourhood of the attractors have energies
that are almost real. It results from (14) that for both
Riemann surfaces R?, (p = I,1I) the distance between
the attractors on two successive Riemann sheet im-
ages X,, and X ., is 27/d, so that the attrac-
tors on various sheet images of a Riemann surface
become more dense as the distance d between the
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Fig. 6. (a) Trajectory of the pole on 21’1‘2 for g

varying as g = A(20+ i). The numbers beside
the curves indicate the value of A. The attrac-
tor is indicated by x. (b) Pole trajectories on
EI/LZ obtained when g goes in the g-plane along
paths with constant Im(g) for various values
of Im(g) indicated by the numbers beside the
curves. The symbols on each curve indicate
the position of the pole for Re(g) = 150 and

wells (barriers) increases, i.e. there are more bound
regions of exotic poles in the same k region when d
increases.

Let us analyse the localization of the resonant state
wave functions. In order to do this, we introduce the
ratios

flwPde o fad vl d

e g e

In Figure 7, the ratios P; and P; are represented for res-
onant states (radiative modes) that correspond to the
exotic pole situated on the border of the bound re-
gion obtained when the potential strength g varies on
21,1 along a path with constant Im(g) = Im(gll{’ll) +¢€

and Re(g) > Re (g)llll1 . The ratios P; and P, are almost
equal, so that the curves P; (g) and P(g) cannot be dis-
tinguished. One can see that P| < 1, P>, < 1, on the
whole range of Re(g), i. e. the wave function is mainly
localized between the wells. Moreover the minimal lo-
calization of the wave function inside the wells occurs
for poles near the attractor.

In the following, we shall discuss the range of in-
fluence of an attractor for the discussed potential with
d = 4 and a = 0.25. We consider the attractor K} sit-
uated on the Riemann sheet image X, and calculate
the wave functions for several resonant states, corre-
sponding to poles situated in the neighbourhood of K},
or situated away from this attractor. The wave func-
tions are calculated according to (1) with the coeffi-
cients A, Ci, ..., Cg, and T determined for each case
as a function of k and kg. The comparison of the wave
functions is done after normalizing them by calculating
lw(x) 2/ Jo“™ |y (x)|? dx. The poles denoted 1,2, ..., 6
on Figure 8c correspond to the potential strengths de-
noted 1,2,...,6 on Figures 8a and b. The poles 1, 2,
and 4 are exotic resonant state poles, while the poles
3, 5, and 6 are old-class poles. The poles 1, 2, 3, and

Re(g) = 0. The bound region of exotic poles
is indicated by hatching.

6 are situated near the attractor IC{I = 1/2, while the
poles 4 and 5 are situated away from the attractor. The
poles 1, 2, 3, 4, and 5 belong to 21/1.1’ while the pole
6 belongs to Xj;,. In Figure 84, |y|* is represented
for the resonant states corresponding to the poles sit-
uated in the neighbourhood of the attractor KIl. One
can see that for all these poles the corresponding reso-
nant states have the wave function localized mainly in
the free region between the two wells. In other words,
either we have an exotic resonant state or an usual reso-
nant state, corresponding to a pole situated on the same
or another Riemann sheet image, the wave function is
localized mainly in the free region between the two
wells, provided that the pole is near the attractor. As
one can see in Figure 8d, the wave functions of the res-
onant states corresponding to the poles 1, 2, 3, and 6
are indistinguishable, except for the regions of the two
wells. In Figure 8e, the region of the first well is rep-
resented at an enlarged scale. In contrast, for poles sit-
uated away from the attractor (the poles 4 and 5 on
Fig. 8c), the corresponding wave functions have com-
parable amplitudes inside the wells and between the
wells as one can see in Figure 8f.

It is interesting to see the behaviour of the wave
functions of the bound states. In Figure 9a, the wave

0.1 T T T

P\t P2

oLt 1 i

500 1000 Reg 1500

Fig.7. Ratios P; and P, for the pole on 21/141 that correspond
to g varying on Xy | along a path with Im(g) = 3.6 The val-
ues of the potential strength for which the pole is at the at-
tractor are indicated by arrows, while by crosses, the values

of Re (gIlI\}) are indicated.
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Fig. 8. (a) and (b): Potential strength
on Xy 1 and on Xy ». (¢) Correspond-

ing poles in the k-plane. (d) Wave
functions of the resonant states corre-
sponding to the poles situated in the
neighbourhood of the attractor ICIII.
The thickened regions of the abscissa
indicate the region of the wells. (e)
Wave functions from (d) are repre-

sented at an enlarged scale in the re-
gion of the first well (continuous for
Poles 1 and 6, dashed for Pole 2, and

dotted for Pole 3). (f) Wave functions
of two resonant states corresponding
to poles situated away from the attrac-
tor (continuous for Pole 4, dotted for
Pole 5).

Fig.9. (a) Wave functions of the

bound states on EI/.l for various bind-
ing energies characterized by k =0.51
(full line), kK = 1.9i (dotted line), k =
3.5i (dashed line). (b) Localization
of the wave functions corresponding
to bound state poles on ZII.I for var-
ious binding energies. (c) Region of

functions of some bound states on X/, and X | are
shown for various binding energies. The thickened re-
gions of the abscissa indicate the regions of the twin
wells. For both Riemann sheets X | and X7, |, the local-
ization of the wave function of a bound state depends
strongly on the energy of the bound state. A quantita-
tive comparison of the localization of the bound state
wave functions is done in Figure 9b where the ratios

Py, Py, and Py = [T |y dx/ [ |y|? dx, that char-
acterize the localization of the wave function in the first
well, in the second well, and in the region between the
wells, respectively, are represented as a function of k
for bound states from X;. On Zj; the situation is iden-
tical. At low energies (small k), the ratios P, and P>
are almost equal. Then there is a range of binding en-
ergies where the wave function is localized mainly in
one or the other of the two wells. This region of en-
ergies is shown in more details in Figure 9c. Although
the ratios Py and P, vary strongly with respect to the

(b) where the wave function changes
its localization from one well to the
other is represented at an enlarged
scale. A similar localization of the
wave function occurs on EI/L I

binding energy in this region, their variations compen-
sate mutually, so that the part of the wave function
that is localized between the wells, and characterized
by Ps = 1 — (P> + P3), has a smooth variation with the
energy. At higher binding energies, the wave function
becomes mainly localized in the first well on both Xj |
and Xy ;. '

6. Traversal Time Through One-Dimensional Twin
Square Potentials

The time delay undergone by a particle of mass M
during the traversal of the 1D twin square potential is
given by the derivative of the phase ¢ of the wave func-
tion with respect to energy [14]:

d¢
h—.

dE
This time delay could be compared to the travel time of
a free particle with the same energy on same distance

T= (16)
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(2a+d). At x = 0, the amplitudes of the two waves
are both unit, while at x = 2a 4 d they are eik(2atd) for
the free wave and T (k) e'¥(2¢+4) for the wave that trav-
els through the potential region. It results that the time
taken to the free particle to cover the distance (2a+d)
is

M
To = ?(2a+d)7

while for the particle that travels through the potential
region is

7)

d(Im(InT (k)))

T_M
a dk ’

. (2a+d)+

(18)
where T (k) is given by (2). The ratio T/ 1y tells us if the
wave is delayed or speed up during the potential region
traversal as compared to a free wave.

6.1. Twin Barriers

In Figure 10, the ratio T/ 1y is represented as a func-
tion of the wave number k for various parameters a
and d of twin barriers, with the condition that 2a + d
is the same. Besides the total length of the potential
region the height of the barriers is also kept constant
(g = —16). From the analysis of the results shown
in Figure 10 it results that, except for several discrete
wave numbers k, situated in the vicinity of the poles of

Fig. 11. Ratio 7/1 as a function of k for the same configu-
rations as in Figure 10, but where the resonances have been
eliminated.

4 I 15 Fig. 10. Dependence of the ratio 7/7y on the

T2 d=4 wave number k for twin barriers (g = —16)
3 ax1.21 10k a=0.25 ] and various parameters a and d, with the con-
) dition that 2a+d = 4.5.

5
' TRTTT PO PR
| .
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T for the given configuration, and hence correspond-
ing to resonant states, the traversal time through the
twin barriers is less than the time needed to a free wave
to travel along the same distance. This is better seen
in Figure 11, where the ratio 7/1) is represented as
a function of k for various configurations, as in Fig-
ure 10, but where the resonances have been eliminated.
One can see that the thicker the barriers are the shorter
the traversal time is for all frequencies. The difference
between the various configurations are larger for k val-
ues near the top of the barriers, while for small k val-
ues the influence of the barriers is almost the same for
all configurations. In the following, the traversal with
T > 1o will be called ‘subluminal’, while the traversal
with T < 7y will be called ‘superluminal’, in analogy
to the terminology used in the case of electromagnetic
waves traversal [25, 26].

In order to tune the experimental conditions for a su-
perluminal or subluminal traversal, it is important to
know apriori the potential parameters that determine
superluminal or subluminal traversal times. The zeros
of the derivative of 7 (see (18)) with respect to k, corre-
sponding to maxima and minima of 7 /1, respectively,
have been calculated and are given in the column 4
of Table 4. An approximate formula would be useful.
A first approximation for the frequencies k for which
the maxima and minima of 7/7, are obtained are “%,
(n=1,2,...) for the maxima (ksyptum), and “F + 75 for
the minima (kgyplum), Tespectively. In order to obtain
a better approximation, the expression of the deviation
Ak of m/d with respect to the exact value of k at the
first maximum of 7/7y has been obtained as a function
of the potential parameters:

21 2(e"+1)2+/—gd(e*’ — 1)
dg (e7—1)
where vy = —2a/—g. As aresult the following approx-

imate formula for & at the maxima (kgypjum ) and minima
(ksuplum) are obtained:

Ak =

, (19)
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3p—r——r 3 —
d=2 d=4
2t @=1.25 2
1 1
Fig. 12. Dependence of the ratio 7/7y on the
oWl . ol . . wave number & for twin wells with g = 16 and
0 2 4 6 8 0 2 4 6 8 various parameters a and d, with the condition
k that 2a+d = 4.5.

Table 4. Comparison of approximate and exact frequencies of
subluminal and superluminal traversal through twin barriers
of constant strength g = —16 and different parameters a and
d with 2a+d = 4.5 The quality of the approximations (20)
is given by the deviation 6 = |kexact — kapprox | /kexact-

ksubluminal
a d approx exact )

0.25 4 0.67765 0.67581 0.00271
1.35530 1.35780 0.00184
2.03295 2.04934 0.00800
2.71060 2.75072 0.01459
0.50 3.5 0.78430 0.78121 0.00395
1.56859 1.55915 0.00605
2.35289 2.33049 0.00961
3.13718 3.09203 0.01460
3.92148 3.84152 0.02081
1.25 2 1.27625 1.25232 0.01911
2.55251 2.47451 0.03152
3.82876 3.59915 0.06380
1.5 1.5 1.62897 1.56015 0.04411
3.25794 3.03853 0.07221

ksuperluminal

a d approx exact 1)
0.25 4 0.87400 0.93403 0.06427
1.55165 1.65772 0.06399
2.22930 2.37138 0.05992
2.90695 3.08705 0.05834
0.50 3.5 1.00870 1.04921 0.0386
1.79299 1.86524 0.03874
2.57729 2.64966 0.02731
3.36158 3.41658 0.01610
T
ksublum ~ 1 (d + Ak) ,

T . (20)
ksuplum ~ 1 (d +Ak> + i

The deviation Ak has been calculated for various pa-
rameters a and d of the potential, with the condition
that 2a+d = 4.5, and g = —16. Although the approx-
imations (20) have been deduced in the condition of
large d, one can see that the maxima corresponding
to kguplum are rather well approximated even for small

d. For small d, the ratio /7 depends almost mono-
tonically on k, except for a small number of regions
of maxima (subluminal traversal) that could be rather
well determined. In this case, if a superluminal traver-
sal is needed, the frequencies for subluminal traversal
could be avoided.

6.2. Twin Wells

In Figure 12, the ratio 7/1 is represented as a func-
tion of the wave number k for various parameters a
and d of twin wells, with the condition that 2a + d
is the same. Besides the total length of the poten-
tial region, the depth of the wells is also kept con-
stant (g = 16). One can see that for large k the ra-
tio 7/1p — 1 for all configurations, but it is possi-
ble to have 7/1) < 1, in agreement to the results of
Li and Wang [27] regarding negative phase time for
particles passing through a potential well. Moreover,
for small d (d < a) the ratio T/7p < 1 on the whole
range of k. For d > a, aresonant structure in the de-
pendence of /7y on k occurs at small k. The max-
ima with T > 7y correspond to exotic resonant states
for which the pole k is close to the stable points K.
and KU, given by (14). This is illustrated in Figure 13
for the case d = 4, a = 0.25, where the resonant struc-
ture is the most obvious. The arrows indicate the val-

T/To
N e

P
0 2 4 6

o

Fig. 13. Dependence of the ratio T/7y on the wave number &
for twin wells with g = 16, a = 0.25, and d = 4. The arrows
indicate the values of k for the exotic resonant state poles
situated at the stable-points.
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ues k =nn/d, n=1,2,3..., that correspond to both
KL and KL

7. Conclusions

The natural modes for the twin square potentials of
complex strength g are studied by constructing the two
Riemann surfaces R}, and Ry of the pole function k(g).
On the k-plane image of each Riemann sheet there
are bound regions where a new class of resonant state
poles, with exotic properties, is situated. These exotic
poles do not become bound or virtual states when the
strength of the potential well is increased, but remain
in the neighbourhood of the stable points, that act as
attractors. The attractors are situated on the real k-
axis, so that the exotic resonant states corresponding
to poles in the neighbourhood of the attractors have
almost real energies. The density of attractors in the
same region of k increases as the distance between the
two wells is increased. An exotic resonant state pole
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