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We systematically provide a similarity transformation reducing the (3 + 1)-dimensional inhomo-
geneous coupled nonlinear Schrödinger (CNLS) equation with variable coefficients and parabolic
potential to the (1 + 1)-dimensional coupled nonlinear Schrödinger equation with constant coeffi-
cients. Based on the similarity transformation, we discuss the dynamics of the propagation of the
three-dimensional bright–dark soliton, the interaction between two bright solitons, and the feature
of the three-dimensional rogue wave with different parameters. The obtained results may raise the
possibility of relative experiments and potential applications.
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1. Introduction

In the past decade, there have been a great deal of
theoretical and experimental investigations in models
based on the coupled nonlinear Schrödinger (CNLS)
or coupled Gross–Pitaevskii (CGP) equation [1 – 20],
which can be used widely to describe many physical
systems such as Langmuir and dispersive ion acous-
tic waves [21], nonlinearly coupled polarized plasma
waves [22], coupled electromagnetic waves [23] in
a dielectric, and for electric transmission lines [24]
and so on. Moreover, the (1 + 1)-dimensional CNLS
equation with varying coefficients have been investi-
gated by means of different techniques in the litera-
tures [25, 26]. For the higher-dimensional case, very
recently, Kuetche et al. proved the complete integrabil-
ity of the (2 + 1)-dimensional mixed CNLS equation
(or modified Manakov model) by the Painlevé proper-
ties and the generalized Lax representation [27]. How-
ever, the realization of a higher-dimensional CNLS is
still a challengeable topic for that adding a dimension
may changes drastically the integrability properties of
the equation. Only a few papers have paid attention
to the (2 + 1)-dimensional situation [27 – 30] and the
(3 + 1)-dimensional situation [31 – 35]. Therefore, we
further focus on the (3 + 1)-dimensional CNLS equa-
tion with time- and space-dependent potential, time-

dependent nonlinearity, and gain or loss. Generally
speaking, to obtain the corresponding analytical three-
dimensional soultion is still a difficult task. Fortu-
nately, we may make use of the similarity transforma-
tion (see, e.g., [36] and references therein) to reduce
the (3+1)-dimensional CNLS equation to the (1+1)-
dimensional one with constant coefficients, which al-
lows us to use the solution of the complete inte-
grable (1 + 1)-dimensional equation to construct the
corresponding analytical solution for the variable co-
efficients’ equation. Based on the similarity transfor-
mation, we present a detailed study on dynamics of
three-dimensional bright–dark soliton and bright soli-
ton pairs solutions of the (3 + 1)-dimensional CNLS
equation. To our knowledge, few authors studied the
soliton pairs solutions and their interaction properties
for above model. In addition, the research of rogue
waves is a new theme which attract more and more
attention in the ocean [37], in wide aperture optical
cavities [38], and in capillary wave experiments [39],
nonlinear optics [40], and cigar-shaped Bose-Einstein
condensates (BECs) [41]. So we also discuss the dy-
namics of three-dimensional rogue waves of the CNLS
system.

The organization of the article is settled as fol-
lows. In Section 2, we derive the similarity transfor-
mation reducing the (3 + 1)-dimensional inhomoge-
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neous CNLS equation with variable coefficients and
parabolic potential to the (1 + 1)-dimensional CNLS
equation with constant coefficients. In Section 3, we
give the expressions of the bright–dark soliton, the
bright soliton pairs, and rogue wavelike solutions. The
propagation of the three-dimensional bright–dark soli-
ton and the interaction between two bright solitons are
investigated, and the dynamics of rogue wavelike so-
lutions are also discussed. In Section 4, we give some
conclusions of the paper. Finally, a similarity transfor-
mation for (3 + 1)-dimensional N-coupled NLS equa-
tions is given in the appendix.

2. The Similarity Transformation

The original three-dimensional variable coefficients
inhomogeneous CNLS (VCNLS) equation with time–
space modulation can be written in a dimensionless
form [31 – 34] as

i
∂Ψ1

∂ t
=−1

2
∇

2
Ψ1 +V1(r, t)Ψ1 +[G11(t)|Ψ1|2

+G12(t)|Ψ2|2]Ψ1 + iΓ1(t)Ψ1 ,

i
∂Ψ2

∂ t
=−1

2
∇

2
Ψ2 +V2(r, t)Ψ2 +[G21(t)|Ψ1|2

+G22(t)|Ψ2|2]Ψ2 + iΓ2(t)Ψ2 ,

(1)

where the physical field Ψj = Ψj(r, t) ( j = 1,2), r =
(x,y,z) ∈ R3, ∇ ≡ (∂x,∂y,∂z) with ∂x = ∂/∂x, the ex-
ternal potentials Vj(r, t) ( j = 1,2) are real-valued func-
tions of time and spatial coordinates, and the nonlinear
coefficients Gi j(t) (i, j = 1,2) and gain or loss coeffi-
cients Γj(t) ( j = 1,2) are real-valued functions of time.

Our first objective is to seek for a similar transfor-
mation connecting solutions of (1) with those of the
(1 + 1)-dimensional CNLS equation with constant co-
efficients, i.e.,

i
∂Φ1

∂τ
+

∂ 2Φ1

∂ξ 2 +2µ(|Φ1|2 +δ |Φ2|2)Φ1 = 0 ,

i
∂Φ2

∂τ
+

∂ 2Φ2

∂ξ 2 +2µ(|Φ1|2 +δ |Φ2|2)Φ2 = 0 .

(2)

Here, the physical field Φ j ( j = 1,2) are functions
of two variables ξ ≡ ξ (r, t) and τ ≡ τ(t), which are
to be determined in the following reduce procedure,
and δ = ±1, with the sign of the real constant µ (|µ|
implies the strength of nonlinearity) represents focus-
ing or defocusing Kerr nonlinearity in nonlinear op-
tics theory, whereas, the attractive or repulsive interac-
tions between the species in BEC theory. Equation (2)

is found to be completely integrable derived in the
process of solving by the inverse scattering transform
(IST) by Zakharov and Schulman (see [1] and refer-
ences therein) and then through systematic analysis of
the Painlevé integrability [2] for more general con-
stant coefficients’ CNLS equation. When δ = 1, the
aforementioned system (2) is a Manakov system [3],
and bright and dark multisoliton solutions of the cor-
responding system have been derived with different
procedures [3, 5 – 7]. In the pioneering works [42, 43],
Afanasjev and Serkin analytically and numerically in-
vestigated the interaction of initially motionless soli-
tons in a Manakov system and similar ones. At δ = 1
for equal-amplitude orthogonal bright solitons, the in-
teraction manifests itself as periodic inharmonic os-
cillations of the soliton polarization, while the soliton
remains at the same time position. In birefringent fi-
bres with linear eigenmodes the interaction of unequal-
amplitude bright solitons is suppressed and always fi-
nally repulsive. On the other case, δ = −1, the afore-
mentioned system (2) is called the mixed CNLS (or
modified Manakov model), which has attracted a lot of
attention recently. The known solutions (say as bright–
bright, bright–dark, dark–dark type one-soliton solu-
tions) and some new solutions of the mixed CNLS
equation have been unearthed [4, 7, 11] and then sin-
gular and nonsingular bright multisoliton solutions
have been obtained in [12]. In order to control bound-
ary conditions at infinity, we impose the natural con-
straints [44]

ξ → 0 at r→ 0 , ξ → ∞ at r→ ∞ .

We are looking for the solution of (1) in the form [44,
45]

Ψ1 = ρ1(t)eiϕ1(r,t)
Φ1[ξ (r, t),τ(t)] ,

Ψ2 = ρ2(t)eiϕ2(r,t)
Φ2[ξ (r, t),τ(t)] ,

(3)

with ρi(t) and ϕ j(r, t) ( j = 1,2) being the real-valued
functions of the indicated variables. Thus, we substi-
tute transformation (3) with (2) into (1) and after rela-
tively simple algebra analysis obtain the following sys-
tem of partial differential equations:

2τt −|∇ξ |2 = 0 , ξt +∇ξ ·∇ϕ j = 0 , ∇
2
ξ = 0 , (4)

1
2

ρ j∇
2
ϕ j +ρ jt −ρ jΓj = 0 , (5)

|∇ϕ j|2 +2ϕ jt +2Vj = 0 , 2µτt +ρ
2
j G j1 = 0 ,

2δ µτt +ρ
2
j G j2 = 0 , ( j = 1,2) .

(6)
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In conventional practice, if linear and nonlinear po-
tentials are arbitrary given primarily, equations in sys-
tem (4) – (6) are not compatible with each other. One,
however, can pose the problem to find the functions
Vj(r, t), G j1(t), G j2(t), and Γj(t) ( j = 1,2) such that
system (4) – (6) becomes solvable. By solving (4), we
can write the similarity variables ξ (r, t), τ(t) and the
phases ϕ j(r, t) ( j = 1,2) in the form

ξ (r, t) = c(t) · r−
∫ t

0
c(s) ·a(s)ds ,

τ(t) =
1
2

∫ t

0
|c(s)|2ds ,

ϕ j(r, t) = rΩ(t)r+a(t) · r+ω j(t) ,
j = 1,2 ,

(7)

where c(t) = [cx(t),cy(t),cz(t)], a(t) = [ax(t),ay(t),
az(t)], Ω(t) = diag

[
− ċx(t)

2cx(t)
,− ċy(t)

2cy(t)
,− ċz(t)

2cz(t)

]
(overdots

stand for the derivative with respect to t), and cσ (t),
aσ (t) (σ = x,y,z) and w j(t) ( j = 1,2) are functions
of t. Then, from (5) – (6) we can derive the functions
G j(t), Vj(r, t), and ρ j(t) expressed by

G1(t)≡ G j1(t) =−µ|c(t)|2 e−2
∫ t

0 Γ1(s)ds

ϑ 2
1 cx(t)cy(t)cz(t)

,

G2(t)≡ G j2(t) =−δ µ|c(t)|2 e−2
∫ t

0 Γ2(s)ds

ϑ 2
2 cx(t)cy(t)cz(t)

,

Vi(r, t) = rΛ(t)r+b(t) · r− 1
2
|a(t)|2− ω̇ j(t) ,

ρ j(t) = ϑ j

√
cx(t)cy(t)cz(t)e

∫ t
0 Γj(s)ds, j = 1,2 ,

(8)

where ϑ1 and ϑ2 are integration constants, Λ(t) =
diag[αx(t),αy(t),αz(t)], and b(t) = [bx(t),by(t),bz(t)]
with

ασ (t) =
c̈σ (t)
2cσ (t)

− ċ2
σ (t)

c2
σ (t)

,

bσ =
aσ (t)ċσ (t)

cσ (t)
− ȧσ (t) , (σ = x,y,z) .

(9)

Thus, from (8) – (9), we known that if Vj(r, t) are linear
potentials (first degree polynomial for x, y , z), then that
ασ (t) = 0, i.e., c̈σ (t)cσ (t)−2ċ2

σ (t) = 0 must be hold,
which denotes that cσ = c1/(t + c2). Correspondingly,
if setting cσ are other free functions of t except for
the type of c1/(t +c2), the parabolic potentials Vj(r, t)
(second degree polynomial for x, y, z) will be exhib-
ited naturally. In what follows, we discuss the nontriv-
ial dynamics of different three-dimensional solutions
managed by (1) under the parabolic potentials.

3. Bright–Dark Soliton, Bright Soliton Pairs, and
Rogue Wavelike Solutions

From the different parameter relations derived in
Section 2, we can find that if choosing cσ (t), aσ (t)
(σ = x,y,z), Γj(t), ω j(t), and ϑ j ( j = 1,2), one can
generate pairs Vj(r, t) and G j(t) ( j = 1,2). Then the
solutions of (1) can be obtained from those of (2)
using (3). Meanwhile, one can note that for the given
cσ (t) (or ασ (t)), the nonlinearities G j(t) must atten-
uate (grow) exponentially in the gain or loss medium
Γj(t) > 0 (Γj(t) < 0), respectively. To make sure the
frequencies ασ (t) and nonlinearities G j(t) ( j = 1,2)
are bounded for realistic cases, we choose cσ (t) and
the gain or loss coefficients Γj(t) ( j = 1,2) as the peri-
odic functions

cσ (t) = Cσ dn(t,mσ ) , aσ (t) = 0 , σ = x,y,z , (10)

Γj(t) = ϒjcn(λ jt,n j)dn(λ jt,n j) , j = 1,2 , (11)

where Cσ , ϒj, and λ j are real constants, and mσ ∈ [0,1]
and n1,n2 ∈ [0,1] are the modules of Jacobi elliptic
functions.

3.1. Bright–Dark Soliton

If simply setting µ = 1 and δ = −1, (2) becomes
the mixed CNLS equation and the bright–dark soliton
solutions of corresponding system can be expressed by
the form [4, 11]

Φ1 = psech[
√

p2 +q2(ξ − kτ)]ei(kξ/2−s1τ) ,

Φ2 = qtanh[
√

p2 +q2(ξ − kτ)]ei(kξ/2−s2τ) ,

s1 =
k2

4
+(q2− p2), s2 =

k2

4
+2q2 ,

(12)

where the real arbitrary parameter k denotes the veloc-
ity, and the real arbitrary parameters p and q represent
the amplitudes of the components Φ1 and Φ2, respec-
tively.

The dynamics of the time-varying bright–dark soli-
ton [in (3), (7) – (12)] at three different choices of
the main managed parameters cσ (t) and Γj(t) [in
(10) – (11)] are illustrated in Figure 1. In Figure 1a,
when mσ = 0.1, we can see that the frequencies ασ (t)
of potentials display periodicity distinctly, nonlineari-
ties show G1(t) < 0 and G2(t) > 0 (for δ = −1), and
the bright–dark soliton propagates in a zigzag trace.
When mσ = 0.9 (mσ → 1), Figure 1b show that the pe-
riod and amplitude of ασ (t) becomes bigger than re-
sults in Figure 1a, the amplitude of the bright soliton
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Fig. 1 (colour online). Density plots of
|Ψ1|2 and |Ψ2|2 by (3), (7) – (12) with
L = Cxx +Cyy +Czz and the parameters:
(a) (left) 2k = 2p = q = 2λ1 = 2λ2 = 1,
ϑ1 = ϑ2 = 10, ϒ1 = ϒ2 = 0.1, Cσ = 1,
n1 = n2 = 1, and mσ = 0.1; (b) (middle)
mσ = 0.9 and the others are the same as
(a); (c) (right) n1 = n2 = 0 and the others
are the same as (a).

close to the corners attenuates rapidly so that a soliton
chain is generated, whereas, the relative amplitude of
the dark soltion increases promptly to palisade-shape
soliton emerge. It is also worthy to mention that for
the case mσ = 0, one can easily find that cσ (t) = Cσ

and ασ (t) = 0, leading to zero external potential, in
which the general travelling-wave soliton is obtained.
In Figure 1c, if setting n j = 0, in which G j(t) change
from a hyperbolic function to a trigonometric function,
and the periodicities of them alter evidently, the am-
plitudes of the bright–dark soliton also yield the same
periodic changes. For completeness, one can also se-
lect the bright–bright soltion solution, the dark–dark
soltion solution or other type of solution to make some
corresponding discussions [4, 7, 11, 12].

3.2. Bright Soliton Pairs

The interaction of the solitons plays an important
role in the study of optics theory or BEC theory. Here,
we only study the interaction between two bright soli-
tons. If we set δ = 1, (2) is the integrable coupled NLS
equation of Manakov type, and the corresponding two
bright soliton solutions can read [7]

Φ1 = G/F, Φ2 = H/F ,

G =
2

∑
j=1

s j eη j +
2

∑
j=1

eη1+η2+η∗j +δ j ,

H =
2

∑
j=1

h j eη j +
2

∑
j=1

eη1+η2+η∗j +∆ j , (13)

F = 1+
2

∑
j=1

eη j+η∗j +R j + eη1+η∗2 +δ0

+ eη∗1 +η2+δ ∗0 + eη1+η2+η∗1 +η∗2 +R3 ,

where

eδ0 =
l12

k1 + k∗2
, eδ1 =

(k1− k2)(s1l21− s2l11)
(k1 + k∗1)(k

∗
1 + k2)

,

eδ2 =
(k2− k1)(s2l12− s1l22)

(k2 + k∗2)(k1 + k∗2)
, eR1 =

l11

k1 + k∗1
,

eR2 =
l22

k2 + k∗2
, eR3 =

|k1− k2|2(l11l22− l12l21)
(k1 + k∗1)(k2 + k∗2)|k1 + k∗2|2

,

e∆1 =
(k1− k2)(h1l21−h2l11)

(k1 + k∗1)(k
∗
1 + k2)

, (14)

e∆2 =
(k2− k1)(h2l12−h1l22)

(k2 + k∗2)(k1 + k∗2)
,

and

lmn =
µ(sms∗n +hmh∗n)

km + k∗n
, η j = k jξ + ik2

j τ +η
(0)
j , (15)

with arbitrary complex parameters k1, k2, s1, s2, h1, h2,
η

(0)
1 , and η

(0)
2 .

In Figure 2, the dynamics of the 3D time-varying
bright two-soliton solutions are exhibited. We still give
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Fig. 2 (colour online). Density plots of
|Ψ1|2 and |Ψ2|2 by (3), (7) – (11), and
(13) – (15) with L = Cxx +Cyy +Czz: (a)
(left) |Ψ1|2max = 0.8264 and |Ψ2|2max =
1.0129 with the parameters: η

(0)
1 = η

(0)
2 =

0, µ = ϑ1 = ϑ2 = s1 = s2 = h1 = k1 =
2λ1 = 2λ2 = 1, ϒ1 = ϒ2 = 0.1, Cσ = 1,
n1 = n2 = 1, mσ = 0.5, k2 = 1.2, and
h2 = 1+ i; (b) (middle) |Ψ1|2max = 1.6675
and |Ψ2|2max = 1.6675 with h2 = 1, k1 =
1 + i, k2 = 1− i and the others are the
same as (a); (c) (right) |Ψ1|2max = 1.1663
and |Ψ2|2max = 2.3530 with h2 = i, k2 =
1.2 + 0.6i and the others are the same as
(a).

three different examples under different parameters
but the fixed modules mσ of Jacobi elliptic functions.
Two strong zigzag solitons without interaction (see
Fig. 2a), two strong zigzag solitons with interaction
(see Fig. 2b), and strong–weak zigzag solitons with in-
teraction (see Fig. 2c) can be classified mainly. In addi-
tion, similarly with Figure 1, if mσ →1, the amplitudes
of the soliton pairs close to the corners will almost de-
crease to zero so that the panel (a) will degenerate to
two parallel soliton chains, whereas the panels (b) and
(c) will degenerate to the ><-shaped soliton chains.
Another same analysis, if the variation of Γj(t) exist,
the amplitudes of three soliton pairs will change fol-
lowingly. Here, in the same way, one can also discuss
the dynamic behaviour of other forms of soltion pairs
such as two dark–dark soltions [7, 46] and two bright–
dark soltions [47] by the transformation in Section 2.

3.3. Rogue Wavelike Solutions

In this subsection, we make use of the rational solu-
tions of the (1+1)-dimensional CNLS equation which
serve as prototypes of rogue waves to illustrate the non-
trivial dynamics of three-dimensional rogue wavelike
solutions of VCNLS equation (1). First, we consider
the first-order rational solution (one-rogon solution)
of (2) which can be given (τ → 1

2 τ) by the form [49]

Φ1 =
sa√

2µ(A2 +B2)

·
[

1− (1+2is2τ)
1+2s2(ξ −2kτ)2 +4s4τ2

]
ei[kξ+(s2−k2)τ] ,

(16)Φ2 =
sb√

2µ(A2 +B2)

·
[

1− (1+2is2τ)
1+2s2(ξ −2kτ)2 +4s4τ2

]
ei[kξ+(s2−k2)τ] ,

with arbitrary parameters s, µ , A, B, and k.
Then, when the second-order rational solution (two-

rogon solution) of (2) is considered, the second-order
rogue wave solutions of the VCNLS equation (1)
can be derived immediately by the transformation (3).
The second-order rational solution of (2) (τ → 1

2 τ)
reads [49]

Φ1 =
sa√

2µ(A2 +B2)

·
[

1+
P(ξ ,τ)− is2Q(ξ ,τ)

H(ξ ,τ)

]
ei[kξ+(s2−k2)τ] ,

Φ2 =
sb√

2µ(A2 +B2)

·
[

1+
P(ξ ,τ)− is2Q(ξ ,τ)

H(ξ ,τ)

]
ei[kξ+(s2−k2)τ] ,

(17)

with

P(ξ ,τ) =− s4(ξ −2kτ)4

2
−6s6(ξ −2kτ)2

τ
2

−10s8
τ

4− 3s2(ξ −2kτ)2

2
−9s4

τ
2 +

3
8

,

Q(ξ ,τ) = s4(ξ −2kτ)4 +4s6(ξ −2kτ)2
τ

2

+4s8
τ

4−3s2(ξ −2kτ)2 +2s4
τ

2− 15
4

,

H(ξ ,τ) =
s6(ξ −2kτ)6

12
+

s8(ξ −2kτ)4τ2

2
(18)
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Fig. 3 (colour online). Intensity distribution (left) and density
distribution (right) plots of |Ψ1|2 and |Ψ2|2 by (3), (7) – (11),
and (16) with L = Cxx +Cyy +Czz and the parameters: µ =
ϑ1 = ϑ2 = Cσ = n1 = n2 = 2λ1 = 2λ2 = 1, ϒ1 = ϒ2 = 0.1,
mσ = 0.7, s = 0.8,A = 2,B = 5, and k = 0.

Fig. 4 (colour online). Intensity distribution (left) and density
distribution (right) plots of |Ψ1|2 and |Ψ2|2 by (3), (7) – (11),
and (16) with L =Cxx+Cyy+Czz and the parameters: k = 0.3
and the others are the same as Figure 3.

+
2s12τ6

3
+ s10(ξ −2kτ)2

τ
4 +

s4(ξ −2kτ)4

8

+
9s8τ4

2
− 3s6(ξ −2kτ)2τ2

2

+
9s2(ξ −2kτ)2

16
+

33s4τ2

8
+

3
32

,

with arbitrary parameters s, µ , A, B, and k.
From Figures 3 – 6, the dynamics of rogue wavelike

solutions [(3), (7) – (11), and (16) – (23)] are depicted,
which include the intensity distribution and density
distribution plots of the first-order and second-order
rogue wave solutions, respectively. As show in Fig-
ures 3 and 6, the rogue wave may be viewed as or-

Fig. 5 (colour online). Intensity distribution (left) and density
distribution (right) plots of |Ψ1|2 and |Ψ2|2 by (3), (7) – (11),
and (17) – (23) with L = Cxx +Cyy+Czz and the parameters
same as Figure 3.

Fig. 6 (colour online). Intensity distribution (left) and density
distribution (right) plots of |Ψ1|2 and |Ψ2|2 by (3), (7) – (11),
and (17) – (23) with L = Cxx +Cyy+Czz and the parameters
same as Figure 4.

derly arrangement along the t axis when setting k = 0,
but propagation in a zigzag trace along the t axis when
k = 0.3(k 6= 0). The features of these rogue wave so-
lutions are localized in space and keep the localiza-
tion infinitely in t-coordinate but differ from the usual
rogue wave solutions [48]. Similarly with Figure 1, if
mσ → 1, the width of the rogue wave will be dimin-
ished and if the variation of Γj(t) exist, the ampli-
tudes of previous wave will change [for (3) and (8c)],
followingly.

4. Conclusions

In conclusion, we have presented a similarity trans-
formation reducing the (3 + 1)-dimensional coupled
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inhomogeneous nonlinear Schrödinger equation with
variable coefficients to the (1 + 1)-dimensional one
with constant coefficients. This transformation allows
us to relate certain class of localized solutions of
the (3 + 1)-dimensional case to the variety of solu-
tions of integrable CNLS equation of the (1 + 1)-
dimensional case. As the application, we provide the
specific expressions of the bright–dark soliton, the
bright soliton pairs, and rogue wavelike solutions. At
the same time, we focus on the bounded parabolic
potential, nonlinearity, and gain or loss case to an-
alyze the dynamics of the propagation of the three-
dimensional bright–dark soliton, the interaction be-
tween two bright solitons, and the feature of the three-
dimensional rogue wave with different parameters.
The results can be applied to some physical fields,
such as Bose–Einstein condensates, nonlinear optics,
plasma physics, etc., and open up opportunities for
further studies on relative experiments and potential
applications.

Appendix: The Similarity Transformation for
N-coupled NLS equation

In [50 – 52], the authors investigate the (1 + 1)-
dimensional N-coupled NLS system from differ-
ent view points. For example, Kanna and Sakkar-
avarthi [52] investigated the integrable N-component
coherently coupled NLS equations describing simulta-
neous propagation of multiple fields in Kerr-type non-
linear media by a non-standard type of Hirota’s bilin-
earization method, and the more general bright one
solitons with single-hump and double-hump profiles
including special flat-top profiles are obtained. So in
this appendix, we will extend the results in the paper
to three-dimensional N-coupled NLS equations and
present the similarity transformations for them: for

i
∂Ψj

∂ t
=−1

2
∇

2
Ψj +Vj(r, t)Ψj +

[ N

∑
k=1

Gk(t)|Ψk|2
]

·Ψj + iΓj(t)Ψj, ( j = 1,2, · · · ,N)

(19)

we use the transformation

Ψj = ρ j(t)eiϕ j(r,t)Φ j[ξ (r, t),τ(t)] (20)

and select the objective equation as

i
∂Φ j

∂ t
+

∂ 2Φ j

∂ 2ξ
+2µ

[ N

∑
k=1

δk|Φk|2
]

Φ j = 0 ,

( j = 1,2, · · · ,N) .

(21)

Then, the system of partial differential equations can
be derived as

2τt −|∇ξ |2 = 0 , ξt +∇ξ ·∇ϕ j = 0 ,

∇
2
ξ = 0 ,

1
2

ρ j∇
2
ϕ j +ρ jt −ρ jΓj = 0 ,

|∇ϕ j|2 +2ϕ jt +2Vi = 0 , 2µδ jτt +ρ
2
j G j = 0 .

(22)

Solving these equations, the following results are ob-
tained:

Vj(r, t) = rΛ(t)r+b(t) · r− 1
2
|a(t)|2− ω̇ j(t) ,

τ(t) =
1
2

∫ t

0
|c(s)|2 ds ,

G j(t) =−
δ jµ|c(t)|2 e−2

∫ t
0 Γj(s)ds

ϑ 2
j cx(t)cy(t)cz(t)

,

ρ j(t) = ϑ j

√
cx(t)cy(t)cz(t)e

∫ t
0 Γj(s)ds ,

ξ (r, t) = c(t) · r−
∫ t

0
c(s) ·a(s)ds ,

ϕ j(r, t) = rΩ(t)r+a(t) · r+ω j(t) ,

(23)

where Λ(t) = diag[αx(t),αy(t),αz(t)], Ω(t) =
diag[− ċx(t)

2cx(t)
,− ċy(t)

2cy(t)
,− ċz(t)

2cz(t)
] (overdots stand for the

derivative with respect to t), a(t) = [ax(t),ay(t),az(t)],
b(t) = [bx(t),by(t),bz(t)], c(t) = [cx(t),cy(t),cz(t)],
cσ (t), aσ (t) (σ = x,y,z), and w j(t) ( j = 1,2, . . .,N)
are functions of t; ϑ1 and ϑ2 are integration constants,

ασ (t) =
c̈σ (t)

2cσ (t)
− ċ2

σ (t)
c2

σ (t)
,

bσ =
aσ (t)ċσ (t)

cσ (t)
− ȧσ (t) .

(24)
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