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The effect of a uniform vertical magnetic field on thermosolutal convection in a layer of an elec-
trically conducting couple-stress fluid heated and soluted from below is considered. For the case of
stationary convection, the stable solute gradient, magnetic field, and couple-stress parameter have
stabilizing effect on the system. It is also observed that a stable solute gradient and a magnetic field
introduce oscillatory modes in the system, but in the absence of a stable solute gradient and a mag-
netic field, oscillatory modes are not allowed and the principle of exchange of stabilities is valid.
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1. Introduction

A detailed account of the theoretical and experimen-
tal results of the onset of thermal instability (Bénard
convection) in a fluid layer under varying assumptions
of hydrodynamics and hydromagnetics has been given
in the celebrated monograph by Chandrasekhar [1].
Veronis [2] has investigated the problem of thermo-
haline convection in a layer of a fluid heated from
below and subjected to a stable salinity gradient. The
buoyancy forces can arise not only from density dif-
ferences due to variations in temperature but also from
those due to variations in solute concentration. Ther-
mosolutal convection problems arise in oceanography,
limnology, and engineering. The investigation of ther-
mosolutal convection is motivated by its interesting
complexities as a double diffusion phenomena as well
as its direct relevance to geophysics and astrophysics.
Stomell et al. [3] did the pioneering work regarding the
investigation of thermosolutal convection.

This work was elaborated in different physical situ-
ations by Stern [4] and Nield [5].

Examples of particular interest are provided by
ponds built to trap solar heat [6] and some Antarc-
tic lakes [7]. The physics is quite similar in the stel-
lar case in that Helium acts like salt in raising the
density and in diffusing more slowly than heat. The

conditions under which convective motion in double-
diffusive convection are important (e.g. in lower parts
of the Earth’s atmosphere, astrophysics, and several
geophysical situation) are usually far removed from
the consideration of a single component fluid and rigid
boundaries, and therefore it is desirable to consider
a fluid acted on by a solute gradient and free bound-
aries. A double-diffusive instability that occurs when
a solution of a slowly diffusing protein is layered over
a denser solution of more rapidly diffusing sucrose has
been explained by Brakke [8]. Nason et al. [9] found
that this instability, which is deleterious to certain bio-
chemical separations, can be suppressed by rotation in
the ultra centrifuge.

The problem of thermosolutal convection in
a couple-stress fluid is of importance in geophysics,
soil sciences, ground water hydrology, and astro-
physics. The theory of couple-stress fluid has been for-
mulated by Stokes [10]. One of the applications of
couple-stress fluids is its use to the study of the mecha-
nisms of lubrications of synovial joints, which has be-
come the object of scientific research. A human joint is
a dynamically loaded bearing which has articular car-
tilage as the bearing and synovial fluid as the lubricant.
When a fluid is generated, squeeze-film action is cap-
able of providing considerable protection to the carti-
lage surface. The shoulder, ankle, knee, and hip joints
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are the loaded-bearing synovial joints of the human
body and these joints have a low friction coefficient
and negligible wear.

The normal synovial fluid is a viscous, non-
Newtonian fluid, and is generally clear or yellowish.
According to the theory of Stokes [10], couple-stresses
appear in noticeable magnitudes in fluids with very
large molecules. Since the long chain hyaluronic acid
molecules are found as additives in synovial fluids,
Walicki and Walicka [11] modelled the synovial fluid
as a couple-stress fluid. The synovial fluid is the nat-
ural lubricant of joints of the vertebrates. The detailed
description of the joint lubrication has very important
practical implications. Practically all diseases of joints
are caused by or connected with a malfunction of the
lubrication. Goel et al. [12] have studied the hydro-
magnetic stability of an unbounded couple-stress bi-
nary fluid mixture under rotation with vertical temper-
ature and concentration gradients. Sharma et al. [13]
have considered a couple-stress fluid with suspended
particles heated from below. They have found that for
stationary convection, couple-stress has a stabilizing
effect whereas suspended particles have a destabiliz-
ing effect. In another study, Sunil et al. [14, 15] have
considered a couple stress fluid heated from below in
a porous medium in the presence of a magnetic field
and rotation and also studied on superposed couple-
stress fluids in porous medium in hydromagnetics.
Kumar et al. [16 – 18] have considered the thermal in-
stability of a layer of a couple-stress fluid acted on by
a uniform rotation; they have also studied on the stabil-
ity of superposed viscous-viscoelastic (couple-stress)
fluids through porous media and double-diffusive
magneto-rotatory convection in couple-stress fluids
through porous media. In another study, Kumar and
Singh [19] have considered the rotatory thermosolu-
tal convection in a couple-stress fluid and Singh and
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Fig. 1. Geometrical configura-
tion.

Kumar [20, 21] have studied magneto thermal convec-
tion in a compressible couple-stress fluid and magneto
and rotatory thermosolutal convection in couple-stress
fluids in porous media.

Keeping in mind the importance in geophysics, soil
sciences, ground water hydrology, astrophysics, and
various applications mentioned above, the thermoso-
lutal convection in a couple-stress fluid in the presence
of a uniform magnetic field has been considered in the
present paper.

2. Formulation of the Problem and Perturbation
Equations

Consider an infinite horizontal layer of an electri-
cally conducting couple-stress fluid of depth d, which
is acted on by a uniform vertical magnetic field in-
tensity ~H = (0,0,H) and gravity force ~g = (0,0,−g).
This layer is heated and soluted from below such that
a steady adverse temperature gradient β (= |dT/dz|)
and solute concentration gradient β ′(= |dC/dz|) are
maintained (see Fig. 1).

The hydromagnetic equations [1, 2, 10]), relevant to
the problem and following the Boussinesq approxima-
tion, are

∂~q
∂ t

+(~q ·∇)~q =− 1
ρ0

∇p+~g
(

1+
δρ

ρ0

)
(1)

+
µe

4πρ0

(
∇× ~H

)
× ~H +

(
ν− µ ′

ρ0
∇

2
)

∇
2~q ,

∇ ·
→
q = 0 , (2)

∇ ·
→
H = 0 , (3)

∂ ~H
∂ t

= (~H ·∇)~q+η∇
2~H , (4)

∂T
∂ t

+(~q ·∇)T = χ∇
2T , (5)
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∂C
∂ t

+(~q ·∇)C = χ
′
∇

2C . (6)

Here ρ , p, T , C, µe, ~q = (u,v,w), ~H = (0,0,H), and
~g = (0,0,−g) stand for density, pressure, temperature,
solute mass concentration, magnetic permeability, ve-
locity, magnetic field intensity, and gravitational ac-
celeration, respectively. The viscosity µ , couple-stress
viscosity µ ′, kinematic viscosity ν , thermal diffusivity
χ , analogous solute diffusivity χ ′, and electrical resis-
tivity η are each assumed to be constant.

The equation of state is

ρ = ρ0[1−α(T −T0)+α
′(C−C0)] , (7)

where the suffix zero refers to the values at the ref-
erence level z = 0, and so the change in density δρ

caused by the perturbation θ and γ in temperature and
concentration is given by

δρ =−ρ0(αθ −α
′
γ) . (8)

The equation of state (7) contains a thermal coeffi-
cient of expansion α and an analogous solvent coef-
ficient α ′.

The steady state solution is

~q = (0,0,0), T = T0−β z, C = C0−β
′z,

ρ = ρ0(1+αβ z−α
′
β
′z′) , (9)

where β = T0−T1
d and β ′ = C0−C1

d are the magnitudes of
uniform temperature and concentration gradients and
are both positive as temperature and concentration de-
crease upwards. The temperatures and the solute con-
centrations at the bottom surface z = 0 are T0 and C0
and at the upper surface z = d are T1 and C1, respec-
tively.

Let δρ , δ p, θ , γ , ~q = (u,v,w), and ~h = (hx,hy,hz)
denote the perturbations in density ρ , pressure p, tem-
perature T , solute concentration C, velocity (0,0,0),
and magnetic field intensity ~H, respectively. Then the
linearized hydromagnetic perturbation equations are

∂~q
∂ t

=− 1
ρ0

∇δ p−~g(αθ −α
′
γ)

+
µe

4πρ0

(
∇×~h

)
× ~H +

(
ν− µ ′

ρ0
∇

2
)

∇
2~q ,

(10)

∇ ·~q = 0 , (11)

∇ ·~h = 0 , (12)

∂~h
∂ t

= (~H ·∇)~q+η∇
2~h , (13)

∂θ

∂ t
= βw+ χ∇

2
θ , (14)

∂γ

∂ t
= β

′w+ χ
′
∇

2
γ . (15)

Here we consider the case in which both the bound-
aries are free as well as perfect conductors of both heat
and solute concentration, and the adjoining medium is
electrically nonconducting. The case of two free sur-
faces is a little artificial except in the case of stellar
atmospheres. However, this assumption allows us to
obtain the analytical solution without affecting the es-
sential features of the problem. The boundary condi-
tions appropriate for the problem are

w =
∂ 2w
∂ z2 =

∂ 4w
∂ z4 = 0 , θ = 0, γ = 0 (16)

at z = 0 and z = d, and~h is continuous with an external
field.

Within the framework of the Boussinesq approxima-
tion, (10) – (15) give

∂

∂ t
∇

2w−g
(

∂ 2

∂x2 +
∂ 2

∂y2

)
(αθ −α

′
γ)

− µeH
4πρ0

∂

∂ z
∇

2hz =
(

ν− µ ′

ρ0
∇

2
)

∇
4w ,

(17)

(
∂

∂ t
−χ∇

2
)

θ = βw , (18)(
∂

∂ t
−χ

′
∇

2
)

γ = β
′w , (19)(

∂

∂ t
−η∇

2
)

hz = H
∂w
∂ z

, (20)

where

∇
2 =

∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂ z2 .

3. Dispersion Relation

We now analyse the disturbances into normal
modes, assuming that the perturbation quantities have
the space and time dependence of the form

[w,θ ,hz, γ] =[W (z),Θ(z),K(z),Γ (z)]
· exp(ikxx+ ikyy+nt) ,

(21)
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where kx and ky are the wave numbers along x- and

y-directions, respectively, k = (
√

k2
x + k2

y) is the resul-
tant wave number, and n is the growth rate which is, in
general, a complex constant.

Using expression (21), (17) – (20) in nondimen-
sional form become
σ(D2−a2)W − [1−F(D2−a2)](D2−a2)2W (22)

− µeHd
4πρoν

(
D2−a2) DK +

ga2d2

ν
(αΘ −α

′
Γ ) = 0 ,

(D2−a2− p1σ)Θ =−
(

βd2

χ

)
W , (23)

(D2−a2−qσ)Γ =−
(

β ′d2

χ ′

)
W , (24)

(D2−a2− p2σ)K =−
(Hd

η

)
DW , (25)

where we have put a = kd, σ = nd2

ν
, x

d = x∗, y
d = y∗,

z
d = z∗, and D = d

dz∗ . Here p1 = ν

χ
is the Prandtl num-

ber, p2 = ν

η
is the magnetic Prandtl number, q = ν

χ ′ is

the Schmidt number, and F = µ ′

ρ0d2ν
is the dimension-

less couple-stress parameter.
Eliminating Θ , Γ , and K between (22) – (25), we

obtain
(D2−a2)(D2−a2− p1σ)(D2−a2−qσ)

·
[
σ(D2−a2− p2σ)+QD2− [1−F(D2−a2)]

· (D2−a2− p2σ)
]W

= (D2−a2− p2σ)

· [Ra2(D2−a2−qσ)−Sa2(D2−a2− p1σ)]W ,

(26)

where R = gαβd4

νκ
is the Rayleigh number, S = gα ′β ′d4

νχ ′ is

the analogous solute Rayleigh number, and Q = µeH2d2

4πρ0νη

is the Chandrasekhar number.
The boundary conditions (16) transform to [10]

W = D2W = D4W = 0 , Θ = 0 , Γ = 0 ,

ξ = 0 at z∗ = 0 and z∗ = 1 ,
(27)

where ξ = (Curl~h)z is the z-component of current den-
sity.

Dropping the stars for convenience and using the
boundary conditions (27), it can be shown that all the
even order derivatives of W must vanish on the bound-
aries and hence the proper solution of (26), character-
ising the lowest mode, is

W = W0 sinπz , (28)
where W0 is a constant.

Substituting (28) in (26), we obtain the dispersion
relation

R1 =
(1+ x)(1+ x+ ip1σ1)

x
[(1+ x){1+F1(1+ x)}

+ iσ1]+Q1
(1+ x)

x
(1+ x+ ip1σ1)
(1+ x+ ip2σ1)

+S1

(
1+ x+ ip1σ1

)(
1+ x+ iqσ1

) ,

(29)

where R1 = R
π4 , S1 = S

π4 , Q1 = Q
π2 , a2 = π2x, σ

π2 = iσ1,
and F1 = π2F .

4. Results and Discussion

4.1. Stationary Convection

When the instability sets in as stationary convection,
marginal state will be characterized by σ = 0. Putting
σ = 0, the dispersion relation (29) reduces to

R1 =
(1+ x)

x
[(1+ x)2{1+F1(1+ x)}+Q1]

+S1 .
(30)

To study the effect of stable solute gradient, mag-
netic field, and couple-stress parameter, we examine
the nature of dR1

dS1
, dR1

dQ1
, and dR1

dF1
.

Equation (30) yields

dR1

dS1
= +1 , (31)

dR1

dQ1
=

(1+ x)
x

, (32)

dR1

dF1
=

(1+ x)4

x
, (33)

which imply that stable solute gradient, magnetic field,
and couple-stress parameter have a stabilising effect on
the system. Graphs have been plotted between R1 and
x for various values of Q1, F1, and S1. The stabilising
effect is also evident from Figures 2 – 4.

4.2. Stability of the System and Oscillatory Modes

Here we examine the possibility of oscillatory
modes, if any, on the stability problem due to the pres-
ence of stable solute gradient and magnetic field. Mul-
tiplying (22) by W ∗, the complex conjugate of W ,
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Fig. 2. Variation of R1 with x for a fixed F1 = 10, Q1 = 20,
for different values of S1 (= 10, 15, 20).
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Fig. 3. Variation of R1 with x for a fixed S1 = 10, Q1 = 20,
for different values of F1 (= 5, 10, 15).

integrating over the range of z, and making use of
(23) – (25) together with the boundary conditions (27),
we obtain

σ I1 + I2−
gαχa2

νβ
(I3 + p1σ

∗I4)

+
gα ′χ ′a2

νβ ′
(I5 +qσ

∗I6)+
µeη

4πρ0ν
(I7 + p2σ

∗I8)

+F I9 = 0 , (34)

where

I1 =
∫ 1

0

(
|DW |2 +a2|W |2

)
dz ,

I2 =
∫ 1

0

(
|D2W |2 +2a2|DW |2 +a4|W |2

)
dz ,

I3 =
∫ 1

0

(
|DΘ |2 +a2|Θ |2

)
dz , I4 =

∫ 1

0
|Θ |2 dz ,
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Fig. 4. Variation of R1 with x for a fixed S1 = 10, F1 = 10, for
different values of Q1 (= 20, 40, 60).

I5 =
∫ 1

0

(
|DΓ |2 +a2|Γ |2

)
dz , I6 =

∫ 1

0
|Γ |2 dz ,

I7 =
∫ 1

0

(
|D2K|2 +2a2|DK|2 +a4|K|2

)
dz ,

I8 =
∫ 1

0

(
|DK|2 +a2|K|2

)
dz ,

I9 =
∫ 1

0

(
|D3W |2 +3a2|D2W |2 +3a4|DW |2

+a6|W |2
)

dz ,

and σ∗ is the complex conjugate of σ . The integrals
I1 – I9 are all positive definite.

Putting σ = σr + iσi in (34) and equating real and
imaginary parts, we have

σr

(
I1 +

gα ′χ ′a2

νβ ′
qI6 +

µeη

4πρ0ν
p2I8−

gαχa2

νβ
p1I4

)
=

−

(
I2+

gα ′χ ′a2

νβ ′
I5+

µeη

4πρ0ν
I7−

gαχa2

νβ
I3+F I9

)
(35)

and

σi

(
I1 +

gαχa2

νβ
p1I4−

gα ′χ ′a2

νβ ′
qI6

− µeη

4πρ0ν
p2I8

)
= 0 .

(36)

Equation (35) yields that σr may be positive or nega-
tive, i.e. there may be stability or instability in the pres-
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ence of solute gradient and magnetic field in couple-
stress fluid. It is clear from (36) that σi = 0 or σi 6= 0,
which means that the modes may be nonoscillatory or
oscillatory.

From (36) it is clear that σi is zero when the quan-
tity multiplying it is not zero and arbitrary when this
quantity is zero.

If σi 6= 0, then (36) gives

I1 =
gα ′χ ′a2

νβ ′
qI6−

gαχa2

νβ
p1I4 +

µeη

4πρ0ν
p2I8 . (37)

Substituting in (35), we have

2σrI1 + I2 +
gα ′χ ′a2

νβ ′
I5 +

µeη

4πρ0ν
I7 +FI9

=
gαχa2

νβ
I3 .

(38)

Equation (38) on using Rayleigh–Ritz inequality gives(
π2 +a2

)3

a2

∫ 1

0
|W |dz+

(
π2 +a2

)
a2

{
FI9 +

µeη

4πρ0ν
I7

+
gα ′χ ′a2

νβ ′
I5 +2σrI1

}
≤ gαχ

νβ

∫ 1

0
|W |dz .

(39)

Therefore, it follows from (39) that[
27π4

4
− gαχ

νβ

] ∫ 1

0
|W |2 dz+

(
π2 +a2

)
a2

·

{
FI9 +

µeη

4πρ0ν
I7 +

gα ′χ ′a2

νβ ′
I5 +2σrI1

}
≤ 0 ,

(40)

since the minimum value of (π2+a2)3

a2 with respect to a2

is 27π4

4 .
Now, let σr ≥ 0, we necessarily have from (40) that

gαχ

νβ
>

27π4

4
. (41)

Hence, if

gαχ

νβ
≤ 27π4

4
, (42)

then σr < 0. Therefore, the system is stable.
Therefore, under condition (42), the system is stable

and under condition (41) the system becomes unstable.

In the absence of stable solute gradient and magnetic
field, equation (36) reduces to

σi

(
I1 +

gαχa2

νβ
p1I4

)
= 0 , (43)

and the terms in brackets are positive definite. Thus,
σi = 0, which means that oscillatory modes are not al-
lowed and the principle of exchange of stabilities is
valid for the couple-stress fluid in the absence of sta-
ble solute gradient and magnetic field. The presence of
each, the stable solute gradient and the magnetic field
brings oscillatory modes (as σi may not be zero), which
were nonexistent in their absence.

4.3. Case of Overstability

Here we discuss the possibility of whether instabil-
ity may occur as overstability. Since we wish to de-
termine the critical Rayleigh number for the onset of
instability via a state of pure oscillations, it suffices
to find conditions for which (29) will admit a solution
with σ1 real.

Equating the real and imaginary parts of (29), elimi-
nating R1 between them, and letting c1 = σ2

1 , b = 1+x,
we obtain

A2c2
1 +A1c1 +A0 = 0 , (44)

where

A2 =q2 p2
2b[1+ p1(1+F1b)] ,

A1 =
[[

(p2
2 +q2)

{
b3(1+ p1 +F1b)

}]
+q2bQ1(p1− p2)+S1(b−1)p2

2(p1−q)
]
,

A0 =
[
b5{1+ p1(1+F1b)

}
+S1(b−1)b2(p1−q)

+Q1b3(p1− p2)
]
.

(45)

Since σ1 is real for overstability, both the values of c1
(= σ2

1 ) are positive. Equation (44) is quadratic in c1
and does not involve any of its roots to be positive if

p1 > p2 and p1 > q , (46)

which imply that

χ < η and χ < χ
′. (47)

Thus χ < η and χ < χ ′ are the sufficient conditions
for the nonexistence of overstability, the violation of
which does not necessarily imply the occurrence of
overstability.
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