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The effect of a uniform vertical magnetic field on thermosolutal convection in a layer of an elec-
trically conducting couple-stress fluid heated and soluted from below is considered. For the case of
stationary convection, the stable solute gradient, magnetic field, and couple-stress parameter have
stabilizing effect on the system. It is also observed that a stable solute gradient and a magnetic field
introduce oscillatory modes in the system, but in the absence of a stable solute gradient and a mag-
netic field, oscillatory modes are not allowed and the principle of exchange of stabilities is valid.
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1. Introduction

A detailed account of the theoretical and experimen-
tal results of the onset of thermal instability (Bénard
convection) in a fluid layer under varying assumptions
of hydrodynamics and hydromagnetics has been given
in the celebrated monograph by Chandrasekhar [1].
Veronis [2] has investigated the problem of thermo-
haline convection in a layer of a fluid heated from
below and subjected to a stable salinity gradient. The
buoyancy forces can arise not only from density dif-
ferences due to variations in temperature but also from
those due to variations in solute concentration. Ther-
mosolutal convection problems arise in oceanography,
limnology, and engineering. The investigation of ther-
mosolutal convection is motivated by its interesting
complexities as a double diffusion phenomena as well
as its direct relevance to geophysics and astrophysics.
Stomell et al. [3] did the pioneering work regarding the
investigation of thermosolutal convection.

This work was elaborated in different physical situ-
ations by Stern [4] and Nield [5].

Examples of particular interest are provided by
ponds built to trap solar heat [6] and some Antarc-
tic lakes [7]. The physics is quite similar in the stel-
lar case in that Helium acts like salt in raising the
density and in diffusing more slowly than heat. The

conditions under which convective motion in double-
diffusive convection are important (e.g. in lower parts
of the Earth’s atmosphere, astrophysics, and several
geophysical situation) are usually far removed from
the consideration of a single component fluid and rigid
boundaries, and therefore it is desirable to consider
a fluid acted on by a solute gradient and free bound-
aries. A double-diffusive instability that occurs when
a solution of a slowly diffusing protein is layered over
a denser solution of more rapidly diffusing sucrose has
been explained by Brakke [8]. Nason et al. [9] found
that this instability, which is deleterious to certain bio-
chemical separations, can be suppressed by rotation in
the ultra centrifuge.

The problem of thermosolutal convection in
a couple-stress fluid is of importance in geophysics,
soil sciences, ground water hydrology, and astro-
physics. The theory of couple-stress fluid has been for-
mulated by Stokes [10]. One of the applications of
couple-stress fluids is its use to the study of the mecha-
nisms of lubrications of synovial joints, which has be-
come the object of scientific research. A human joint is
a dynamically loaded bearing which has articular car-
tilage as the bearing and synovial fluid as the lubricant.
When a fluid is generated, squeeze-film action is cap-
able of providing considerable protection to the carti-
lage surface. The shoulder, ankle, knee, and hip joints
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are the loaded-bearing synovial joints of the human
body and these joints have a low friction coefficient
and negligible wear.

The normal synovial fluid is a viscous, non-
Newtonian fluid, and is generally clear or yellowish.
According to the theory of Stokes [10], couple-stresses
appear in noticeable magnitudes in fluids with very
large molecules. Since the long chain hyaluronic acid
molecules are found as additives in synovial fluids,
Walicki and Walicka [11] modelled the synovial fluid
as a couple-stress fluid. The synovial fluid is the nat-
ural lubricant of joints of the vertebrates. The detailed
description of the joint lubrication has very important
practical implications. Practically all diseases of joints
are caused by or connected with a malfunction of the
lubrication. Goel et al. [12] have studied the hydro-
magnetic stability of an unbounded couple-stress bi-
nary fluid mixture under rotation with vertical temper-
ature and concentration gradients. Sharma et al. [13]
have considered a couple-stress fluid with suspended
particles heated from below. They have found that for
stationary convection, couple-stress has a stabilizing
effect whereas suspended particles have a destabiliz-
ing effect. In another study, Sunil et al. [14, 15] have
considered a couple stress fluid heated from below in
a porous medium in the presence of a magnetic field
and rotation and also studied on superposed couple-

Kumar [20, 21] have studied magneto thermal convec-
tion in a compressible couple-stress fluid and magneto
and rotatory thermosolutal convection in couple-stress
fluids in porous media.

Keeping in mind the importance in geophysics, soil
sciences, ground water hydrology, astrophysics, and
various applications mentioned above, the thermoso-
lutal convection in a couple-stress fluid in the presence
of a uniform magnetic field has been considered in the
present paper.

2. Formulation of the Problem and Perturbation
Equations

Consider an infinite horizontal layer of an electri-
cally conducting couple-stress fluid of depth d, which
is acted on by a uniform vertical magnetic field in-
tensity H = (0,0, H) and gravity force g = (0,0, —g).
This layer is heated and soluted from below such that
a steady adverse temperature gradient (= |dT/dz|)
and solute concentration gradient ’(= |dC/dz]) are
maintained (see Fig. 1).

The hydromagnetic equations [1, 2, 10]), relevant to
the problem and following the Boussinesq approxima-
tion, are

MG Vii=—p(1+2) )
Po Po

stress fluids in porous medium in hydromagnetics. ot
Kumar et al. [16— 18] have considered the thermal in- n Ue (V y I:'I) < H + (v _ “—/VQ)VZZI
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Here p, p, T, C, Ue, § = (u,v,w), H= (0,0,H), and
g =(0,0,—g) stand for density, pressure, temperature,
solute mass concentration, magnetic permeability, ve-
locity, magnetic field intensity, and gravitational ac-
celeration, respectively. The viscosity U, couple-stress
viscosity u’, kinematic viscosity v, thermal diffusivity
X, analogous solute diffusivity ', and electrical resis-
tivity 1 are each assumed to be constant.
The equation of state is

+(g-V)C=y'V3C. (6)

p = po[l —a(T —Tp) + o/ (C—Co)], D

where the suffix zero refers to the values at the ref-
erence level z = 0, and so the change in density 6p
caused by the perturbation 8 and 7y in temperature and
concentration is given by

8p = —po(a6 —0a'y). ®)

The equation of state (7) contains a thermal coeffi-
cient of expansion o and an analogous solvent coef-
ficient o'.

The steady state solution is

‘?: (05050)’ T= TO—BZ, C:CO_BIZa
p=po(l+aBz—a'B'?), ©)

where 8 = @ and ' = @ are the magnitudes of
uniform temperature and concentration gradients and
are both positive as temperature and concentration de-
crease upwards. The temperatures and the solute con-
centrations at the bottom surface z = 0 are Ty and Cy
and at the upper surface z = d are 7| and Cy, respec-
tively.

Let 8p, 8p, 0, ¥, § = (u,v,w), and h = (hy,hy,h;)
denote the perturbations in density p, pressure p, tem-
perature T, solute concentration C, velocity (0,0,0),
and magnetic field intensity H, respectively. Then the
linearized hydromagnetic perturbation equations are

i1
99— L5p—gan—a'y
" po u (10)
AN AT
+4npO(V><h)><H+<v 57 )V 7,
V.G=0, (11
V-h=0, (12)
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Oh o .
5 = (H-V)g+nVh, (13)
20 X
E—ﬁw—&-xv 0, (14)
%:ﬁ’vH—x’sz. (15)

Here we consider the case in which both the bound-
aries are free as well as perfect conductors of both heat
and solute concentration, and the adjoining medium is
electrically nonconducting. The case of two free sur-
faces is a little artificial except in the case of stellar
atmospheres. However, this assumption allows us to
obtain the analytical solution without affecting the es-
sential features of the problem. The boundary condi-
tions appropriate for the problem are

_ J*w  d'w

T 02 o (10

=0,60=0,y=0

atz=0andz=d, and % is continuous with an external
field.

Within the framework of the Boussinesq approxima-
tion, (10)—(15) give

J, PEEPY ,
EV W—g(w-Faiyz)(Ole—Ot}/) -
L HeH 9o (B oo\ e
4np0aZth—(v oY )vw,
(2— V2>9:[3w (18)
ot ’
a ! !
(5 —2V2)r=B"w, (19
d 2N\, 0w
(5 -V )h=H". (20)
where
o9, 9 2
Ix2  dy? 97

3. Dispersion Relation

We now analyse the disturbances into normal
modes, assuming that the perturbation quantities have
the space and time dependence of the form

w,0,h;, 7] =[W(2),0(2),K(2), I'(2)]

21
-exp(ikyx +ikyy +nt), @b
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where k, and k, are the wave numbers along x- and
y-directions, respectively, k = (/k? +k?) is the resul-
tant wave number, and 7 is the growth rate which is, in
general, a complex constant.

Using expression (21), (17)—(20) in nondimen-
sional form become

o(D? —a®)W —[I —F(D* —a*)|(D* —®)*W  (22)
= % (0*—a) DK+ % (@0 —o/T) = 0,
d2
(Dzazplo)@(Zé)W, (23)
(D*—® —qo)T = —<ﬁgd)w, (24)
(D*— & — pro)K = — (T)DW7 (25)

_ _nd> x _ %y _ %
where we have put a =kd, 0 = %, 5 =x", 5 =",

s=zand D= d—‘g*. Here p; = % is the Prandtl num-
ber, p; = % is the magnetic Prandtl number, ¢ = % is
the Schmidt number, and F = po‘;;v is the dimension-
less couple-stress parameter.

Eliminating ©, I', and K between (22)—(25), we
obtain
(D? —a?)(D* —a® - p16) (D* —a* — go)

-|6(D* —a* — pyo) + QD* — [1 — F(D* — a?)]

(P22 L (26)
(D~ = p20)| " = (D*~a® ~ p20)
-[Ra*(D? — a® — qo) — Sa*(D* — a* — p1o)]”,

gafd*
73

O(/ /d4 .
g vljc, is
_ HeHd?
T dmpovn

where R =

is the Rayleigh number, § =

the analogous solute Rayleigh number, and Q
is the Chandrasekhar number.
The boundary conditions (16) transform to [10]

W=DW=D*W=0, =0, ' =0,
E=0atz"=0and =1,

27

where & = (Curl /). is the z-component of current den-
sity.

Dropping the stars for convenience and using the
boundary conditions (27), it can be shown that all the
even order derivatives of W must vanish on the bound-
aries and hence the proper solution of (26), character-
ising the lowest mode, is

W =Wysinrz,
where W is a constant.

(28)
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Substituting (28) in (26), we obtain the dispersion
relation

1+x)(1+x+ipio
py = LI 4411 4)
. (1+x) (1+x+ipio1)
o
+ l]+Ql X (1+x+ip20'1) 29
(1+x+ip10'1)
"(+xtige)
whereR12%,5'1:%,le%,f:nzx,%zioq,

and F; = m2F.
4. Results and Discussion
4.1. Stationary Convection

When the instability sets in as stationary convection,
marginal state will be characterized by ¢ = 0. Putting
o = 0, the dispersion relation (29) reduces to

r=" 0200 R0 ) 0

+S.

(30)

To study the effect of stable solute gradient, mag-
netic field, and couple-stress parameter, we examine

the nature of 3—1;1‘, g—Q‘, and %'
Equation (30) yields
3—];11 =+1, (31)
% _ (1 —)ic—x) 7 32)

which imply that stable solute gradient, magnetic field,
and couple-stress parameter have a stabilising effect on
the system. Graphs have been plotted between R; and
x for various values of Q1, F1, and S. The stabilising
effect is also evident from Figures 2 —4.

4.2. Stability of the System and Oscillatory Modes

Here we examine the possibility of oscillatory
modes, if any, on the stability problem due to the pres-
ence of stable solute gradient and magnetic field. Mul-
tiplying (22) by W*, the complex conjugate of W,
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Fig. 2. Variation of R; with x for a fixed F; = 10, Q; = 20,
for different values of S| (= 10, 15, 20).
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Fig. 3. Variation of R; with x for a fixed §; = 10, Q1 = 20,
for different values of F} (=5, 10, 15).

integrating over the range of z, and making use of
(23) - (25) together with the boundary conditions (27),
we obtain

2
oya
(711+12*gv);3 (i +p16*14)
ga/%/az * ‘Llen *
—= (I oI I (!
+ VB (Is+q 6)+4np0v(7+P2 g)
+Fly=0, (34)
where

1
11:/ (\DW|2+a2|W|2)dz,
0
1
12:/ (\02W|2+2a2|DW|2+a4|W|2)dz,
0

1 1
/ (16 +a0) dz., 14:/ 02dz,
0 0

L
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Fig. 4. Variation of R| with x for a fixed S = 10, F; = 10, for
different values of Q; (= 20, 40, 60).

1 1
—/ (|Dr|2+a2|r\2) dz, 16=/ Irdz,
0 0
1
<|D2K|2 +24d%|DK|? +a4|1<\2) dz,
0

Is =
h= [
1
Iy = / <|DK\2+a2\K|2) dz,
JO
1
Io :/ (|D3W|2+3a2|D2W|2+3a4\DW|2
0
+a6|W\2) dz,
and o™ is the complex conjugate of o. The integrals
I — Iy are all positive definite.

Putting 6 = oy +10; in (34) and equating real and
imaginary parts, we have

OC/ /a2
Gr<11+g X qls +

2
aya
Hel lesfg A P114> =

vp’ 4rpoVv v
ga'y/d® pen . goyd
—(+ Is+ L — L+FIy| (35)
vp/ 4rpoVv \7¢]
and
2 Iagl 2
goxa gaxa
| I, — —=—ql
01<1+ vB D14 VB qle

(36)

UeT]
— Ig | =0.
4”p0vpz 8)

Equation (35) yields that o, may be positive or nega-
tive, i.e. there may be stability or instability in the pres-



280

ence of solute gradient and magnetic field in couple-
stress fluid. It is clear from (36) that 6; = 0 or o; # 0,
which means that the modes may be nonoscillatory or
oscillatory.

From (36) it is clear that o; is zero when the quan-
tity multiplying it is not zero and arbitrary when this
quantity is zero.

If 0; # 0, then (36) gives

go/y'a*  goyd’ Uen
L = — L Is. 37
1 VB qls VB p14+47rp0vp28 37
Substituting in (35), we have
o'y 2
20ih + b+ EEE L o Bl L gy
v 4rpoVv
(38)
_goxa®,
=0 3.
Equation (38) on using Rayleigh—Ritz inequality gives
2., .2\3 4 2,2
e +a e +a
(2)/ |W|dz+(2){F19+ el
a 0 a 4mpoVv
(39)
g0y gouy /1
Is+20.) p < =—* W|dz.
+ VB s+ 200} =B 0| |dz
Therefore, it follows from (39) that
27 8oy /1 ‘led + (7T2+a2)
4 v 0 < a?
(40)
pen - goly'a®
L FIL I Is+20.0; » <0,
{ 9+4n_p0v7+ Vﬂ/ 5+ rll ¢ >
. .. (n2+d?)? . 2
since the minimum value of “=—-—- with respect to a
i 2717t
is =4—.
Now, let o; > 0, we necessarily have from (40) that
goy 27r*
—= > —. 41
v 4 @1
Hence, if
goy _27m*
< 42
VB S a (42)

then o; < 0. Therefore, the system is stable.
Therefore, under condition (42), the system is stable
and under condition (41) the system becomes unstable.
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In the absence of stable solute gradient and magnetic
field, equation (36) reduces to

2
axa
Gi(h-l-g 24 P114> =0,

VB (43)
and the terms in brackets are positive definite. Thus,
o; = 0, which means that oscillatory modes are not al-
lowed and the principle of exchange of stabilities is
valid for the couple-stress fluid in the absence of sta-
ble solute gradient and magnetic field. The presence of
each, the stable solute gradient and the magnetic field
brings oscillatory modes (as 6; may not be zero), which
were nonexistent in their absence.

4.3. Case of Overstability

Here we discuss the possibility of whether instabil-
ity may occur as overstability. Since we wish to de-
termine the critical Rayleigh number for the onset of
instability via a state of pure oscillations, it suffices
to find conditions for which (29) will admit a solution
with o real.

Equating the real and imaginary parts of (29), elimi-
nating R| between them, and letting ¢| = 612, b=1+x,
we obtain

Arct+Arci +A0=0, (44)

where
Ay =¢*p3b[1 + pi (1 + Fib)],
A =[[(p+a){PP(1+p1 +Fb)}]
+¢*b01(p1 — p2) +S1(b—1)p3(p1 —q)], (45)
Ao = [0 {1+pi(1+Fb)} +S1(b—1)b*(p1 —q)
+ 016 (p1—p2)].

Since o7 is real for overstability, both the values of ¢
(= o?) are positive. Equation (44) is quadratic in c;
and does not involve any of its roots to be positive if

p1>p2 and p; >gq, (46)
which imply that
x<mn and y <y’ 47)

Thus ¥y <1 and y < y’ are the sufficient conditions
for the nonexistence of overstability, the violation of
which does not necessarily imply the occurrence of
overstability.
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