Radiative Flow with Variable Thermal Conductivity in Porous Medium
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This article considers the radiation effect on the flow of a Jeffery fluid with variable thermal con-
ductivity. Similarity transformations are employed to convert the partial differential equations into
ordinary differential equations. The resulting equations have been computed by the homotopy anal-
ysis method (HAM). The numerical values of the local Nusselt numbers are also computed. The
comparison with the numerical solutions of 6’(0) is presented. The obtained results are displayed

and physical aspects have been examined in detail.
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1. Introduction

The boundary layer flow with heat transfer in
viscous/non-Newtonian fluids is a popular area of re-
search and a significant amount of recent research on
this topic has been under taken by various authors in-
cluding Ishak et al. [1], Xu and Liao [2], Sharma and
Singh [3], Vyas and Srivastava [4], Abbas et al. [5],
Salleh et al. [6], Hayat et al. [7], and Sahoo [8]. Such
flows in porous medium have increasing applications
in industries and contemporary technology. Especially
the knowledge of convection in porous media is not
only useful in designing the pertinent equipment but
also helps in better understanding the phenomena.
Few representative studies dealing with the boundary
layer flows in the presence of heat transfer and porous
medium have been presented in [9—15].

All the above mentioned studies deal with the
boundary layer flow over a stretching surface with con-
stant thermal conductivity. However it is proven now
that for liquid metals the thermal conductivity varies
linearly with temperature from 0 °F to 400 °F [16].
In view of such consideration, Vyas and Rai [17] re-
ported the radiation effects on boundary layer flow
of a viscous fluid with variable thermal conductivity
over a non-isothermal stretching surface. But no such

attempt is presented yet for a non-Newtonian fluid.
The purpose of this communication is to fill this void.
Hence, the present study discusses the radiation ef-
fect on the boundary layer flow of a Jeffery fluid with
variable thermal conductivity. A linear relationship be-
tween the thermal conductivity and the temperature is
considered. The thermal radiation has a pivotal role in
processes at high operating temperature. For instance,
nuclear power plants, gas turbines, and propulsion de-
vices for aircrafts, satellites, missiles, and space vehi-
cles, and few examples in the engineering areas where
the radiative effect is quite significant. Further, if the
entire system involving the polymer extrusion process
is placed in a thermally controlled environment, then
the radiative effect becomes very interesting. The rel-
evant problems for velocity and temperature are first
modelled and then solved by the homotopy analysis
method (HAM) [18-30]. The obtained solutions are
plotted and analyzed.

2. Governing Equations and Analysis

Consider the flow of an incompressible Jeffery fluid
over a linearly stretching sheet in a porous medium.
The thermal conductivity is not constant. Two equal
and opposite forces are applied along the sheet due to
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which the wall is stretched keeping the position of ori-
gin unchanged. We suppose that the wall temperature
Ty(x) > Tw, where T.. denotes the temperature of the
fluid far away from the sheet. Further, both fluid and
the porous medium are in local thermal equilibrium.
The x- and y-axes in the Cartesian coordinate system
are chosen along and normal to the sheet, respectively.
The governing equations are

Ju dv
ey )
du du v [0%u d3u
“ox Vay T 1+1b2+hcwwﬁ ,
dudu du Pu  du v @
axayz*ayaxay”ays)]ﬂ’
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and the subjected boundary conditions are

u=cx, v=0, T=Ty(x) =T.+Dx* aty=0, (4)
u=0, T=T., asy— oo, (5)

where u and v are the flow velocities in x- and y-
directions, respectively, A is the relaxation time, A;
the retardation time, v the kinematic viscosity, K the
permeability, T the temperature, k the variable thermal
conductivity, p the density of the fluid, C, the specific
heat at constant pressure, and ¢, the radiative heat flux.
By making use of the Rosseland approximation (Hayat
et al. [10]), the radiative heat flux g, is given by

40 JT*
qr = (6)
3k 1 8y
where o™ is the Stefan-Boltzmann constant and k; the
mean absorption coefficient. In view of Taylor’s series,
the term 7% can be written as

T4 24737 —3T2. (7)
By making use of (4) and (5), (3) becomes
aT aT d [ dT] 160712 9T
[o[6 =57 |k5 (3
“ox 8y dy| dy 3k 0y

The similarity transformations are defined as follows:

-
V')

u=cxf'(n), v=—vevf(n),
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where Ty, is the variable wall temperature and 6(n)
the non-dimensional form of the temperature. We con-
sider T = Ty (x) = T.. + Dx*0(n) at n = 0. The vari-
able thermal conductivity is k = k[l + €6] (here D
and o are positive constants, k. is the fluid free stream
conductivity), and € is given by

ky — koo
==
where c is a constant, ky, is the thermal conductivity
at the wall, and the prime denotes differentiation with
respect to 1.
Equation (1) is satisfied identically, and (2) —(5) re-
duce to the following expressions:

f///+ﬁ(f//2_ff////)+(1+)L)(ff//_f/2)

(10)

1 11
——(1+A1)f = (n
p
(1+£60)0"+€6”+ gNB” =Pr[abf — f6'],
F0)=0, f(0)=1, f/(=)=0, (12)
0(0)=1, and 6() =0,
where 3 = A;c is the Deborah number, p = (cK/V) is

the permeability parameter, pr=" kC: Y is the Prandtl

4073
number, and N = I?k

local Nusselt number Nu, is defined as

Xqdw

Nuy = ———+— 13
Up = o (To—1o) (13)
with the heat transfer ¢, given by
JaT
=—k 14

qw < Iy > (14)
The dimensionless expression of (10) is

Nu/Rel/? = —0/(0). (15)

The problems consisting of (8) and (9) can be com-
puted by the homotopy analysis method (HAM). For
that, we express f and 0 in a set of base functions

{n*exp(—nn)k >0,n >0} (16)
by
fm)y=ago+ Y, Y ay nfexp(—nn), (17
n=0k=0
2 menn exp(—nn) (18)

n=0k=
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with a, , and bfjm as the coefficients. The initial ap-
proximatlons and auxiliary linear operators can be

written as

fo(n) =1—exp(—=n), 6o(n)=exp(-n), (19)
Lr=f"—f, Loe=06"—-06, (20
,Cf(C1+C26n+C3ein)=0, 21

Lg(Cse"+C5e7 M) =0,
where C; (i = 1 —5) are arbitrary constants.

The zeroth-order deformation problems may be ex-
pressed as

:q) — fo(n)] = ahe Ny [F(miq)], (22)

(23)

(24)
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where ¢ is the embedding parameter, i¢ and hg are the
non-zero auxiliary parameters, and Ny and Ny are the
nonlinear operators. For ¢ =0 and ¢ = 1, one has

fo(n), 6(n,0) = 6y(n) and

£m). 6(n.1)=6(n). @n

F(n:0)=
fn:1) =

When g increases from 0 to 1 then f(1,¢) and 6(n,q)
varies from fy(n) and 6y(n) to f(n) and 6(n). Tay-

Radiative Flow with Variable Thermal Conductivity in Porous Medium 155

lor’s series expansion allows the following relations:

F00.q) = foln) + i Fulm)d™,

(28)
6(n,q) = 6o(n 2 O (29)
_ 1 9’”f(n,q)
fm(N) = Pl W q=07 “
o0 ()~ L 9"0(m4q) <0
m(n) - m‘ anm qzov

where the convergence of above series depends upon
hy and hg. Considering that hy and hg are selected
properly so that (22) and (23) converge at ¢ = 1 and
thus

fm)=fo(m)+ X fu(n) 3D
m=1
0(n) = 60(n)+ 3, 6u(n) (32)
m=1
The mth-order problems are given by
Ls[fn(M) = mfm—1(n)] = hyREF (M), (33)
Lo[6m(N) = 2nOn—1(n)] = he R (1), 34
(0) =f,il( )—fy’n( )=0,

p 35
0,(0) ~ 700 (0) = O (e=) =0, 4
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k=0 k=0 (36)
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4 m—1
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3 k=0
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+€Y 6y, 1 16 —Proc Y Ok fi (37)
k=0 k=0
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S 38)
The general solutions may be written as
foM) =fr(M)+C1+Ce"+Ce™ M, (39)
On(n) =6, (n)+Cse"+Cse™ M, (40)

where f,; and 0} stand for the special solutions.
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Table 1. Convergence of the homotopy solution for different
order of approximations when § = 0.1, « =Pr=1.0, N =
03,p=20,e=24=0.2,and iy = fig = —0.7.

Order of approximation —f"(0) —6'(0)
1 1.21000 0.76667
5 1.24311 0.68968

10 1.24316 0.67553

20 1.24316 0.67017

30 1.24316 0.66923

35 1.24316 0.66908

40 1.24316 0.66908

50 1.24316 0.66908

Pr=a=10p=20N=03 =01 e=1=0.2

0

~0.25
S -05
=Y
075
)
U ;
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Fig. 1. hi-curves for the functions f and 6.

3. Convergence of the Homotopy Solutions

We found that the expressions (31) and (32) have the
non-zero auxiliary parameters /iy and fg. Such auxil-
iary parameters play a key role in the analysis of con-
vergence for the obtained series solutions. In order to
define the adequate values of /iy and fg, the fi-curves
have been potrayed for 20th-order of approximations.
From Figure 1 it is noted that the range of admissi-
ble values of 7iy and 7ig are —1.2 < iy < —0.1 and
—1.1 < hy < —0.3. The series converges in the whole
region of 11 when Ay = fig = —0.7 (see Table 1).

4. Discussion

In this section, we plot Figures 2 —11 for the effects
of Deborah number 3, permeability parameter p, ra-
tio of relaxation time over retardation time A, Prandtl
number Pr, positive constant ¢, radiation parameter N,
and small parameter € on the velocity and temperature
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Fig. 2. Influence of 8 on f/(n).
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Fig. 3. Influence of p on /(7).
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Fig. 4. Influence of A on f/(n).
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Fig. 5. Influence of Pr on (7).

Pr=07p=208= 01,N=03 e=1=02

1
. — a=00
08} \ —— =10
A - a=20
06| A =30
§ )
5
04
02
0
0

Fig. 6. Influence of & on 6(1n).
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Fig. 7. Influence of p on 6(n).
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Fig. 8. Influence of B on (7).
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Fig. 9. Influence of N on 6(n).
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Fig. 10. Influence of € on 6(7).
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Table 2. Numerical values of the local Nusselt

oa € N »p Pr Vyas and Rai [17] Present results

0 0.001 1 0.5 0.023 —0.04706608006216 —0.0469873 number 9/(0) Compared with the results achieved
I 0001 1 05 0023 —004810807780602 00481857 DY Vyasand Rai[17].
2 0.001 1 05 0.023 —0.04915123655083 —0.0492375

1 0.001 1 1 0.023 —0.05813708762124 —0.0581462

1 0.001 1 2 0.023 —0.06627101076453 —0.0662179

1 0.001 2 05 0.023 —0.03092604001010 —0.0309465

1 0.001 3 05 0.023 —0.02096607234828 —0.0207548

1 0.001 5 05 0.023 —0.01496701292876 —0.0151473

1 0.004 1 05 0.023 —0.04801503596049 —0.4857646

1 0 1 0.5 0.023 —0.04814015988615 —0.0483625

1 0.001 1 05 0.1 —0.19563610029641 —0.1976327

1 0.001 1 0.5 0.2 —0.37208031115957 —0.3742764

Pr=07a=05p= 20,8=01,N=03e=02

— =00
- -21=03
- 1=06

1=09

aam)

Fig. 11. Influence of A on (7).

fields f/(n) and 6(n), respectively. Figures 2—4 de-
scribe the effects of 3, p, and A on the velocity field
f'(n). Figure 2 shows that the velocity field f/(n) de-
creases by increasing 3. The effects of p on f’(n) are
seen in Figure 3. The velocity profile f/(n) increases
by increasing p. From Figures 2 and 3, we see that
the Deborah number 3 and the permeability parame-
ter p have same effects on f'(7) in a qualitative sense.
Figure 4 discloses the influence of A on f'(7). An in-
crease in A produces a decrease in velocity profile (see
Fig. 4). Figures 5—11 depict the effects of different
non-dimensional parameters on the temperature field
0(n). Figure 5 represents the effects of Pr on 6(n).
By increasing Pr, 6(n) decreases. From Figure 6, we
observed that the temperature field 0(n) decreases by
increasing the values of o. Figure 7 plots the varia-
tions of p on 6(n). The temperature field 6(n) de-
creases when p increases. Figure 8 shows the effects
of B on 6(n). From Figure 8, we observed that the

Table 3. Values of the local Nusselt number —6’(0) for dif-
ferent values of A, f3, Pr, and p when oo = 1.0, € = 0.2, and
N=0.23.

A B Pr p —6'(0)
0.0 0.1 1.0 2.0 0.68704
0.3 0.66072
0.8 0.62321
1.0 0.60993
0.2 0.0 0.67584
0.2 0.73491
0.4 0.76583
0.6 0.79877
0.5 0.44584
1.0 0.37504
1.5 0.95721
2.0 1.14532

1.0 0.66931
2.0 0.70594
3.0 0.74092
4.0 0.76105

temperature field 6(n) decreases when 3 increases.
Figure 9 shows that the temperature profile 6(n) in-
creases when N increases. Figure 10 plots the effects
of € on 6(n). The temperature field 6(n) increases
when ¢ is increased. From Figures 9 and 10, it is obvi-
ous that N and € have similar effects on the tempera-
ture field 6(7n) in a qualitative sense. Figure 11 shows
the effects of A on the temperature profile. We see that
0(n) increases by increasing A. By comparing Fig-
ures 4 and 11, we conclude that A show opposite re-
sults for f/(n) and 6(n).

5. Concluding Remarks

The radiative flow of a Jeffery fluid with vari-
able thermal conductivity over a non-isothermal
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stretching sheet in a porous medium is studied.
The thermal conductivity varies linearly with the
temperature. The key points of the present study
are:

e [ and A have opposite effects on the velocity field
().

e By increasing the permeability parameter p, the ve-
locity field f’(n) increases.

e The temperature profile (7)) decreases by increas-
ing Pr.
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