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This paper presents the cross focusing of two high power lasers by taking off-axial contributions
of the laser beams in a collisionless plasma. Due to relativistic and ponderomotive nonlinearities the
two laser beams affect the dynamics of each other and cross focusing takes place. The expressions
for the laser beam intensities by using the eikonal method are derived. The contributions of the r2

and r4 terms are incorporated. By expanding the eikonal and the other relevant quantities up to the
fourth power of r, the solution of the pump laser beam is obtained within the extended paraxial ray
approximation. Filamentary structures of the laser beams are observed due to the relativistic and the
ponderomotive nonlinearity. The focusing of the laser beams is shown to become fast in the extended
paraxial region. Using the laser beam and the plasma parameters, appropriate for beat wave processes,
the filaments of the laser beams are studied and the relevance of these results to beat wave processes
is pointed out.

Key words: Filamentation; Ponderomotive Nonlinearity; Cross Focusing.

1. Introduction

There is considerable interest in the interaction of
intense laser beams with plasmas because of its rel-
evance to laser fusion [1] and charged particle ac-
celeration [2, 3]. The generation of a large electric
field in plasmas by high power lasers has been stud-
ied for several years in the context of particle accel-
eration, and new techniques have been investigated;
one of these techniques is the beat wave accelera-
tion [4, 5], in which two laser beams are propagating in
the plasma simultaneously. As particle acceleration be-
comes a requirement of various modern physics exper-
iments, alternative methods for acceleration by using
laser beams has become important. Most of the stud-
ies related to laser plasma interactions are restricted to
the case where the electron nonlinearity due to rela-
tivistic mass variation is accounted by cross focusing
of two laser beams with paraxial approximation. But
in many situations, the laser beam can create different
types of nonlinearities at different time scales accord-
ing to the inequalities (i) τ < τpe or (ii) τpe < τ < τpi,
hence one can have different time regimes. Here τ is
the laser pulse duration, τpi the ion plasma period, and
τpe the electron plasma period. In case (i), τ < τpe,
the relativistic nonlinearity is important. This nonlin-

earity is setup almost instantaneously. In case (ii), the
relativistic and ponderomotive nonlinearities are oper-
ative [6 – 9]. In this case, electrons are expelled from
the channel due to the electron ponderomotive force,
while ions are much less expelled due to their inertia.
The motivation of the present work is to study the non-
linear propagation of two laser beams, when relativistic
and ponderomotive nonlinearities are effective, by con-
sidering an extended paraxial approximation. In this
case the electrons are expelled from the high intensity
region by the ponderomotive force. The nonlinearity
in the dielectric constant of the plasma becomes effec-
tive through the electron mass variation due to the laser
intensity and due to the change in electron density be-
cause of the ponderomotive force. Therefore, the laser
beam propagation is expected to be drastically affected
in comparison to the pure relativistic case. The contri-
bution of the off-axial rays has been taken into account
by incorporating the r2 and r4 terms in the present anal-
ysis. The solution of the pump laser beam has been ob-
tained within the extended paraxial ray approximation
by expanding the eikonal and the other relevant quan-
tities up to the fourth power of r.

In Section 2, we derive the expression for the effec-
tive dielectric constant of the plasma in the presence
of two laser beams when relativistic and ponderomo-
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tive nonlinearities are operative. The solution of self-
focusing equations for the laser intensities is obtained
by using the eikonal method [10] in Section 3, and
a brief discussion of the results follows in Section 4.

2. Effective Dielectric Constant of the Plasma

Consider the propagation of two coaxial Gaussian
laser beams of frequencies ω1 and ω2 along the
z-direction. The initial intensity distributions of the
beams are given by

E1 ·E∗1
∣∣z=0 = E2

10 e−r2/r2
1 ,

E2 ·E∗2
∣∣z=0 = E2

20 e−r2/r2
2 ,

(1)

where r is the radial coordinate of the cylindrical co-
ordinate system, r1 and r2 are the initial beam widths,
and E0 is the axial amplitude of the beam. The dielec-
tric constant of the plasma is given by

ε01,02 = 1−
ω2

p0

ω2
1,2

, (2)

where ωp0 is the plasma frequency given by ω2
p0 =

4πn0e2/m0 (with e the charge of an electron, m0 its
rest mass, and n0 the density of plasma electrons in
the absence of the laser beam). The relativistic factor
is given by

γ =
(

1+
e2

c2m2
0ω2

1

E1 ·E∗1 +
e2

c2m2
0ω2

2

E2 ·E∗2
)1/2

.

The above expression is valid if there is no change
in the plasma density. The relativistic ponderomotive
force is given by

Fp =−m0c2
∇(γ−1) . (3)

Using the electron continuity equation and the current
density equation up to the second order correction in
the electron density equation (with the help of the pon-
deromotive force), the total density is given by

n = n0 +n2 = n0 +
c2n0

ωp0

(
∇

2
γ− (∇γ )2

γ

)
.

Now, the effective dielectric constant of the plasma at
frequency ω0 is given by

ε1,2 = ε01,2 +φ1,2(E1 ·E∗1 ,E2 ·E∗2 ), (4)

where

φ1,2(E1 ·E∗1 ,E2 ·E∗2 ) =
ω2

p0

ω2
1,2

(
1− n

n0γ

)
.

Taylor-expanding the dielectric constant in (4) around
r = 0, one can write

ε1,2 = ε f 1,2 + γ1,2r2,

where

ε f 1,2 = ε01,02 +
ω2

p0

ω2
1,2

[
− 1

2

(
α1

f 2
1

+
α2

f 2
2

)

+
(α00−1)

γk4
p

(
α1

r2
1 f 4

1

+
α2

r2
2 f 4

2

)]
and

γ1,2 =−
ω2

p0

ω2
1,2

[
3(α00−1)

γ2k2
p

(
α1

r4
1 f 6

1

+
α2

r4
2 f 6

2

)
+

(4α02 +α00)
2γ3

(
α1

r2
1 f 4

1

+
α2

r2
2 f 4

2

)
− 3

γ4k2
p

(
α2

1

r4
1 f 8

1

− α2
2

r4
2 f 8

2

)
− 6α1α2

k2
pγ4r2

1r2
2 f 4

1 f 4
2

]
,

α00 and α02 are the coefficients of r2 and r4, re-
spectively, defined below in (9). α1,2 = α0 A2

01,2 is
the square of the dimensionless vector potential, E =
−dA/d(ct), α0 = e2/m2

0c4; f1 and f2 are the dimen-
sionless beam width parameters at z as given by (11)
in Section 3, and k2

p =−ω2
p0/c2.

3. Cross Focusing of Laser Beams

The wave equation governing the electric vectors of
two laser beams in a plasma can be written as

∂ 2E1,2

∂ z2 +
1
r

∂E1,2

∂ r
+

∂E1,2

∂ r2 +
ω2

1,2

c2 ε1,2E1,2 = 0. (5)

In (5), the ∇(∇ ·E) term has been neglected, which is
justified as long as(

ω2
p0

ω2
1,2

)(
1

ε1,2

)
Imε1,2 ≤ 1.

The variations of the electric fields are

E1,2 = A1,2(x,y,z)e−ik1,2z.
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The wave equation then becomes

− k2
1,2A1,2−2ik1,2A1,2 +

(
1
r

∂

∂ r
+

∂

∂ r2

)
A1,2

+
ω2

1,2

c2 ε1,2A1,2 = 0.

(6)

A1,2 are complex functions of the space variables: we
assume furthermore the variation of A1,2 as (cf. [8])

A1,2 = A01,2(r,z)e−ik1,2S1,2(r,z), (7)

where A1,2 and S1,2 are real functions of the space vari-
ables. Substituting the values of A1,2 from (7) into (6)
and separating real and imaginary parts of the resulting
equation, the following set of equations is obtained:

The real part of (6) is

2
∂S1,2

∂ z
+
(

∂S1,2

∂ z

)2

=
ω2

1,2ε1,2

c2k2
1,2

+
1

k2
1,2A01,2

(
∂ 2A01,2

∂ r2 +
1
r

∂A01,2

∂ r

)
,

(8)

where

A2
01,2 =

(
1+

α01,2r2

r2
1,2 f 2

1,2

+
α21,2r4

r4
1,2 f 4

1,2

)

·

(
E2

01,2

f 2
1,2

)
e

(
− r2

r2
1,2 f 2

1,2

) (9)

are the laser beam intensities, f1,2 are the dimension-
less beam width parameters for beam 1 and 2, respec-
tively, and

S1,2 =
r2

2 f1,2

d f1,2

dz
+

r4

r4
1,2

S21,2. (10)

By substituting (4), (9), and (10) into (8) and equat-
ing the coefficients of r2 on both sides of the resulting
equation, the governing equations for the beam width
parameters f1,2 are

d2 f1,2

dξ 2 =
1

f 3
1,2

(
−3α

2
00 +8α02 +1−2α00

)
−

ω2
p0

ω2
0

k2
0r2

0 f1,2

2γ3 (α00−1)
(

α2
1

f 3
1

+
α2

2

f 3
2

)
−

(4α02 +α00) f1,2

2γ3

(
α2

1

f 6
1

+
α2

2

f 6
2

)
+

(4α02 +α00) f1,2

γ4

(
α2

1

f 8
1

+
α2

2

f 8
2

)
−

f1,2

γ4

(
6α1α2

f 4
1 f 4

2

)
.

(11)

Similarly, by equating the coefficients of r4 on both
sides of the resulting equation, the following relation
is obtained:

∂S02

∂ z
= − 1

r2
0k2

0 f 6
1,2

(
2α02−

3
2

α00α02−
3
4

α
2
00

)
+

(−α00 +2α02)r2
0

k2
0γ3

(
α2

1

f 10
1

+
α2

2

f 10
2

)
. (12)

Again, the imaginary part of (6) is given by

∂A2
01,2

∂ z
+

∂S1,2

∂ r

∂A2
01,2

∂ r

+A2
01,2

(
∂ 2S1,2

∂ r2 +
1
r

∂S1,2

∂ r

)
= 0.

(13)

Inserting (9) and (10) into (13) and equating the coeffi-
cients of r2 on both sides of the resulting equation, the
equations for the coefficient α01,2 are obtained as

∂α01,2

∂ z
=−

16S21,2 f 2
1,2

r2
1,2

. (14)

In a similar way, equating the coefficients of r4 gives
the equation for the coefficients

∂α21,2

∂ z
= 8(1−3α01,2)

S21,2 f 2
1,2

r2
1,2

. (15)

4. Discussion

Here, we have developed the theory of cross focus-
ing of two laser beams by taking the off-axial parts
of the laser beams into consideration, if relativistic
and ponderomotive nonlinearities are operative. This
is given by (11). The focusing/defocusing behaviour
of the laser beams depends on the magnitudes of the
nonlinear coupling term, i.e. on the nonlinear refrac-
tion of the laser beams and the diffraction term (sec-
ond and first term on the right hand side of (11)).
Equation (9) represents the intensity profile of the laser
beams in the plasma in radial direction. The inten-
sity profiles of both laser beams depend on the beam
width parameters f1,2 and the coefficients α01,2 and
α21,2 of the r2 and r4 terms in the off-paraxial region.
Equation (11) determines the focusing/defocusing of
the laser beams along the distance of propagation in
the plasma. In order to have a numerical apprecia-
tion of the cross focusing in this region and the ef-
fect of changing the parameters of the plasma and laser
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beams, we have performed numerical computations of
(11), (12), (14), and (15). We have solved the cou-
pled equations and obtained the numerical results with
typical values for the plasma and laser beam parame-
ters. The following set of parameters has been used in
the numerical calculations: r1 = 15 µm, r2 = 20 µm,
ω1 = 1.776 ·1014 rad/S, ω2 = 1.716 ·1014 rad/S, and
ωp0 = 0.3ω1. For the initial plane wave front of
the laser beams the initial conditions used here are
f1,2 = 1, d f1,2/dz = 0, α01,2 = α21,2 = 0, and S21,2 = 0
at z = 0.

Before proceedings further, we discuss the effect
of a change of the square of normalized beam radius
R2 on the dimensionless critical vector potential a =
A2 [11]. This is presented in Figure 1. For calculating
the critical vector potential a, we put d2 f1,2/dξ 2 = 0
and f1,2 = 1 in (11). If we consider the relativistic
nonlinearity only, the square of the normalized beam
radius has the form R2 ∝ (1/a). But if we consider
both relativistic and ponderomotive nonlinearities, the
square of normalized beam radius has the form R2 ∝

[2+6(a)2−6a]/a. From Figure 1, we got two differ-
ent values for the critical vector potential correspond-
ing to a given value of R2 in the case of relativistic plus
ponderomotive nonlinearity (for example: R2 = 10,
arel = 1.25, arel+pon = 1.5, 2.3). This also shows that
if including the ponderomotive nonlinearity, we need
more power for self-focusing.

For initial plane wave fronts of the beams the ini-
tial conditions for f1,2 are f1,2 = 1 and d f1,2/dz = 0

Fig. 1 (colour online). Variation of the square of the normal-
ized beam radius R2 with the normalized critical field a of the
beam (solid line: relativistic case, dotted line: ponderomotive
case).

at z = 0. If two laser beams propagate simultaneously
through the plasma, the density of the plasma will vary
along the channel due to the ponderomotive force. But
the relativistic and ponderomotive nonlinearities intro-
duced in the plasma depend upon the total intensity
of the two beams; therefore, the behaviour of f1 is
also governed by f2 and vice versa. In other words,
the self-focusing of one beam is affected by the pres-
ence of another beam; this is referred to as cross fo-
cusing. The properties of the cross focusing are influ-
enced by the coupling term; this coupling term comes
from the expansion of the γ1,2 terms in the powers of
r2. We have solved (11) for various combinations of
the initial fields of the lasers, which are greater than
the critical values. In that case, f1 and f2 are obtained
from the numerical solutions. Figure 2 illustrates the
behaviour of the two beams when relativistic as well
as ponderomotive nonlinearities are considered simul-
taneously. Both of the beams show oscillatory self-
focusing when we use the potential for the first beam
a1 = 1.5 and for the second beam a2 = 0.3. We have
also studied the behaviour of one laser beam in the
absence of the second beam. Figure 3 shows the self-
focusing behaviour of a single laser beam (in absence
of a second one) when both kinds of nonlinearities are
operative. Figure 4 shows the effect of changing the
potential of the second laser on the cross-focusing pro-
cess (by keeping the potential of the first laser beam
constant) when relativistic and ponderomotive nonlin-
earities are operative. It explicitly illustrates the effect

Fig. 2 (colour online). Variation of both beam width parame-
ters f1 and f2 with the normalized distance ξ when only the
relativistic nonlinearity has been considered for a1 = 1.5 and
a2 = 0.3. Solid line: f1; semi dotted line: represents f2.
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Fig. 3 (colour online). Variation of the beam width parameter
f1 with the normalized distance ξ for a1 = 1.5, a2 = 0 for
a single laser beam (but both the relativistic and ponderomo-
tive nonlinearities are operative).

of changing the potential of the second laser on the
focusing/defocusing of the first laser beam in pres-
ence of both relativistic and ponderomotive nonlinear-
ities. Note that the rate of focusing of the first laser
beam becomes slower with the increase of the poten-
tial of the second laser beam. These two beams inter-
act with each other and generate an electron plasma
wave. This is due to the contribution of the second

Fig. 4 (colour online). Variation of the beam width parameter
f1 with the normalized distance ξ by keeping a1 = 1.5 con-
stant when relativistic and ponderomotive nonlinearities are
operative. Dashed line: f1 at second beam potential a2 = 0.3;
solid line: f1 at a2 = 0.5; dotted line: f1 at a2 = 0.7.

laser beam in (11), which governs the beam width pro-
file f1.
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