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In this paper, we consider the dynamics of Klein—Gordon and Dirac oscillators in (2 + 1) dimen-
sions with noncommutativity of the spatial coordinates using the supersymmetric path integral for-
malism. The propagator is calculated and the energy eigenvalues with their corresponding eigenfunc-

tions are deduced.
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1. Introduction

Recently, the noncommutative (NC) geometry re-
ceived a great welcome by the researchers in the field
of physics and mathematics. Its roots lie in quantum
mechanics, describing at microscopic level the laws of
nature. Quantum mechanics motivated also in the first
half of the twentieth century an important development
in the theory of operator algebras, like the study of
C*-algebra and Von Neumann algebras. We know that
from classical mechanics to quantum mechanics, one
changes the commutative algebra of functions on the
phase space to a noncommutative operator algebra on
a Hilbert space. A similar procedure can be realized in
geometry where the classical notions loose their appli-
cability and pertinence and can be replaced by a new
idea of space, represented by noncommutative alge-
bras [1, 2].

The noncommutative space representation can be
realized by the coordinate operators &, u =0, 1,2, sat-

isfying the commutation relations (throughout the pa-
per we adopt the natural units i=c = 1):

[fuva}:i6“v7 (1)

where 6*Y is a (2 + 1)-dimensional anti-symmetric
matrix with constant elements, where the antisymmet-
ric matrix can be simply chosen as 84V = 6V and
910 = 9O — 0, where "V is the Levi-Civita symbol
and 0 is a parameter that measures the noncommu-
tativity of coordinates, (see, e.g., [3] for a review on
noncommutative geometry). The framework of Weyl’s
quantization procedure [4] provides a formalism that
associates to the algebra of noncommuting coordi-
nates (A, ) an algebra of functions of commuting vari-
ables with deformed product (A, *). We define a map
W : A — A such that an element from A is assigned to
a function f(xg,x1,x2) = f(x) from A

1 : =V ~
(2m)? / kel F(k), )
T

W(f)=Ff=
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where f(k) is the Fourier transform of f(x),

Jhy = —— [ e s) G
(om)}

The multiplication of two operators W (f) and W(g)
obtained from (2) yields another operator W (f x g):

W(f)eW(g)=Ffeg=W(fxg) 4

with f*g € (A, x), a classical function which is well
defined, as shown in sequel. Substituting (2) in (4) we
obtain:

W(f+g)=W(f)eW(g) )
1 s
= 3/ Erdpelha™ e F(k)g(p).
(2m)

In the case of canonical noncommutativity as given by
(1), the product of the two exponentials in the above
formula will give an exponential of a linear combi-
nation of the %, after applying the Baker-Campbell-
Hausdorff formula

oAb _ AtBL[AB)+ 1 ([A[AB]]+[[A.8].5]+..) ©)

and considering the commutator relation [[Z*,
£],%°] = 0 thus makes all terms including more than
one commutator in (6) vanish:

eik”)?y eipva — ei(kv+pv))?"—%k#pv6“"' (7)

We obtain f * g by comparing (5) with (2) and replac-
ing the operator X by the coordinate x:

1 / d3kd3pei(kaer)/\?Vf%kupvQ“"
(2m)’
f(k)g(p)-

Thus, the Moyal-Weyl *-product is defined by:

frg=
¢ ®)

P sla) =exp | 564°0,,3, | F00) )

where 8,(,1 is the partial derivative operator. Let us show
that the star product inducing the noncommutativity is
replaced by the usual product plus a nonlocal correc-
tion in the scalar function f(x). Indeed, it is easy to
show that

oo 1 i n
760580 =080+ 33 (5 ) -0

. 9#1‘/1,..9””V"8v,.--3vng(x)- (10)

Now, we replace dj, by ipj, = a%‘k and introduce P;, =

ik p ;. . We take the Fourier transform of f(x), then

My -+ - O f (X) Ppy - Prig (x)

=it [ kel () (kP g (). (an
Summing over n in (10), we get:
g = [ ke P r (5. (12)
Now using [p;,x;] = —i0;j, we obtain
P
sl = 1 (x- 3 ) 00 (13

This result (13) is a crossing point from the non-
commutative case to the commutative case, (i.e. the
*-product may be changed into an ordinary product by
shifting £ by x— Z).

One of the greatest successes of noncommutative
geometry has been the unification of the forces
of nature into a single gravitational action [5, 6].
Furthermore, the noncommutative geometry plays an
important role in string theory and M-theory [7-9].
In addition, the noncommutative spaces have been
included in quantum field theory by a great number
of scientific researchers, see for example [10—17].
At the same time, we find less interest in studying
these issues from the Feynman point of view. The
main difficulty for applying this formalism (Feynman
technique) is in the discrete nature of the spin, as
discussed in many papers [18 —21]. The first treatment
was given by Fradkin and Berzin based on the idea of
replacing Dirac-Pauli matrices by the magic number
(Grassmann variables w*). Their fundamental idea
is to write the formal equation of the causal Green
function like the inverse of an operator and express
this inverse as a standard evolution operator by using
an integral representation. Generally, in the Dirac
oscillator equation, we find a supersymmetric proper
time having two parts: one fermionic and the other
bosonic. In our work, we focus on the bosonic time,
whose treatment is analogous to the so-called global
projection [22]. This formalism was used in the
noncommutative and commutative space-time in a few
applications of quantum field theory [23 —28].

The aim of this paper is to use supersymmetry for-
malism to calculate the Green function for the two-
dimensional relativistic Dirac and Klein—Gordon oscil-
lators in a noncommutative space with and without the
presence of a constant magnetic field B perpendicular
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to the noncommutative plane (%,3). Our results will be
compared to those obtained by the Schrodinger formal-
ism as determined by [29].

Instead of solving the path integral representation
for the two-dimensional Dirac and Klein—Gordon os-
cillators in a noncommutative space by using the star-
product procedure, we use Bopp’s shift [30], which is
defined in (13). It is known that the nonrelativistic har-
monic oscillator in a noncommutative space has a simi-
lar behaviour to the Landau problem in a commutative
space [31]. We generalize this relation to relativistic
quantum mechanics and state that the Dirac and Klein—
Gordon oscillators in noncommutative space has a sim-
ilar behaviour to the Dirac and Klein—Gordon os-
cillators in commutative space with the presence of
a constant magnetic field. However, for the Dirac os-
cillator noncommutative case, a new term will appear
which implies that a charged fermion in a noncommu-
tative space has an electric dipole moment.

This paper is outlined as follows. In Section 2, we
show, via the path integral representation, an explicit
calculation of the Klein—Gordon oscillator in noncom-
mutative space relative to a 0-spin particle. The exact
solution is obtained and the wave functions are ex-
pressed in terms of generalized Laguerre polynomials,
as well as the energy spectra. In Section 3, and fol-
lowing the same steps, we treat the spin 1/2 case in
a noncommutative space with the help of the Fradkin
and Gitman technique [23]. In addition, we also find
some information on this physical system in the pres-
ence of a constant magnetic field just by replacing @
by ® =w+ %, and we could also take the commuta-
tive space case when 6 — 0. We obtain similar results
than previous studies. A conclusion is given in Sec-
tion 4. We provide at the end of the paper an appendix
reviewing the Grassmann integration technique.

2. The Green Function of a Klein—-Gordon
Oscillator in a Noncommutative Space
Representation

Let G(x,y) be the Green function of the usual
Klein—Gordon oscillator for a spinless particle, then
the propagator of the scalar particle on NC space is the
causal Green function G(®) (x,y) of the Klein—Gordon
oscillator equation. It is usually written as

[P5+ (pi+ imox;) (p' — imox’) —m?] * G (x,y)
=—8"(x—y), (14)

where the Moyal-Weyl (or star) product between the
two functions (14) is defined in (8). We have shown
in the preceding section that on NC quantum mechan-
ics the Moyal *-product can be replaced by a Bopp’s
shift [30], and the operators terms ﬁ% and p? are un-
changed, however the scalar function of x will change,
yielding the equivalent in a commutative space

{ﬁ% + (ﬁ, + imw@) (131 - imw/)?i) —mz} G (xf,x)
= —8" (xf —xi). (15)

The operators %; are noncommutative variables obey-
ing the commutation relation (1). We can obtain (1) by
using the following linear transformation between non-

commutative variables ()Ei, ﬁi) and commutative vari-
ables (%;, p;):

)

L
i:Xi*%Pja withi,j=1,2, (16)

=

pi = Pi,

where p; are momentum operators conjugated to %,
which satisfy ordinary Heisenberg commutation. It ap-
pears therefore that the dynamics of a Klein—Gordon
oscillator in a noncommutative space has similar be-
haviour to the same dynamics of a particle in a com-
mutative space and in a constant magnetic field.

Following Schwinger [32], we present G) (x,y) as
a matrix element of an operator G 0),

a7

Here |x) are eigenvectors of some self-adjoint opera-
tors of coordinates %;. The corresponding canonical-
conjugated operators of momenta are p; so that

GO (xpiyp,xivi) = (xpy GOy,

[, ;] =18, %ilx) = xi|x),
(x12) =8 =2 [10) ol de=1;

pilp)=pilp). (p 1) = 80— p):
1 ipx
[inriplap=t; (x1p)= e

(18)

Now one can use the Schwinger proper-time represen-
tation for the inverse operator. We get

G (xp1yp,xi3y1) (19)
— —i [ (xilexp (=i (A = da
1/0 <xy|eXP( i ( 18)>!xfyf> v
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where A is the proper-time and the infinitesimal € has
to be sent to zero at the end of the calculations in or-
der to reobtain the Green function (17). The Hamilto-
nian H®) consists of two terms: the first is the Hamil-
tonian operator of the usual quantum system and the
other term depends on the noncommutative space 0:

ﬁ(6>:ﬁ%—m2— (ﬁ,%'i‘ﬁ)z) _(ma))2 (£2+y2)+2ma)

mwo)? . . N
( 4) (P2 + P2) + (mw)* 6 (£py — ).

(20)

Here and in what follows, we include the factor (—i€)
in m?. In order to derive a path integral representation
for G(®), we follow the standard discretization method
for the kernel (19) as done in [23]. Then we get the
Lagrangian path integral representation for the Green
function G(e),

G<9> (vayfaxiayi»tfvti)
> d

= —i/ 7;0 /Deane/DnyDt/DpoM(@) (e)
0

I

)
. +
.exp{1/02 {p%—mz—i—x‘tw]y 21
(mw)* 62
— (ma))2 (1 — 47(01 (x2 +y2)
(mco)2 L . )
+ 20, 0 (yx — xy) 4+ 2mw + pof + m.€| ds 7,

where e(s) = 2A(s) and @0 = 1 + W. The func-
tional integration in (21) goes over trajectories x(s),
pu(s), e(s), and m.(s), parameterized by some in-
variant parameter s € [0, 1] and obeying the boundary
conditions ¥(0) = X;, X(1) = Xy, 1(0) = 1;, t(1) =14,
¢(0) = e; the measure M(®) (¢) has the form

M (e) = / Dp.Dpy
. > (22)
.exp{—i/o2 <1+ (mc:@) ) (P2 +13) ds}.

We can remove the functional integration over ¢ and
e after integrating over po and m, which gives J-
functions for ¢ and 7. It is clear that this problem will
be solved easily by the polar coordinates; then, the ex-

pression of the Green function (21) becomes

. [~ de dpy .
G\ (ry, 07,71, :,7) :1/0 deo [P0 oot
ieo

~M(eo,w1)eXp{ 5

[p(% —m? + 2mo)] }

g i e 0] 5
-/rDr(t)D(p (t)exp 5/ 7 (23)
. Jo

2 202
2.0 (mo) (mw)” 6 2
_ 1—

+ ¢ 1 ( 4601 d

(mo)*6 ,
+7a)1 rre|ds,.

(mw)*6

After a shift on the angle ¢(s) — @(s) + T
this Green function (23) becomes formally identical
with that of the radial path integral solution for the
radial harmonic oscillator with time-independent fre-
quency [33]. The solution of this path integral can be
written as

. [ de
G(e) (’ifa(Pfaria(pivT) = 1/0 70

. €0
'6Xp{13 [p%—m2+2ma)}}

dpo —ipoT
2r ¢

mo 24)

21i\/ @y sin (mo+/@;ep)
-exp [—2% (r7 +r7) cot (mw\/a)leo)}

= , (mw)* 6
. Z exp |1my | O — Qi+ ————¢€p
mg=0 2
I mwrirf

"\ iy/oy sin(moy/orep) )

For determining the energy-levels and wave functions,
we must use the Hille-Hardy formula and the prop-
erties of Laguerre polynomials series [33] in (24),
then we integrate over the proper time %. We get
finally

dpy e Pl
27 pg—Pin
0 *(0
22%1(”2[ (rf7(Pf) lIln,l(’ng) (ria (pl) )

my n

G\ (r, @f.7i,0:,T) =
(25)

with III}T(,em)( (7’, (p)
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mo n!

12 ()2
(0) : mo , . mao 5\ (m) [ MO 5

'Pnnr 9 == - Ln 9 26
e (r0) fo/wl ("+me|)!} (\/wlr> eXp<1m[(p 2\/w1r> <vw1r> (20)

where Lﬁ,‘m" )

spectrum

are generalized Laguerre polynomials. The poles of G(?) (rf, Qr, i, Qi T) yield the discrete energy

Pon = j:\/me\/a)l 21+ |mg| + 1] — mg (m@)* 6 + m? — 2mo.

27)

To evaluate the wave functions and energy spectrum, let us integrate over the pg variable. This can be converted
to a complex integration along the special contour C, and then using the residue theorem, we get

. o (6) g(0)
dPO e*IPOT ) eflE,, T elEn T
P p Q(T)W‘*‘@(— —wo | (28)
T Py — Pon 2E, 2E,
where the energy eigenvalues are given by
(6) (mw6)’ >
Ey =A|2mo\/ 1+ ———2n+|mg| + 1] — my (mo)~ 6 + m? — 2ma. (29)

In (28), we have two types of propagation, one with
positive energy (+E,Se)) propagating to the future and

the other with negative energy (—E,(,e)) propagating
to the past. From this result, we deduce the energy
spectrum and the corresponding wave functions from
(25) by writing

G(e) (rf7(Pf»ria(Pi§T> =
\ g
S oM ED (rr.07) & (ryg) e ET T (30)
. e
10 (-T)E® (r/,0/) & (, 01) el ] ,

where E\? is defined in (29), and the 5,5‘” (r, ) are
given by

1/2
1 mao n!
&% (o)=Y,
m 2B, \ gy [1 4 el (I
(mg)/2
mo 2r2
1+(’”me
N
-exp img(p—m—w <1+(ma)9) ) 2 L’(llmél)
2 4
o\ 172
mo (1—1— (mcze) ) 2 a1

with (r, @) commutative space coordinates.

3. The Green Function of a Dirac Oscillator in a
Noncommutative Space Representation

In order to determine the Dirac oscillator in com-
mutative space, we introduce the nonminimal substi-
tution p — p — imwxy®, which was proposed for the
first time by Moshinsky and Szczepaniak [34], where
o is the oscillator frequency, y° the usual Pauli ma-
trices, and m the rest mass of the particle. In this sec-
tion, we intend to construct the path integral for a two-
dimensional relativistic Dirac oscillator propagator in
a noncommutative space representation following the
Fradkin—Gitman method [18, 19]. The propagator of
the Dirac oscillator is governed by the causal Green
function S¢ (xf,xi) ,

(7" i —m) S (xf, %) = =8 (x5 —xi) 3

Wl2 —>m2

. (32)
—1€&.

In a treatment similar to that applied to (13) in Sec-
tion 2, (32) can be rewritten as

(7 7u—m) SO (x7,5) = =8 (37 =)

(33)
m> — m® —ie.
The components # are
- 0 ~ p) .
=il R=il —imwy'%, 34
o lat’ b/ lax,- im yox (34)

where g,' =X — 97” p;j and the coordinates (£;, p;) sat-
isfy the usual Heisenberg bracket. The y-matrices in
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(24 1) dimensions are usual Dirac matrices which sat-
isfy the standard commutations

[ rv] =2mMY, oty =iy,

35
u,v,oo=0,1,2. (35)

Those Dirac matrices relate to the Pauli matrices, and
they obey the relations

=0 /=70 P =

First, we present §(0)e (xﬂyf,xi,yi) as a matrix ele-
ment of an operator S (9>",

(36)

S(e)c (-xf7yfu-xi7yi) = <xfyf|§(e)c|xi)’i>7 (37)
where $(9)¢ is given by
3§k — (}/v%v +m)
1 (38)

(Y“;?:u —m) (}/"%v —|—m) .
Now, in order to build a global representation propa-
gator, we use the relation [|xf)(xs|dxs = 1 between
(Y #&y +m) and [(YH &, —m) (Y &y +m)] 7. We get
SO0 ) = (PF4m)
(-xfayf7xtayt> z/ ”v+m out (39)
'S<9>g (xfayfv-xhyi) )

with
810 (xp,y i) (40)
1
= (xpyrl—= = |xiyi).-
(y“ Ty —m) (y"nv + m)
Through the Schwinger proper-time —method,
S§(0)¢ (x7,vs,x;,;) is represented as below:
$10% (xp,y i) (41)

= =i [ aAlayyslewp [0 (3)] by,

where the Hamiltonian H(®) (1) consists of two parts:
one is the Hamiltonian of the Dirac oscillator in the
commutative space and the second term is considered
to be a correction imposed by noncommutativity which

depends on 9,

AO () = <A (Y7 —m) (¥ 7y +m) 42)
= -4 [ﬁ% —m® — (P} +py) —m*e? (£ +5)
~SEP e n, 5] <2 (M52 )

- [2mw (%hy = $px) = <2+ m;’e) (ﬁ§+ﬁ§)] (43

So, in order to build a path integral representation for
S(B)C(xf, Yf,Xi,yi), we follow the standard discretiza-
tion method for the kernel of (41). Usually, we write
- 77(0) _ A0 () N1 -
exp(—iH'"/(1)) = exp(—i=x1 )", and we insert
N identities [ |x) (x| dx = 1, between all the opera-

tors exp(—iHl(:i(l/1 )). Next, we introduce (N + 1) in-
tegrations [ dA;0 (Ax —Ax—1) = 1 and (N +1) identi-
ties [ |p) (p| dp = 1. This transforms the expression of
SO (x7,y,x:,y;) into the following Hamiltonian path

integral representation:

5(6)c <Xf7yf7xi7yi7tf,l,’) = (—i) (YV%V-FWZ) T

out

/ d).o/DthDy/DpODprpy/DlDi‘c}b
0

1
exp{i [ 3]0~ 0} (2 412)

—m2 (D2

(44)
i (o)

(x2+y2) _EF;S )Yty/

+2mwwz(xpyypx)+pxx+pyy'+pot'+mi” ds},

where @, = 1+ @ and F(9) is an antisymmetric ma-
trix, known as

0 0 0
FO =2mew| 0 0 — (14 m29) ) (45)
0 (1+299) 0

and X(s), p(s), A(s), and ) (s) are bosonic trajectory
variables obeying the boundary condition ¥(0) = X,
X(1) = Xf, A(0) = A9. The ordering operator T acts
on the y-matrices which are supposed to depend for-
mally on the time parameter s. Via a path integral over
Grassmannian odd trajectories [18, 19] , the Hamilto-
nian path integral representation for (44), can be trans-
formed as follows:
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SO (xp,y iy, T) = (—i) e 5

C;’; 0 e-inT / B d2g / DxDy / Dp.Dpy / DADm;),

-eito(pi—m?) / Dy
v(0)+y(1)=¢
1
.exp{i/o {l {— w3 (p§+p§) —m*o? (x2 +y2)
+21Fk l/l”l// +2mww, (xpy — ypx)] + X+ pyy

mz—wﬂ} ds+ v (1) ¥ <0>} . ¢e)

£=0

where the measure Dy is given by

Dy =Dy

. o1 -1 (47)
[/ DWCXP</ ‘I/nli’nds>:|
Y(0)+y(1)=0 Jo

and &, are auxiliary Grassmann (odd) variables, anti-
commuting by definition with the y-matrices; y, (s) are
odd trajectories of integration. First, one can integrate
over 7, (s), and then using the arising §-functions to
remove the functional integration over A. It is impor-
tant to replace the integration over y by the odd veloc-
ities m, because of the boundary conditions y"(0) +
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-exp{i/ol {M [—wzz (P2 +p3) — (mo)* (x* +)?)
io
2

+2mww, (xpy —ypx)} - (0"e-&")

i
£ (eot 4 &) Soneor ] o)
where the measure Do is
1 -1
Do =Dw UDWCXP (—2w"ewn)} : (50)

Through (49), we can see that the path integral in
Grassmann variables is Gaussian, which is clearly
shown in the appendix. Following the same steps of
the account in the previous Section 2 (as in [33]), we
can find §(9)¢:

(e)g (Vf (Pf>ri7(Pia ):

(—i 22/ & dpo el 3 (pj—m*)=ipoT

n my
.e—l[eoma)(1+M)((2n+|mél+1)—m4)]

lIll’l(ml (rf (Pf> n<m)[ (rla(pl)

- [cos (2mw s eq) )+ 79" sin (2mwasey)]

where ‘Hffn)[ (r,p) is given by

(51

y" (1) = £". Following the replacement,
1/2 /2
¢ B ()= [0 ] (me )™
2/ S*S )dS +§ (48) n,my \"s Ty (n_~_|m€‘)| oy
) mao ma
with £(s) the sign of s. Then (46) becomes -exp <1mg(p - wzr2> LS,WD (wzrz) . (52)
() Hexp [ iy ()
S (xf;Yth)’i, T) = (—i)exp 171575,1 Ly is a generalized Laguerre polynomial, and my is
d an integer number. In addition to that, we integrate over
p 0 e~iroT / dAgexp (i4o ( )) d2 , then we act through the operator (y"#y + 1)oy.
Finally, we use the properties of Laguerre’s polynomi-
- / DxDy / Dp:Dp, / Do (49)  als [35] to obtain:
1 (Zf+z;) mao n! de e_iPOT
S(e)c rf’(pf’r.7qo. — P -2 |::| _— (53)
U, 9p.7:9) ,ngzezz}“ Zh @ (nt|md)t]) 21 pg—p;

(po+m) (zp) et 1)/2 () (m+2)/2
eimelor=e) g 2y gD ()

(21 /=) eitmsior g (32 )
o 1mp¢,( )(m[+ )/2L|mz|( )

(21\/7> (Zf)(’”ﬁ%)/z imz(prlmeI( )

'(Z )(m[+2)/2 m;+1)(p,L‘m/+1| ( )

5 (=po+m) (zy)
el(m[“rl)(q)/ (Pl)LEl\m/'*‘lD (Zi)Ln‘mﬁll)(Zf)
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here z = 2242 an
where z = 7 and

pE=m* 4 2mww, (2n+ |my| + 1)
2w?0 (me+1)

The determination of the wave functions is performed
by applying the residue theorem. Let’s choose a special
contour C in the complex plane. The poles of the Green
function are positive energies and negative energies are
given respectively by pg =E, —ie, p° = —E, +ie.
For positive energies pg, the contour of integration is

(54)
—2momy —2ma.

dpo e —ipoT

(potm) =
2T p§— PG,

where
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chosen below the real axis with 7 > 0. On the other
hand, for negative energies p°, it is chosen above the
real axis with T < 0. In conclusion, we have

= \/m2—|—2ma)a)2 (2n+|mel +1) — m2@?0 (my + 1) — 2momy — 2mo.

In (55), we have two types of ?ropagation, one with positive energy +Ej,
propagating to the past. We get the propagator in NC space but defined with

other with negative energy —E,
commutative variables:

S(e) (rfa(pfarh(Pi;T) =

3 o)

n my

dpo T
27 p§— P,
e iET BT (55
and
(6)
(0) (En qu) (0)
e*IEn T _|_@ (_T) (e) elE,, T , (56)
2E,
(57)

) propagating to the future and the

or otherwise

0)+ _ig(0) 0 0 0)
PO (o) BN () e T 1O (T E () BN () BT | (58)
From this result, we deduce the energy spectrum with w, = 1+ mT“’e in (57),
0
E® = :I:\/m2 +2mo (1 + m(;)) (2n+|mg| +1) —m?> @20 (my+ 1) — 2meom; — 2mo» (59)
EY = i\/mz +2n(2mo + m220) + |my| (2mo + m20?6) (15 1). (60)

The corresponding wave functions are
+

(0)+ 1 e oyl®" ()
Fom (r,9) = mwzm(el (me+1)p +(r>
(E’ ) ‘ 61)
1 ey (® (r)
(0)
Frmg (r.0) = mwzm(el (410 ()>
(%)

The components of the wave functions %(m)[‘f’ (r,0)
(0)— .
and ‘¥, are respectively

1/2

mo n! E,ge)—km
\ man m(n+|my))! 2E\9

D2 2
<ma) V2> e 20y L(‘mé'l) (mr2) ; (62)
() (]

Yo (1) =

1/2
mo (n—1)! ES? —m /

O+ (\_:| [MmO
‘I’z,n,mé(’)ll mop 7t (n+|me|)!  gl0)

(m+3/2)/2 ,,,w,
- (mr2> e o, (“’r2) . (63)
) (9]
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1/2
©- (|, jme___nt B —m]"
Vi = T, it Imil)! 250
m +1/2) 2 r
("w’)( T g g (%)
o (07)
(6)
E,’ —m_ (g
= 9) llll(,n{:r_u ( )’ (64)
+m
1/2
WO (=i [ =Dt B +m
2,n,my T 7'E(l’l+‘m€|)! E,Se)
mp+3/2)/2
2)( 0+3/2)/ 671156{11));2 LI(JT{JFH) <Wl0)r2>
(07}
()
Ey"+m_ (0)+
< Youm (I‘) ()
E,(,9>—m 2t

Now let us discuss two key points which we jumped
before. The transformation (16) is not unitary and takes
us from a reducible representation in % to an irre-
ducible one in X;, so we can represent the operators %
on the Hilbert space of an irreducible one by the fol-
lowing action:

= 0;; )
fiW(X) = <xi+ lzja]) W(X)’ with l7.] = 1a27 (66)

which indicates that the noncommutative position is
nonlocal in this representation. This main difficulty can
be turned away by working whether in the momentum
basis p; or in the mixed basis of phase space (%, py),
or alternatively by (J, py) [24], whether in the holo-
morphic representation of raising-lowering operators
in terms of this noncommutative coordinates [36, 37].
In [23], it is suggested that we can also move to integra-
tion over trajectories as ¥ = x — 92—1’ in the path integrals
(19) and (41); then we have

= -9
G<9>:—i/ d/I/Dp/ D#
0 %—9p
A JUrRN 504 p
-exp{i/ ds [p,-x —H()E,p)+p 2”}}
0
and
~ i o ff*%
S(G)C:—i(y"ﬁ:v—f—m) / d)L/Dp/ . Di
out /O . )'c‘ipr

A 501/ 68)
-exp{i/ ds[pi}l—lfl(f,p,)/)—&—pizpj}}.
0

(67)

These actions in (67) and (68) are no local and differ
from the corresponding commutative case (at 6 = 0)
by the term 1p;0%p;. This suggestion is not correct
in itself and can lead us to some ambiguities because
it does not respect the Feynman spirit of the meaning
of path integrals. In our opinion, the formulation given
in [37] is better. Finally, the commutative representa-
tion give us the correct spectrum and some physics
properties of the system in the easier and direct man-
ner.

Moreover, if we consider the problem of a charged
particle on a noncommutative plane subjected to a con-
stant magnetic field B, where the associated magnetic
vector potential A is written in a symmetric gauge,

- B )

A= > ( Vi+X ]).
One can obtain in this case, the Green function rep-
resentation, the energy and wave functions for the
(2 4+ 1)-dimension Dirac and Klein—Gordon oscillators
in a noncommutative space representation by follow-
ing the same way as in previous calculations and just
replacing the frequency w by @ — ® + %.

It leads to 6 = 0 : the NC space returns to the com-
mutative space, and we recover the same results as for
the commutative space case [38, 39].

(69)

4. Conclusion

In this paper, we have shown explicit calculations of
Dirac and Klein—Gordon oscillators in noncommuta-
tive space by means of supersymmetric path integrals.
Exact solutions are obtained and compared with the
Dirac and Klein—Gordon oscillator particles subjected
to the interaction of a constant magnetic field. The ex-
plicit calculation of the Green function in fermionic
case became possible and the wave functions were
easily determined by following a detailed demonstra-
tion of the Fradkin—Gitman method. The propagator
calculation has been performed through a representa-
tion named global projection. For this case a new term
in the action will appear which can be interpreted as
a self-interaction for a charged particle with dipole
electric and magnetic moments. We could study those
systems in the presence of a constant magnetic field B.
The exact expression of the energy spectrum and corre-
sponding eigenfunctions expressed in terms of gener-
alized Laguerre polynomials are then deduced with the
presence and the absence of the field. Our results coin-
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cide with those obtained in [29]. In the limit 8 — 0, we
recover the same results as in [38, 39] (in commutative
space).

Appendix A: The Integration over the Spin
Variables

For (49), the Polykov spin factor will be given by

78 = e<_%F

spin

/Da)exp[ ~O Tn(k)(x) —I—I( ) }

"€

to (AD)
1156) = _AﬂénFnk g

Tn(ke) = k€ — %an(ke)g
The integration over ® has a Gaussian form and gives

70 _ (7—F(95 &) det T(0)
spin dete

-exp {— %I,(,e) [(T(e))fl] " I}Ee)}

And (T<9>)7l is the inverse of T(e), taking into ac-
count its original definition[18 —26],

(A2)

7% [(T(e))—l}"kl,ﬁ‘”

222 (FOcOF®O mel
)LO ( g )mlé é
One can demonstrate that

[detT(e) (AO)]

(A3)

dete
© (Ad)

= exp {— | /0 o dAyTrG® (24) F(G)(x)} .

So, we are going to calculate the inverse matrix Tn(ke) s

we have

7 (s.8) = € (s ) T
1 () (AS)
—)10/ e(s—1)F, e(t—5)dr.
0
To get the function
1 r!
ap (8:8) = 5/0 Qéeﬁ) (s,s’) € ‘L'—S/) dz, (A6)

Relativistic Oscillators: a Path Integral Approach

it is convenient to first define the function Qé%) (s,5")

by

1 _
Q((x%) (s,5) :/0 e(s—1) (T(e)>a113 (v.s) dz. (A
Now, we have
1
[T 6,0 () () a3 = 03 5.
(A8)

And substituting (A5) into (A8), we can easily obtain

(6)
nﬁ Ss 20/ nk‘Qﬁk( )dT (A9)
=N,p6 (s — s
This equation is equivalent to the differential equation
(6)
d.Qnﬁ (5,5 2F! (9) (e)k (s )
ds o (A10)
B dé(s—+)
- nnﬁ ds )

with the initial condition

Q) (0.5) +20 [ FL'Q) (5.) ar

(A11)
=10 (5) -
For (A10) and (A11), we find the solution
(6) n o / (9) 27L0F(6> (sfs’)
Q ) =0(s—5)+MF e
(s s) (s s) Ao (A12)

) [8 (s—s)— tanhﬁOF(e)} .
Inserting (A12) into (A6), we obtain

G (s,5) = " (=)
2 oy (A13)
. [8 (s—s/) —tanh AgF } .
According to (A7), we get
() (r-1)=e (1.7)
b (0F )7 or (%)
) {s (r—17') —tanh (AOF(G))}

2208 (+7) 5 (1 7).

(A14)

e
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Substituting (A3) and (A4) into (A2), we obtain In addition to that, we use the Grassmann algebra by

the following identity:

Iizn = exp <1’)/,6651n) )
| o exXp [iy”aé,,]f(é)k:o
- EXp i / 2i / d)LéTr g(e) (;\.6) F(e> (A15) (Al9)
Jo | Jo =f SC” exp (i6,y") |20
Ao (.0 )
+17(F ) é 5 dS ‘é =0 _2 2 fnl .
where A /
" o o aCn, ...acnklzé” (Cﬂ/’) ’Cio .
Ko =T+ 220 (7 F") (A16) -
2 Therefore,
(F“’)/c“”) — Z tanh (AOF<9)) . (A17)
kAo 0) mwo
. . Iim cos|mw|1+——|eg
And after a straightforward calculation, we get P 2
(A21)
0 . . mwo
Iipin—exp <1y"6€ )cos (AOF ) +9"sin (ma) <1+2> eo>1
) ngk
. {1 +tanh ()LOF )nké é }§=0 ’ (A18) with 2() = 60/2“
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