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Abstract 
This paper shows how to bootstrap hypothesis tests in the context of the Parks (Efficient estimation of 
a system of regression equations when disturbances are both serially and contemporaneously 
correlated 1967) estimator. It then demonstrates that the bootstrap outperforms Parks’s top 
competitor. The Parks estimator has been a workhorse for the analysis of panel data and seemingly 
unrelated regression equation systems because it allows the incorporation of cross-sectional 
correlation together with heteroskedasticity and serial correlation. Unfortunately, the associated, 
asymptotic standard error estimates are biased downward, often severely. To address this problem, 
Beck and Katz (What to do (and not to do) with time series cross-section data 1995) developed an 
approach that uses the Prais-Winsten estimator together with “panel corrected standard errors” 
(PCSE). While PCSE produces standard error estimates that are less biased than Parks, it forces the 
user to sacrifice efficiency for accuracy in hypothesis testing. The PCSE approach has been, and 
continues to be, widely used. This paper develops an alternative: a nonparametric bootstrapping 
procedure to be used in conjunction with the Parks estimator. We demonstrate its effectiveness using 
an innovative experimental approach that creates artificial panel datasets modelled after actual panel 
datasets. Our approach provides a Pareto-improving option by allowing researchers to retain the 
efficiency of the Parks estimator while producing more accurate hypothesis test results than the 
PCSE. 
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I.  INTRODUCTION 

The Parks (1967) estimator was designed as an efficient estimator for systems of equations 

with both serially and contemporaneously correlated disturbances. Such models include the 

SUR model and associated restricted forms, such as time-series, cross-section/panel data 

models. Its superior efficiency is well established (Kmenta and Gilbert, 1970; Guilkey and 

Schmidt, 1973; Messemer, 2003; Chen et al., 2010; Moundigbaye et al., 2018). It has been 

widely used and is available in many econometric software packages including RATS, 

SHAZAM, SAS, and Stata.1  

Kmenta and Gilbert (1970) were the first to note that Parks’s estimated standard errors, 

while consistent, can be substantially biased in finite samples. More recently, Beck and Katz 

(1995) documented that the estimated standard errors for the Parks estimator have severe 

downward bias when the time dimension is small relative to the number of cross-sections. To 

address this deficiency, they recommend using a Prais-Winsten estimator with corresponding 

“panel-corrected standard errors” (PCSE).  

This approach has been widely adopted, as evidenced by more than 2,400 Web of 

Science citations. It remains a popular estimation choice. Despite being more than twenty years 

old, the number of annual citations received by Beck and Katz (1995) continues to increase 

over time. While the PCSE approach generally involves less size distortion than Parks with 

asymptotic standard errors, it does not eliminate it (cf. Reed and Webb, 2010). This paper 

demonstrates that the combined use of the Parks estimator with bootstrapping constitutes an 

approach that is superior to the PCSE approach in both estimator efficiency and inference 

accuracy. 

The remainder of the paper is organized as follows. Section 2 briefly introduces the 

                                                 
1 The Parks estimator provides the framework for Stata’s xtgls procedure. 
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SUR model with autoregressive errors and associated Parks estimator. Section 3 presents a 

nonparametric bootstrap procedure for the Parks estimator. Section 4 demonstrates the superior 

performance of the bootstrap procedure. It employs an innovative experimental approach 

where testing is performed on synthetic datasets designed to resemble actual datasets. Section 

5 concludes.  

 
II.  THE SUR MODEL AND THE PARKS ESTIMATOR 
 
The Parks estimator was constructed as an efficient estimator for the SUR model with 

autocorrelated disturbances,  

(1) 𝒚𝒚𝑖𝑖 = 𝑿𝑿𝑖𝑖𝜷𝜷𝑖𝑖 + 𝜺𝜺𝑖𝑖, 𝑖𝑖 = 1,2, … ,𝑁𝑁, 

where 𝒚𝒚𝑖𝑖 and 𝜺𝜺𝑖𝑖 are 𝑇𝑇 × 1 vectors, 𝑿𝑿𝑖𝑖 is 𝑇𝑇 × 𝑘𝑘𝑖𝑖, and 𝜷𝜷𝑖𝑖 is 𝑘𝑘𝑖𝑖 × 1. The N equations can be 

stacked and represented in compact form as,  

(2) 𝒚𝒚 = 𝑿𝑿𝑿𝑿 + 𝜺𝜺, 

where 𝒚𝒚 = �
𝒚𝒚1
⋮
𝒚𝒚𝑁𝑁
�, 𝑿𝑿 = �

𝑿𝑿1 𝟎𝟎 𝟎𝟎
𝟎𝟎 ⋱ 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝑿𝑿𝑁𝑁

�, 𝜷𝜷 = �
𝜷𝜷1
⋮
𝜷𝜷𝑁𝑁

�, and 𝜺𝜺 = �
𝜺𝜺1
⋮
𝜺𝜺𝑁𝑁
�, with 𝐸𝐸(𝜺𝜺) = 𝟎𝟎, and 𝐸𝐸(𝜺𝜺𝜺𝜺′) =

𝜴𝜴. 

It is assumed that the disturbance vector, 𝜺𝜺(𝑡𝑡) = (𝜀𝜀1𝑡𝑡, 𝜀𝜀2𝑡𝑡, , … , 𝜀𝜀𝑁𝑁𝑁𝑁, )′, is generated by a 

stationary, first-order autoregressive process, 

(3) 𝜺𝜺(𝑡𝑡) = �
𝜀𝜀1𝑡𝑡
⋮
𝜀𝜀𝑁𝑁𝑁𝑁

�=�
𝜌𝜌1 0 0
0 ⋱ 0
0 0 𝜌𝜌𝑁𝑁

� �
𝜀𝜀1𝑡𝑡−1
⋮

𝜀𝜀𝑁𝑁𝑁𝑁−1
� + �

𝜈𝜈1𝑡𝑡
⋮
𝜈𝜈𝑁𝑁𝑁𝑁

� = 𝜫𝜫𝜺𝜺(𝑡𝑡−1) + 𝝂𝝂(𝑡𝑡) , 𝑡𝑡 = 2,3, … ,𝑇𝑇 ,2 

where 𝜫𝜫 is an 𝑁𝑁 × 𝑁𝑁, diagonal matrix consisting of scalars having absolute value less than 1. 

Consistent with stationarity, the disturbances for the first observation, 𝜺𝜺(1), are assumed to be 

                                                 
2To clarify notation, notice that the vector 𝜺𝜺𝑖𝑖 contains the T disturbances for the ith equation whereas the vector 
𝜺𝜺(𝑡𝑡) contains the N disturbances for the different equations or cross-sectional elements at time t. 
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generated by 𝜺𝜺(1) = 𝑨𝑨−1𝝂𝝂(1).3 The innovations, 𝝂𝝂(𝑡𝑡), 𝑡𝑡 = 1,2, … ,𝑇𝑇 are independent and 

identically distributed random variables with 𝐸𝐸�𝝂𝝂(𝑡𝑡)� = 𝟎𝟎 and covariance matrix 

(4) 𝐸𝐸�𝝂𝝂(𝑡𝑡)𝝂𝝂(𝑡𝑡)′� = 𝜮𝜮 = �
𝜎𝜎11 … 𝜎𝜎1𝑁𝑁
⋮ ⋱ ⋮
𝜎𝜎𝑁𝑁1 ⋯ 𝜎𝜎𝑁𝑁𝑁𝑁

�. 

In summary, the covariance model above assumes a diagonal 𝜫𝜫 matrix, with N parameters 

specifying equation-specific, first-order serial correlation; together with a symmetric 𝜮𝜮 matrix 

with 
𝑁𝑁(𝑁𝑁+1)

2
  parameters, specifying the contemporaneous covariances. 

The Parks estimator, which is a feasible generalized least squares procedure associated 

with the covariance model above, is represented by  

(5) 𝜷𝜷�𝑷𝑷 = �𝑿𝑿′𝑷𝑷�′�𝜮𝜮�−𝟏𝟏⨂𝑰𝑰𝑻𝑻�𝑷𝑷�𝑿𝑿�
−1
𝑿𝑿′𝑷𝑷�′�𝜮𝜮�−𝟏𝟏⨂𝑰𝑰𝑻𝑻�𝑷𝑷�𝒚𝒚,  

and 

(6) 𝑽𝑽��𝜷𝜷�𝑷𝑷� = �𝑿𝑿′𝑷𝑷�′�𝜮𝜮�−𝟏𝟏⨂𝑰𝑰𝑻𝑻�𝑷𝑷�𝑿𝑿�
−1

,  

where 𝑷𝑷� is the Prais-Winsten transformation matrix and 𝜮𝜮� is the estimate of 𝜮𝜮 in Equation (4). 

Estimation of individual parameters is described in Judge et al. (1985, pages 485-490). Further 

details are given in the Appendix.   

As a point of comparison, Beck and Katz’s (1995) PCSE estimator is given by, 

(7) 𝜷𝜷�𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 = �𝑿𝑿′𝑷𝑷�′𝑷𝑷�𝑿𝑿�
−1
𝑿𝑿′𝑷𝑷�′𝑷𝑷�𝒚𝒚  

(8) 𝑽𝑽��𝜷𝜷�𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷� = �𝑿𝑿′𝑷𝑷�′𝑷𝑷�𝑿𝑿�
−1
�𝑿𝑿′𝑷𝑷�′�𝜮𝜮�⨂𝑰𝑰𝑻𝑻�𝑷𝑷�𝑿𝑿��𝑿𝑿′𝑷𝑷�′𝑷𝑷�𝑿𝑿�

−1
. 

 
  

                                                 
3 Appendix 1 of Guilkey and Schmidt (1973) and Judge et al. (1985, p. 485-487) show how to obtain the elements 
of the matrix A. If we let 𝑽𝑽0 = 𝐸𝐸�𝜺𝜺(𝑡𝑡)𝜺𝜺(𝑡𝑡)′� for 𝑡𝑡 = 1,2, …𝑇𝑇, then from (3) and stationarity, 𝑽𝑽0 = 𝜫𝜫𝑽𝑽0𝜫𝜫′ + 𝜮𝜮.  
Guilkey and Schmidt show that this equation can be solved for the elements of 𝑽𝑽0 in terms of the elements of 𝜫𝜫 
and 𝜮𝜮.  From 𝜺𝜺(1) = 𝑨𝑨−1𝝂𝝂(1) we have 𝑽𝑽0 = 𝑨𝑨−𝟏𝟏𝜮𝜮(𝑨𝑨−𝟏𝟏)′ or 𝜮𝜮 = 𝑨𝑨𝑨𝑨0𝑨𝑨′.  If H and B are the Cholesky factors of 
𝜮𝜮 and 𝑽𝑽0, respectively, then 𝑯𝑯𝑯𝑯′ = 𝑨𝑨𝑨𝑨𝑨𝑨′𝑨𝑨′ and 𝑨𝑨 = 𝑯𝑯𝑩𝑩−𝟏𝟏. 
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III.  HYPOTHESIS TESTING: THE BOOTSTRAP VERSUS ASYMPTOTIC-BASED  
       TESTS 
 
Asymptotic-based tests. A common approach for testing linear hypotheses of the form 

𝐻𝐻0:𝑹𝑹𝑹𝑹 = 𝒓𝒓 involves the Wald statistic, 

(9) 𝑔𝑔 = �𝑹𝑹𝜷𝜷� − 𝒓𝒓�′�𝑹𝑹𝑽𝑽��𝜷𝜷��𝑹𝑹′�
−1
�𝑹𝑹𝜷𝜷� − 𝒓𝒓�, 

where the restriction matrix R has q rows (the number of restrictions) and K columns (where 

𝐾𝐾 = ∑ 𝑘𝑘𝑖𝑖𝑀𝑀
𝑖𝑖=1 ).4  The test statistic, 𝑔𝑔, is asymptotically distributed as 𝜒𝜒𝑞𝑞2 . As noted above, there 

is ample evidence that asymptotic-based tests for the Parks model do not provide accurate 

inference. Rejection probabilities tend to be substantially in excess of their nominal levels and 

confidence intervals are too small.  

Bootstrap methods can improve upon asymptotic-based tests. Horowitz (1997) and 

others have provided extensive surveys of the bootstrap literature. Horowitz (1997, p. 201) 

gives a succinct statement of the key bootstrap results:  

“The bootstrap provides a higher-order asymptotic approximation to critical 
values for tests based on “smooth” asymptotically pivotal statistics. When a 
bootstrap-based critical value is used for such a test, the difference between the 
test’s true and nominal levels decreases more rapidly with increasing sample 
size than it does when the critical value is obtained from first-order asymptotic 
theory. Given a sufficiently large sample, the nominal level of the test will be 
closer to the true level when a bootstrap critical value is used than when a critical 
value based on first-order asymptotic theory is used.” 

 
Since the Wald statistic, 𝑔𝑔, is asymptotically pivotal,5 bootstrap approaches will provide 

improved accuracy compared with tests that rely on the asymptotic distribution. 

                                                 
4 The bootstrapping approach that we propose is not limited to linear hypotheses.  Suppose that we want to test 
the set of non-linear hypotheses 𝑹𝑹(𝜷𝜷) = 0  where the non-linear function has dimension q.  The corresponding 

Wald statistic has the form 𝑔𝑔𝑁𝑁𝑁𝑁 = 𝑹𝑹�𝜷𝜷�𝑷𝑷�′ �
𝝏𝝏𝝏𝝏(𝜷𝜷)
𝝏𝝏𝝏𝝏′

�
𝜷𝜷�𝑷𝑷
𝑽𝑽��𝜷𝜷�𝒑𝒑�

𝝏𝝏𝝏𝝏(𝜷𝜷)
𝝏𝝏𝝏𝝏

�
𝜷𝜷�𝑷𝑷
�
−𝟏𝟏

𝑹𝑹�𝜷𝜷�𝑷𝑷�. This Wald statistic has the same 

asymptotic distribution as its linear analog, (9), and bootstrap testing would follow the same steps as those outlined 
below. 
5 With regard to the Wald statistic being asymptotically pivotal, Horowitz (1997) writes, “The arguments in 
Section 2a show that the bootstrap provides higher-order asymptotic approximations to the distributions and 
critical values of ‘smooth’ asymptotically pivotal statistics. These include test statistics whose asymptotic 
distributions are standard normal or chi-square." Note that Wald statistics converge in distribution to chi-square, 
whose only parameter is the degrees of freedom.  Hence the Wald statistic is asymptotically pivotal because it 
does not depend on parameters of the model's data generating process. 



5 
 

Bootstrap Procedure. Below we give the steps for implementing a bootstrap test of the 

null hypothesis, 𝐻𝐻0, in the context of a SUR model with AR(1) disturbances (i.e., the Parks 

model). Although the results that we show are based on a nonparametric bootstrap, it is useful 

for explanatory purposes to show how the nonparametric method differs from the simpler 

parametric method. 

 STEP 1: Estimate 𝜷𝜷𝑷𝑷 from the unrestricted model and compute the test statistic, 𝑔𝑔, from 
(9). Call this test statistic 𝑔𝑔�.  

 
 STEP 2: Re-estimate the model under the restrictions imposed by the null hypothesis, 

𝑹𝑹𝑹𝑹 = 𝒓𝒓, to obtain 𝜷𝜷,�  𝜫𝜫� ,𝜮𝜮,�  and 𝑨𝑨�. For the nonparametric bootstrap, we also need 𝑬𝑬�, 
the 𝑁𝑁 × 𝑇𝑇 matrix of residuals based on the constrained estimates. 
  

 STEP 3: Use the restricted estimates 𝜷𝜷,�  𝜫𝜫� , and 𝜮𝜮 �  as the parameters of the data 
generating process described by Equations (1) through (4) above, together with the 
restriction, 𝑹𝑹𝑹𝑹 = 𝒓𝒓, to generate a bootstrap sample satisfying the hypothesis to be 
tested.  

 
For a parametric bootstrap, one might start with the following: 
 

STEP 3a: Draw an 𝑁𝑁 × 𝑇𝑇 matrix 𝑼𝑼 = �𝒖𝒖(𝑡𝑡)� of standard normal random variables, 
𝒖𝒖(𝑡𝑡)~𝑁𝑁(𝟎𝟎, 𝑰𝑰𝑵𝑵). 

 
But for the nonparametric bootstrap we rely on information contained in the collection of 

constrained residuals, 𝑬𝑬�. Using the restricted parameter estimates from STEP 2, make the 

following set of transformations to obtain a set of residuals, �𝒖𝒖�(𝑡𝑡)�, that can be treated as the 

starting point of the data generating process (DGP). Let  𝝂𝝂� (𝑡𝑡) = 𝜺𝜺�(𝑡𝑡) −𝜫𝜫�𝜺𝜺�(𝑡𝑡−1) for 𝑡𝑡 = 2,3, …𝑇𝑇, 

and 𝝂𝝂� (𝟏𝟏) = 𝑨𝑨�𝜺𝜺�(1). Then let 𝒖𝒖�(𝒕𝒕) = 𝑯𝑯�−𝟏𝟏𝝂𝝂� (𝑡𝑡), where 𝑯𝑯�  is the Cholesky factor of 𝜮𝜮� .  

For the bootstrap samples to satisfy the null hypothesis, the �𝒖𝒖�(𝑡𝑡)� should have row 

means of zero, and they should be uncorrelated. If those conditions are not met, one can whiten 

the residuals by first subtracting row averages from each of the corresponding elements of 

�𝒖𝒖�(𝑡𝑡)�  to get the centered 𝑼𝑼c. Correlation among the 𝑼𝑼c rows can be eliminated by 

premultiplying 𝑼𝑼c by the transposed inverse of the Cholesky factor of 𝑼𝑼𝒄𝒄𝑼𝑼𝒄𝒄
′  . Hereafter, 

references to the set of residuals, 𝑼𝑼�=�𝒖𝒖�(𝑡𝑡)� assumes that they have been whitened. 
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STEP 3a*: For a nonparametric bootstrap, we draw a sample of T �𝒖𝒖�(𝑡𝑡)� vectors with 
replacement from this empirical distribution to form the columns of U. It is the 
nonparametric counterpart to U in Step 3a above, where the sampling was from a known 
distribution.  

 
From this point onward, the remaining steps for both parametric and nonparametric bootstraps 

are the same. 

 STEP 3b: Transform the columns of 𝑼𝑼 to have covariance 𝜮𝜮�; i.e., construct 𝑽𝑽� =
�𝑯𝑯�𝒖𝒖(𝑡𝑡)� = 𝑯𝑯�𝑼𝑼 where 𝑯𝑯�  is the lower triangular Cholesky factor of 𝜮𝜮,�  such that 𝑯𝑯�𝑯𝑯�′ =
𝜮𝜮.�  

 
 STEP 3c: Construct the disturbance vector 𝜺𝜺�(𝑡𝑡), where 𝜺𝜺�(1) = 𝑨𝑨�−1𝝂𝝂(1) and 𝜺𝜺�(𝑡𝑡) =

𝜫𝜫�𝜺𝜺�(𝑡𝑡−1) + 𝝂𝝂� (𝑡𝑡) for 𝑡𝑡 = 2,3, … ,𝑇𝑇. Use these disturbances, model (2), and the restrictions 
implied by the hypothesis to be tested to generate the first bootstrap sample.  

 
 STEP 4: Estimate parameters for the unconstrained model from the first bootstrap 

sample (b=1), compute the test statistic, g1, and store it.  
 

STEP 5: Repeat the process of generating a bootstrap sample, estimating the model, 
and computing the test statistic until one has B bootstrap samples and test statistics 
𝑔𝑔1,𝑔𝑔2, … ,𝑔𝑔𝐵𝐵. Davidson and MacKinnon (2004) recommend choosing B such that when 
𝛼𝛼 is the level of significance of the test, the product 𝛼𝛼(𝐵𝐵 + 1) is an integer, e.g. 𝐵𝐵 =
999. Estimate the 𝛼𝛼-level critical value for the test, 𝑔𝑔𝑐𝑐𝑐𝑐, as the (1 − 𝛼𝛼)th quantile from 
the empirical distribution of the 𝑔𝑔𝑏𝑏’s. 

 
 STEP 6: Reject 𝐻𝐻0 at nominal 𝛼𝛼 level if the test statistic computed from the original 

sample, 𝑔𝑔� satisfies 𝑔𝑔� > 𝑔𝑔𝑐𝑐𝑐𝑐.  Alternatively compute a p-value from STEP 5 as the 
fraction of the bootstrap samples with 𝑔𝑔𝑏𝑏 > 𝑔𝑔�.  

 
The above procedure can be suitably modified at STEPS 1 and 3 to deal with test statistics that 

depend on estimates of the restricted model (Lagrange multiplier tests) or on estimates of both 

restricted and unrestricted models (Likelihood ratio tests).  

 
IV. RESULTS FROM MONTE CARLO EXPERIMENTS 

Description of experiments. In this section we perform a series of Monte Carlo experiments to 

assess the performance of the bootstrap procedure described above. To do that, we construct 

synthetic panel datasets that are made to “look like” real datasets. The reason we do that is 

because the Parks model has �𝑁𝑁
2+3𝑁𝑁
2

� unique parameters in the error variance-covariance 
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matrix. There is little guidance in how best to assign values to these parameters for the purpose 

of designing meaningful experiments.  

Beck and Katz’s simulation experiments are based on a substantial simplification of the 

error variance-covariance matrix. For example, when N=15, they reduce the number of unique 

parameters from 135 to 3 by assigning half of the panel units one variance value, the other half 

another, and setting all cross-sectional correlations the same. Further, their experiments do not 

allow for the interaction of cross-sectional and serial correlation.6 The problem with this 

approach is that it greatly reduces the realism of the error variance-covariance matrix. This 

raises concerns about the external validity of the associated simulation results. In contrast, we 

adopt an innovative approach that assigns a unique value to every element in the error variance-

covariance matrix, along with the values of the independent variable(s) in the experimental 

DGPs. We derive these values from actual panel datasets. The details of how we do this are 

given below.  

The first dataset we work with is Grunfeld’s (1958) investment data, one of the most 

widely used panel datasets in applied econometrics (Kleiber and Zeileis, 2010)7. The dataset 

consists of annual observations of three variables for 10 U.S. firms over a 20-year period (1935-

1954).8 The dependent variable is firm gross investment in plant and equipment (I). The two 

explanatory variables are the market value of the firm at the end of the previous year (F) and a 

capital stock measure (C).  

                                                 
6 Beck and Katz (1985, pages 640f.): “Varying degrees of heteroscedasticity were simulated by setting the 
variance of the first half of the units to 1 while the variance of the second half of the units was experimentally 
manipulated. The covariance matrix of this multivariate distribution was constructed so that all pairs of units were 
equally correlated, with the degree of correlation also experimentally manipulated. Errors were then generated so 
that the variances and covariances of the errors were proportional to the corresponding variances and covariances 
of the independent variable. The errors could therefore show panel heteroscedasticity and contemporaneous 
correlation, either alone or in combination.” 
7 Greene (2012, page 342) writes, “The Grunfeld investment data…are a classic data set that have been used for 
decades to develop and demonstrate estimators for seemingly unrelated regressions.” 
8 We use the version of the dataset that appears in Hill, Griffiths, and Lin (2008).   
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Our procedure for creating the synthetic datasets is best illustrated by example. Suppose 

we want to generate a synthetic dataset that “looks like” the Grunfeld data, except that it has 

dimensions N=2 and T=20. We begin by extracting the data for the first two firms in the 

Grunfeld dataset. In this case, the data matrix 𝑿𝑿 consists of a constant term and the variables F 

and C. The twenty, time series values of the independent variables (F and C) are set equal to 

their actual values in the Grunfeld data. To generate artificial values for the dependent variable 

I, we multiply 𝑿𝑿 by a coefficient vector 𝜷𝜷 whose elements are all set to zero, and then add 

simulated error terms.  

The DGP for the simulated error terms is constructed so that the errors have the same 

nonspherical properties as residuals from a regression of the Grunfeld data. Specifically, we 

estimate Equation (2) using SUR and collect the residuals. These residuals are used to estimate 

the elements of 𝜫𝜫 and 𝜮𝜮. The estimated values are then set as the population values for the 

error variance-covariance matrix in the DGP that produces the simulated error terms. The 

simulated error terms are added to 𝑿𝑿𝑿𝑿 to produce simulated values of the dependent variable 

I.  

By generating a new set of error terms, multiple synthetic datasets having dimensions 

N=2 and T=20 can be produced, each of which is constructed to have characteristics similar to 

the Grunfeld data. We then use these synthetic panel datasets to run experiments testing three 

linear restrictions, each having the form 𝑹𝑹𝑹𝑹 = 𝟎𝟎:  

(10.a) 𝑹𝑹1 = [0   1   0   0   0   0 ], 

(10.b) 𝑹𝑹2 = [0   1   0   0 − 1   0 ], and 

(10.c) 𝑹𝑹3 = �1   0   0  − 1  0   0  
0   1   0   0  − 1   0  �. 

Restriction (10.a) tests the statistical significance of a single parameter estimate: the 

coefficient on F in the equation for the first firm. (10.b) tests a linear combination of parameter 

estimates: whether the coefficient on F has the same value in the equations for the first and 
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second firms. (10.c) tests multiple linear combinations of parameter estimates: whether (i) the 

constant terms are equal in the equations for the first and second firms, and (ii) the coefficient 

on F is the same in the equations for the first and second firms. Our experiments are designed 

so that the respective null hypotheses are always true. We chose these three restrictions because 

they each represent a common type of hypothesis test found in empirical research.   

(10.a)-(10.c) are easily modified to allow for different numbers of firms, N, in the 

synthetic, Grunfeld-type panel datasets. For these datasets, restriction matrices will have 3N 

columns. The analogues to (10.a)–(10.c) for an alternative N value are identical in the first six 

columns, with zeros in the remaining 3𝑁𝑁 − 6 columns.  

Results from synthetic panel datasets modelled after the Grunfeld data. The first three 

rows of the top panel of Table 1 (T=20) report results of Monte Carlo experiments based on 

the Grunfeld data with N=5, testing each of the restrictions in (10.a)-(10.c). Each experiment 

consists of 1000 replications. The first column reports 5%, asymptotic critical values for the 

𝜒𝜒2 distribution with 1 degree of freedom (Restrictions 1 and 2) and 2 degrees of freedom 

(Restriction 3). The next column reports the average critical values determined by the 

nonparametric bootstrap procedure described in Section III above. Note that these are average 

critical values because a critical value is produced for each replication, and the table 

summarizes the results from 1000 replications.  

For example, in testing the significance of the coefficient for F in the equation for the 

first firm (Restriction 1), the asymptotic critical value is 3.841. This compares to an average 

critical value of 8.619 for the bootstrap procedure. While this is only one experiment, these 

results are qualitatively what we would expect: estimated standard errors for the Parks model 

are well-known for being biased downwards in finite samples, implying that that the asymptotic 

critical values will be smaller than they should be. A similar pattern emerges when testing 

Restrictions 2 and 3.  
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The next set of three rows repeats the experiments, except now the full set of 10 firms 

is used in creating the synthetic Grunfeld panel datasets. Note that the addition of data for the 

extra firms does more than just increase the sample size. It introduces a new set of variances 

and covariances, increasing the number of unique elements in the error variance-covariance 

matrix from 20 to 65. This exacerbates the bias in the Parks standard errors. While the 

asymptotic critical values are unchanged, the bootstrapped critical values increase to reflect the 

greater imprecision caused by having to estimate additional parameters.  

The lower panel of Table 1 (T=11) repeats the previous experiments, but this time only 

uses the first 11 years of the Grunfeld data. The reason for doing this is that the finite sample 

bias in the estimated Parks’s asymptotic standard errors is known to increase as a function of 

𝑁𝑁 𝑇𝑇⁄  (Moundigbaye et al., 2018). We investigate this by decreasing T to where it is just larger 

than the number of firms (T=11, N=10), noting that the Parks estimator cannot be estimated 

when 𝑇𝑇 < 𝑁𝑁.9 The six rows of the lower panel report the results for N=5 and N=10. The results 

again correspond to expectations. Compared to their values in the top panel, the smaller 𝑁𝑁 𝑇𝑇⁄  

values are associated with larger bootstrapped critical values. Note that the asymptotic critical 

values are unchanged. 

Table 2 calculates the Type I error rates associated with the critical values in Table 1. 

These should ideally equal 0.05, though some deviation is expected due to sampling error. 

Column (1) reports Type I error rates associated with the critical values taken from the 𝜒𝜒2 

distribution. Column (2) does the same when the critical values are determined from the 

bootstrapping procedure described in STEP 6 above. The last column reports rejection rates 

associated with the PCSE estimator. In all cases, hypotheses are rejected whenever the sample 

                                                 
9 In principle, the Parks estimator can be calculated when T=N. We found,c however, that we sometimes 
encountered problems in our simulations in this case, so we set the lower bound of T=N+1. 
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statistic is greater than the critical value for a given replication. The values in the table report 

rejection rates for the 1000 replications for each experiment.  

There are a number of noteworthy results here. First, the rejection rates using the 

asymptotic critical values range from 0.166 to 0.624. In other words, if we were to use a 5% 

significance level, we would reject the true null hypothesis anywhere from 17% to 62% of the 

time. Further, as foreshadowed above, performance deterioriates markedly as N increases 

holding T constant (within each panel in the table), and as T decreases holding N constant (from 

top panel to bottom panel). In contrast, the bootstrap procedure does much better. Rejection 

rates for the bootstrap range from 0.018 to 0.060, close to the 0.05 benchmark.  

The last column provides a comparison with Beck and Katz’s PCSE estimator. As noted 

in the introduction, the PCSE procedure has been promoted as producing standard errors, and 

associated test results, that are superior to the Parks estimator -- though at some cost in 

efficiency. Indeed, the improved performance of the PCSE over the Parks estimator with 

asymptotic standard errors is evident by comparing rejection rates in Column (3) and Column 

(1), respectively. It is also evident, however, that it performs substantially worse than the 

bootstrap procedure. A comparison of Columns (3) with Column (2) shows that rejection rates 

for the PCSE are further from the 0.05 benchmark than those for the bootstrap in 11 of 12 

experiments, and of equal distance in one (T=11,N=10,Restriction=1).   

The last row in each panel reports mean column values across the different experiments 

for T=20 and T=11, respectively. It provides a crude measure of overall performance, with 

values closer to 0.05 indicating better overall performance. The bootstrap procedure 

demonstrates superior performance over both the PCSE estimator and the Parks model with 

asymptotic critical values. In the T=20 experiments, the mean rejection rates are 0.044 versus 

0.154 and 0.276, respectively. In the T=11 experiments, they are 0.039 versus 0.182 and 0.405.  
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Results from synthetic panel datasets modelled after two additional datasets. In this next 

section, we perform further performance tests. The goal is to investigate whether our bootstrap 

procedure continues to perform well when tested on synthetic datasets very different from those 

based on the Grunfeld data. Whereas the Grunfeld data related a firm’s investment to its market 

value and capital stock, the next two datasets we work with relate (i) tourism and crime in 

Italian provinces from 1985-2003, and (ii) foreign aid and real per capita GDP growth for a set 

of least developed countries (LDCs) from 1960-2000. We chose these studies because, in 

addition to offering a sharp contrast to Grunfeld, the associated data are strongly balanced, 

allow a relatively large number of N and T combinations, and are publicly available.  

The first of these studies was published by Bruckner in 2013 in the Journal of Applied 

Econometrics. It estimates the effect of real per capita GDP growth on the growth in 

development aid for 44 countries over 25 years. Accordingly, our simulated datasets are 

comprised of these two variables.10,11 We use the maximum number of time periods (T=25) 

while allowing N to take on the values 5, 10, 15, 20, and 24 across the different experiments.  

The second study was published by Biagi, Brandano, and Detotto in Economics E-

Journal in 2012. It studies the effect of tourism on crime in 95 Italian provinces over a period 

of 18 years. In addition to the dependent variable measuring crime and the key explanatory 

variable measuring number of tourists, it includes control variables for economic growth, the 

level of income, the unemployment rate, population density, a measure of educational 

attainment, and a measure of criminal “deterrence.” Accordingly, our corresponding, simulated 

                                                 
10 The regressions underlying our hypothesis tests are modelled after the regression reported in Table I, Column 
3 on page 131 of Bruckner (2013). 
11 The corresponding restriction matrices for N=2 are given by: 

(10.a’) 𝑹𝑹1 = [ 0  1   0   0 ], 
(10.b’) 𝑹𝑹2 = [ 0   1   0 − 1 ], and 
(10.c’) 𝑹𝑹3 = � 1   0   − 1   0   

0   1    0  − 1 �. 
For larger N, the Ri  are identical in the first four columns, with zeros in the remaining 2N-4 columns.   
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datasets consist of eight variables.12,13 We again used the maximum number of time periods 

(T=18) while allowing N to take values equal to 5, 10, 15, and 17 across the different 

experiments. We followed the same procedure as previously in constructing synthetic panel 

datasets to resemble these two additional datasets. 

Table 3 repeats the analysis of Table 2, focussing on the Type I error rates associated 

with testing restrictions R1, R2, and R3. The top panel reports the experiments using the 

synthetic datasets derived from the Bruckner data. As was the case with the Grunfeld datasets, 

hypothesis tests which rely on asymptotic critical values (Column 1) generally perform poorly, 

with rejection rates ranging from 0.114 to 0.768. The latter value is not exceptional for the 

Parks estimator (see, for example, Table 2 in Beck and Katz, 1995; and Figures 5 and 6 in 

Moundigbaye et al., 2018).  

The bootstrap (Column 2) again does much better, producing type I error rates that have 

a mean rate of 0.031 and stay within 0.034 of the nominal 0.05 test size. The PCSE approach 

(Column 3) does slightly better than the bootstrap with this data set. Rejection rates have a 

mean value across all experiments of 0.045 and stay within 0.022 of the nominal size. The fact 

that the PCSE can, in some circumstances, do very well, is not surprising (see, for example, 

Table 5, Columns 3 and 4 in Moundigbaye et al., 2018).  

The bottom panel of Table 3 repeats the comparison, this time using synthetic panel 

datasets derived from the Biagi et al. (2012) data on Italian crime rates. The results for the 

Parks estimator with asymptotic critical values are similar to previous results, with a mean 

                                                 
12 The regressions underlying our hypothesis tests are modelled after the regression reported in Table I, Column 
1 on page 13 of Biagi et al. (2012). 
13 The corresponding restriction matrices for N=2 are given by: 

(10.a’’) 𝑹𝑹1 = [ 0  1   0   0   0   0   0   0   0   0   0   0   0   0   0   0], 
(10.b’’) 𝑹𝑹2 = [ 0  1   0   0   0   0   0   0   0  − 1   0   0   0   0   0   0 ], and 
(10.c’’) 𝑹𝑹3 = � 1  0   0   0   0   0   0   0  − 1  0   0   0   0   0   0   0 

 0  1   0   0   0   0   0   0   0  − 1   0   0   0   0   0   0�. 
For larger N, the Ri are identical in the first sixteen columns, with zeros in the remaining 8N-16 columns.   
 



14 
 

Type I error rate of 0.510. The corresponding Type I error rates for the PCSE approach are 

unacceptably large, as they were in Table 2, with a mean rejection rate of 0.234. The bootstrap 

procedure performs substantially better, with a mean rejection rate of 0.038.  

 
V.  CONCLUSION 

Although the Parks estimator has desirable efficiency properties both asymptotically and in 

finite samples; its poorly estimated standard errors limit its usefulness for inference. As a result, 

Beck and Katz’s (1995) PCSE approach has become widely adopted as an alternative, as 

evidenced by its more than 2,400 Web of Science citations. Despite being more than 20 years 

old, the paper’s annual citations continue to increase over time. Unfortunately, the PCSE 

approach, while reducing size distortion, does not entirely eliminate it; and it is based on a 

Prais-Winsten estimator that is less efficient than the Parks estimator. 

 This paper develops a bootstrap procedure for testing hypotheses using the more 

efficient Parks estimator. We illustrate the bootstrap’s use in a number of experiments where 

we simulate panel datasets to “look like” real datasets. We show that the bootstrap procedure 

performs well with these data. While the PCSE approach can sometimes also perform well, the 

bootstrap usually performs better, often substantially better.   

 Up to this point, researchers working with panel datasets where the number of time 

periods is larger than the number of cross-sections have had to give up the efficiency of the 

Parks estimator to obtain greater accuracy in hypothesis testing using PCSE. The bootstrapping 

procedure presented here allows researchers to retain the efficient Parks estimator and to have 

test results that are generally more accurate than those offered by the PCSE approach.  
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TABLE 1 
Comparison of Bootstrapped with Asymptotic Critical Values 

 
  _____5% Critical Values____ 

N Restriction Asymptotic 
(1) 

Bootstrapped  
 (2) 

T = 20 

5 1 3.841 8.619 

5 2 3.841 9.803 

5 3 5.991 13.786 

10 1 3.841 14.318 

10 2 3.841 24.129 

10 3 5.991 23.831 

T = 11 

5 1 3.841 17.611 

5 2 3.841 22.199 

5 3 5.991 36.485 

10 1 3.841 63.838 

10 2 3.841 45.079 

10 3 5.991 67.832 
 

NOTE: N and T correspond to the number of cross-sectional units and time periods, 
respectively. Restrictions 1 through 3 are described in the text related to discussion of 
Equations (10.a) through (10.c). Asymptotic critical values are for the 𝜒𝜒2 distribution with 1 
degree of freedom (Restrictions 1 and 2) and 2 degrees of freedom (Restriction 3). The 
bootstrapped critical values are averages over 1000 replications for each experiment The 
procedure for calculating bootstrapped critical values is discussed in Section III in the text.  
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TABLE 2 
Comparison of Type I Error Rates Using Asymptotic and Bootstrapped Critical Values: 

Grunfeld Data 
 

  __________Type I Error Rates____________ 

N Restriction Asymptotic 
(1) 

Bootstrapped  
(2) 

PCSE 
(3) 

T = 20 

5 1 0.166 0.050 0.126 

5 2 0.174 0.050 0.112 

5 3 0.244 0.040 0.220 

10 1 0.304 0.060 0.112 

10 2 0.326 0.018 0.092 

10 3 0.444 0.044 0.262 

Mean --- 0.276 0.044 0.154 

T = 11 

5 1 0.240 0.028 0.094 

5 2 0.288 0.038 0.136 

5 3 0.426 0.052 0.300 

10 1 0.392 0.030 0.070 

10 2 0.462 0.032 0.134 

10 3 0.624 0.052 0.360 

Mean --- 0.405 0.039 0.182 
 

NOTE: N and T correspond to the number of cross-sectional units and time periods, 
respectively. Restrictions 1 through 3 are described in the text related to discussion of 
Equations (10.a) through (10.c). Type I error rates report the percent of 1000 Monte Carlo 
experiments where the null hypothesis was rejected. 
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TABLE 3 
Robustness Check: Further Analysis with Two Additional Datasets 

 

  ____________Type I Error Rates____________ 

N Restriction Asymptotic 
(1) 

Bootstrapped 
(2) 

PCSE 
(3) 

Aid and Growth Data: T = 25 (Bruckner, 2013) 

5 1 0.162 0.050 0.042 
5 2 0.114 0.038 0.048 
5 3 0.122 0.042 0.042 
10 1 0.226 0.042 0.046 
10 2 0.216 0.024 0.040 
10 3 0.212 0.030 0.028 
15 1 0.338 0.030 0.048 
15 2 0.350 0.026 0.072 
15 3 0.362 0.040 0.034 
20 1 0.564 0.020 0.046 
20 2 0.598 0.016 0.042 
20 3 0.618 0.032 0.038 
24 1 0.682 0.022 0.042 
24 2 0.768 0.034 0.066 
24 3 0.768 0.026 0.042 

Mean 0.407 0.031     0.045 

Tourism and Crime Data: T = 18 (Biagi et al., 2012) 

5 1 0.254 0.050 0.19 
5 2 0.296 0.070 0.19 
5 3 0.436 0.062 0.34 
10 1 0.454 0.050 0.19 
10 2 0.424 0.038 0.15 
10 3 0.596 0.066 0.37 
15 1 0.570 0.014 0.17 
15 2 0.584 0.028 0.20 
15 3 0.820 0.012 0.34 
17 1 0.494 0.018 0.19 
17 2 0.480 0.022 0.16 
17 3 0.708 0.020 0.32 

Mean 0.510 0.038     0.234 
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NOTE: N and T correspond to the number of cross-sectional units and time periods, 
respectively. Restrictions 1 through 3 are described in the text related to the discussion of 
Equations (10.a) through (10.c) for the Bruckner (2013) and Biagi et al. (2012) datasets. Type 
I error rates report the percent of 1000 Monte Carlo experiments where the null hypothesis was 
rejected. 
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APPENDIX 
Step-by- Step Procedure for Computing the Parks Estimator 

Assume one has to estimate the panel data equation: 

𝑦𝑦 = 𝑋𝑋𝜷𝜷 + 𝑒𝑒.         (A.0) 

The Parks FGLS estimator with SUR residuals is implemented in 5 steps as below: 

i. Implement SUR with contemporaneously correlated disturbances. 

- Estimate equation (A.0) using ordinary least squares and collect the residuals to 

compute the contemporaneous variance-covariance matrix ∑�𝑂𝑂𝑂𝑂𝑂𝑂. 

 ∑�𝑂𝑂𝑂𝑂𝑂𝑂 =  1
𝑇𝑇
Ξ𝑂𝑂𝑂𝑂𝑂𝑂′  Ξ𝑂𝑂𝑂𝑂𝑂𝑂 ,        (A.1) 

where  Ξ𝑂𝑂𝑂𝑂𝑂𝑂 is a TxN matrix whose columns are made of individual OLS errors.  

- Construct the OLS residuals full variance-covariance matrix as a block diagonal matrix.  

 𝜴𝜴�𝑂𝑂𝑂𝑂𝑂𝑂 = ∑�𝑂𝑂𝑂𝑂𝑂𝑂⨂𝑰𝑰𝑻𝑻 .         (A.2) 

- The SUR estimate with contemporaneously correlated errors is given by: 

 𝛽𝛽��𝑆𝑆𝑆𝑆𝑆𝑆 = [𝑋𝑋′(𝜴𝜴�𝑂𝑂𝑂𝑂𝑂𝑂−1 ⨂𝑰𝑰𝑻𝑻)𝑋𝑋]−1[𝑋𝑋′(𝜴𝜴�𝑂𝑂𝑂𝑂𝑂𝑂−1 ⨂𝑰𝑰𝑻𝑻)𝑦𝑦] .    (A.3) 

ii. Use errors from the SUR model with contemporaneously correlated errors to estimate 

the first-order serial correlation coefficient for each equation in system (A.0). 

  Ɛ� = 𝑦𝑦 −  𝑋𝑋𝛽𝛽��𝑆𝑆𝑆𝑆𝑆𝑆;        (A.4) 

and 

𝜌𝜌�𝑖𝑖 = ∑ Ɛ�𝑖𝑖𝑖𝑖Ɛ�𝑖𝑖,𝑡𝑡−1𝑇𝑇
𝑡𝑡=2
∑ Ɛ�𝑖𝑖𝑖𝑖

2𝑇𝑇−1
𝑡𝑡=1

.        (A.5) 

- For t = 2, 3, …, T, and for each i, transform 𝑦𝑦𝑖𝑖 and 𝑋𝑋𝑖𝑖 series using 𝜌𝜌�𝑖𝑖.  

𝑦𝑦𝑖𝑖• = 𝑃𝑃�0𝑖𝑖𝑦𝑦𝑖𝑖   𝑎𝑎𝑎𝑎𝑎𝑎 𝑋𝑋𝑖𝑖• = 𝑃𝑃�0𝑖𝑖𝑋𝑋𝑖𝑖 ,      (A.6) 

where  

𝑃𝑃�0𝑖𝑖 = �

−𝜌𝜌�𝑖𝑖 1 0 … 0
0 −𝜌𝜌�𝑖𝑖 1 ⋱ ⋮
⋮ ⋱ ⋱ ⋱ 0
0 … 0 −𝜌𝜌�𝑖𝑖 1

�.     (A.7) 
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- Regress 𝑦𝑦𝑖𝑖• on 𝑋𝑋𝑖𝑖• using OLS and collect the residuals to compute the estimate ∑�  of the 

contemporaneous variance-covariance matrix  ∑. 

∑� =  1
𝑇𝑇−1

𝛯𝛯′𝛯𝛯,         (A.8) 

where Ξ is a (T-1)xN matrix whose columns are OLS residuals from the regression of  𝑦𝑦𝑖𝑖• 

on 𝑋𝑋𝑖𝑖•. 

iii. Construct the full transformation matrix P�, such that:  

P�Ω�P�′ =  ∑�⨂𝑰𝑰𝑻𝑻.        (A.9) 

P �has the form: 

P� =  

⎣
⎢
⎢
⎡P
�11 0 … 0
P�21 P�22 ⋱ ⋮
⋮ ⋱ ⋱ 0

P�𝑁𝑁1 … P�𝑁𝑁,𝑁𝑁−1 P�𝑁𝑁𝑁𝑁⎦
⎥
⎥
⎤
,      (A.10) 

where 

P�𝑖𝑖𝑖𝑖 =  

⎣
⎢
⎢
⎢
⎡
α�𝑖𝑖𝑖𝑖 0 0 … 0
−𝜌𝜌�𝑖𝑖 1 0 ⋱ ⋮

0 −𝜌𝜌�𝑖𝑖 1 ⋱ 0
⋮ ⋱ ⋱ ⋱ 0
0 … 0 −𝜌𝜌�𝑖𝑖 1⎦

⎥
⎥
⎥
⎤

;     (A.11) 

P�𝑖𝑖𝑖𝑖 =  �

α�𝑖𝑖𝑖𝑖 0 … 0
0 0 ⋱ 0
⋮ ⋱ ⋱ 0
0 0 … 0

�;       (A.12) 

A =  �

α�11 0 … 0
α�21 α�22 ⋱ ⋮
⋮ ⋱ ⋱ 0

α�𝑁𝑁1 α�𝑁𝑁2 … α�𝑁𝑁𝑁𝑁

�.      (A.13)  

where A is defined as the product 𝐻𝐻′(𝐵𝐵)−1 , 𝐵𝐵 and 𝐻𝐻 are upper triangular matrices 

satisfying 𝐻𝐻′𝐻𝐻 =  ∑�  and  𝐵𝐵′𝐵𝐵 =  𝑉𝑉0, and 𝑉𝑉0 is the contemporaneous variance-covariance 

matrix of the error term Ɛ� and is defined as below. By construction, the matrix A contains 

initial parameters ensuring the stationarity of the error term in equation (A.0).  
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𝑉𝑉0 =  

⎣
⎢
⎢
⎢
⎢
⎡

𝜎𝜎�11
1−𝜌𝜌�1

2
𝜎𝜎�12

1−𝜌𝜌�1𝜌𝜌�2
… 𝜎𝜎�1𝑁𝑁

1−𝜌𝜌�1𝜌𝜌�𝑁𝑁
𝜎𝜎�21

1−𝜌𝜌�2𝜌𝜌�1

𝜎𝜎�21
1−𝜌𝜌�2

2 … 𝜎𝜎�2𝑁𝑁
1−𝜌𝜌�2𝜌𝜌�𝑁𝑁

⋮ ⋮ ⋱ ⋮
𝜎𝜎�𝑁𝑁1

1−𝜌𝜌�𝑁𝑁1𝜌𝜌�𝑁𝑁

𝜎𝜎�𝑁𝑁2
1−𝜌𝜌�1𝜌𝜌�𝑁𝑁2

… 𝜎𝜎�𝑁𝑁𝑁𝑁
1−𝜌𝜌�𝑁𝑁

2 ⎦
⎥
⎥
⎥
⎥
⎤

 ;    (A.14) 

𝜎𝜎�11 =  ∑�𝑖𝑖𝑖𝑖 .        (A.15) 

It follows that:  

𝛺𝛺�−1 = P�′(∑�−1⨂𝑰𝑰𝑻𝑻)P�.         (A.16) 

iv. Apply P� to transform 𝑦𝑦 and 𝑋𝑋 and use OLS on the transformed data to get the Parks 

estimator of the SUR model with contemporaneously and first order serially correlated 

errors. 

𝑦𝑦∗ =  P�𝑦𝑦.         (A.17) 

𝑋𝑋∗ =  P�𝑋𝑋.         (A.18) 

𝜷𝜷�𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 =  �X∗′(∑�−1⨂𝑰𝑰𝑻𝑻)𝑋𝑋∗�
−1
�X∗′(∑�−1⨂𝑰𝑰𝑻𝑻)𝑦𝑦∗�.   (A.19) 

A consistent estimator of the covariance matrix of 𝜷𝜷�𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 is defined as: 

𝑽𝑽(𝜷𝜷�𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷) =  �X∗′(∑�−1⨂𝑰𝑰𝑻𝑻)𝑋𝑋∗�
−1

.     (A.20) 
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