Economics

The Open-Access, Open-Assessment E-Journal

Discussion Paper
No. 2019-39 | June 19, 2019 | http://www.economics-ejournal.org/economics/discussionpapers/2019-39

Please cite the corresponding Journal Article at
http://www.economics-ejournal.org/economics/journalarticles/2020-4

Bootstrap methods for inference in the Parks model

Mantobaye Moundigbaye, Clarisse Messemer, Richard W. Parks,
W. Robert Reed

Abstract

This paper shows how to bootstrap hypothesis tests in the context of the Parks (Efficient estimation of
a system of regression equations when disturbances are both serially and contemporaneously
correlated 1967) estimator. It then demonstrates that the bootstrap outperforms Parks’s top
competitor. The Parks estimator has been a workhorse for the analysis of panel data and seemingly
unrelated regression equation systems because it allows the incorporation of cross-sectional
correlation together with heteroskedasticity and serial correlation. Unfortunately, the associated,
asymptotic standard error estimates are biased downward, often severely. To address this problem,
Beck and Katz (What to do (and not to do) with time series cross-section data 1995) developed an
approach that uses the Prais-Winsten estimator together with “panel corrected standard errors”
(PCSE). While PCSE produces standard error estimates that are less biased than Parks, it forces the
user to sacrifice efficiency for accuracy in hypothesis testing. The PCSE approach has been, and
continues to be, widely used. This paper develops an alternative: a nonparametric bootstrapping
procedure to be used in conjunction with the Parks estimator. We demonstrate its effectiveness using
an innovative experimental approach that creates artificial panel datasets modelled after actual panel
datasets. Our approach provides a Pareto-improving option by allowing researchers to retain the
efficiency of the Parks estimator while producing more accurate hypothesis test results than the
PCSE.
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I. INTRODUCTION

The Parks (1967) estimator was designed as an efficient estimator for systems of equations
with both serially and contemporaneously correlated disturbances. Such models include the
SUR model and associated restricted forms, such as time-series, cross-section/panel data
models. Its superior efficiency is well established (Kmenta and Gilbert, 1970; Guilkey and
Schmidt, 1973; Messemer, 2003; Chen et al., 2010; Moundigbaye et al., 2018). It has been
widely used and is available in many econometric software packages including RATS,
SHAZAM, SAS, and Stata.*

Kmenta and Gilbert (1970) were the first to note that Parks’s estimated standard errors,
while consistent, can be substantially biased in finite samples. More recently, Beck and Katz
(1995) documented that the estimated standard errors for the Parks estimator have severe
downward bias when the time dimension is small relative to the number of cross-sections. To
address this deficiency, they recommend using a Prais-Winsten estimator with corresponding
“panel-corrected standard errors” (PCSE).

This approach has been widely adopted, as evidenced by more than 2,400 Web of
Science citations. It remains a popular estimation choice. Despite being more than twenty years
old, the number of annual citations received by Beck and Katz (1995) continues to increase
over time. While the PCSE approach generally involves less size distortion than Parks with
asymptotic standard errors, it does not eliminate it (cf. Reed and Webb, 2010). This paper
demonstrates that the combined use of the Parks estimator with bootstrapping constitutes an
approach that is superior to the PCSE approach in both estimator efficiency and inference
accuracy.

The remainder of the paper is organized as follows. Section 2 briefly introduces the

! The Parks estimator provides the framework for Stata’s xtgls procedure.
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SUR model with autoregressive errors and associated Parks estimator. Section 3 presents a
nonparametric bootstrap procedure for the Parks estimator. Section 4 demonstrates the superior
performance of the bootstrap procedure. It employs an innovative experimental approach
where testing is performed on synthetic datasets designed to resemble actual datasets. Section

5 concludes.

Il. THE SUR MODEL AND THE PARKS ESTIMATOR

The Parks estimator was constructed as an efficient estimator for the SUR model with
autocorrelated disturbances,

1) yi=X;Bi+¢€, i=12,..,N,

where y; and g; are T x 1 vectors, X; is T X k;, and B; is k; X 1. The N equations can be

stacked and represented in compact form as,

) y=XB+e

Y1 X, 00 B+ €1

wherey=]: [, X=|0 =~ 0|, B= [ : ],and£= ,With E(e) = 0,and E(eg") =
YN 0 0 Xy Bn En

0.

It is assumed that the disturbance vector, £y = (&1, €24, -+, Ene, ), IS generated by a

stationary, first-order autoregressive process,

] [01 ”glt |
0 pnt LEnE-1

where IT is an N x N, diagonal matrix consisting of scalars having absolute value less than 1.

(3) Er) = "S(t 1) + V) =23..,T ,2

Consistent with stationarity, the disturbances for the first observation, &, are assumed to be

2To clarify notation, notice that the vector &; contains the T disturbances for the ith equation whereas the vector
£ contains the N disturbances for the different equations or cross-sectional elements at time t.
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generated by & =A‘1v(1).3 The innovations, v, t =1,2,..,T are independent and

identically distributed random variables with E (v(y) = 0 and covariance matrix

@  E(vovy')=Z=

0-11 O—lN]
Ony1 * OpnN

In summary, the covariance model above assumes a diagonal IT matrix, with N parameters

specifying equation-specific, first-order serial correlation; together with a symmetric £ matrix

with

N(N+1) . :
S Pparameters, specifying the contemporaneous covariances.

The Parks estimator, which is a feasible generalized least squares procedure associated
with the covariance model above, is represented by
(G) Bp= (X,ﬁ’(2_1®IT)T)X)—1X,?’(2_1®IT)P3’,
and
© V(Bp) = (X'P'(Z'®I;)PX) ",
where P is the Prais-Winsten transformation matrix and Z is the estimate of X in Equation (4).
Estimation of individual parameters is described in Judge et al. (1985, pages 485-490). Further
details are given in the Appendix.

As a point of comparison, Beck and Katz’s (1995) PCSE estimator is given by,
() Brcse = (X'P'PX) X'P'Py

8  V(Brese) = (X'P'PX) " (X'P'(2Q1;)PX)(X'P'PX) .

3 Appendix 1 of Guilkey and Schmidt (1973) and Judge et al. (1985, p. 485-487) show how to obtain the elements
of the matrix A. If we let V, = E(&¢ gy for t = 1,2,...T, then from (3) and stationarity, Vo = IV, IT' + X.
Guilkey and Schmidt show that this equation can be solved for the elements of V, in terms of the elements of IT
and X. From £y = A"'v(yy we have V, = A1 2(A71)" or £ = AV,A’. If H and B are the Cholesky factors of
X and V,, respectively, then HH' = ABB’A’ and A = HB™ L.
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I11. HYPOTHESIS TESTING: THE BOOTSTRAP VERSUS ASYMPTOTIC-BASED
TESTS

Asymptotic-based tests. A common approach for testing linear hypotheses of the form

Hy: RB = r involves the Wald statistic,

_ ~ o~ -1 —~

© g=(RB-7)(RV(B)R) (RB-T),
where the restriction matrix R has q rows (the number of restrictions) and K columns (where
K =Y k;).* The test statistic, g, is asymptotically distributed as 2 . As noted above, there
is ample evidence that asymptotic-based tests for the Parks model do not provide accurate
inference. Rejection probabilities tend to be substantially in excess of their nominal levels and
confidence intervals are too small.

Bootstrap methods can improve upon asymptotic-based tests. Horowitz (1997) and
others have provided extensive surveys of the bootstrap literature. Horowitz (1997, p. 201)
gives a succinct statement of the key bootstrap results:

“The bootstrap provides a higher-order asymptotic approximation to critical

values for tests based on “smooth” asymptotically pivotal statistics. When a

bootstrap-based critical value is used for such a test, the difference between the

test’s true and nominal levels decreases more rapidly with increasing sample

size than it does when the critical value is obtained from first-order asymptotic

theory. Given a sufficiently large sample, the nominal level of the test will be

closer to the true level when a bootstrap critical value is used than when a critical
value based on first-order asymptotic theory is used.”

Since the Wald statistic, g, is asymptotically pivotal,® bootstrap approaches will provide

improved accuracy compared with tests that rely on the asymptotic distribution.

4 The bootstrapping approach that we propose is not limited to linear hypotheses. Suppose that we want to test
the set of non-linear hypotheses R(B) = 0 where the non-linear function has dimension g. The corresponding
-1
ot 5 Vv |9RB)|  rp \IRMB) 5 : .
Wald statistic has the form gy, = R(Bp) N V(ﬁ")T FP] R(Bp). This Wald statistic has the same
asymptotic distribution as its linear analog, (9), and bootstrap testing would follow the same steps as those outlined
below.

5 with regard to the Wald statistic being asymptotically pivotal, Horowitz (1997) writes, “The arguments in
Section 2a show that the bootstrap provides higher-order asymptotic approximations to the distributions and
critical values of ‘smooth’ asymptotically pivotal statistics. These include test statistics whose asymptotic
distributions are standard normal or chi-square." Note that Wald statistics converge in distribution to chi-square,
whose only parameter is the degrees of freedom. Hence the Wald statistic is asymptotically pivotal because it
does not depend on parameters of the model's data generating process.
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Bootstrap Procedure. Below we give the steps for implementing a bootstrap test of the

null hypothesis, H,, in the context of a SUR model with AR(1) disturbances (i.e., the Parks
model). Although the results that we show are based on a nonparametric bootstrap, it is useful
for explanatory purposes to show how the nonparametric method differs from the simpler
parametric method.

STEP 1: Estimate B p from the unrestricted model and compute the test statistic, g, from
(9). Call this test statistic g.

STEP 2: Re-estimate the model under the restrictions imposed by the null hypothesis,
RB = r, to obtain B, I, %, and A. For the nonparametric bootstrap, we also need E,
the N x T matrix of residuals based on the constrained estimates.

STEP 3: Use the restricted estimates 8, I, and £ as the parameters of the data
generating process described by Equations (1) through (4) above, together with the
restriction, R = r, to generate a bootstrap sample satisfying the hypothesis to be
tested.

For a parametric bootstrap, one might start with the following:

STEP 3a: Draw an N x T matrix U = {u} of standard normal random variables,
u(t)~N(O, IN)

But for the nonparametric bootstrap we rely on information contained in the collection of
constrained residuals, E. Using the restricted parameter estimates from STEP 2, make the
following set of transformations to obtain a set of residuals, {Z}, that can be treated as the
starting point of the data generating process (DGP). Let ¥y = &) — ﬁé(t_l) fort =2,3,..T,
and V(1) = A&g). Then let @i,y = H™ ¥, where H is the Cholesky factor of X' .

For the bootstrap samples to satisfy the null hypothesis, the {ii} should have row

means of zero, and they should be uncorrelated. If those conditions are not met, one can whiten

the residuals by first subtracting row averages from each of the corresponding elements of
{ti} to get the centered Uc. Correlation among the Uc rows can be eliminated by
premultiplying Uc by the transposed inverse of the Cholesky factor of U.U_. Hereafter,
references to the set of residuals, T={i,, } assumes that they have been whitened.
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STEP 3a*: For a nonparametric bootstrap, we draw a sample of T {# )} vectors with
replacement from this empirical distribution to form the columns of U. It is the
nonparametric counterpart to U in Step 3a above, where the sampling was from a known
distribution.

From this point onward, the remaining steps for both parametric and nonparametric bootstraps
are the same.

STEP 3b: Transform the columns of U to have covariance Z; i.e., construct V =
{Hu)} = HU where H is the lower triangular Cholesky factor of Z, such that HH' =

.

STEP 3c: Construct the disturbance vector &), where &) = Z‘lv(l) and &4 =

ﬁé(t_l) + Vg fort = 2,3,..., T. Use these disturbances, model (2), and the restrictions
implied by the hypothesis to be tested to generate the first bootstrap sample.

STEP 4: Estimate parameters for the unconstrained model from the first bootstrap
sample (b=1), compute the test statistic, g1, and store it.

STEP 5: Repeat the process of generating a bootstrap sample, estimating the model,
and computing the test statistic until one has B bootstrap samples and test statistics
91, 92, -, gg- Davidson and MacKinnon (2004) recommend choosing B such that when
a is the level of significance of the test, the product (B + 1) is an integer, e.g. B =

999. Estimate the a-level critical value for the test, g.,, as the (1 — a)th quantile from
the empirical distribution of the g;,’s.

STEP 6: Reject H, at nominal « level if the test statistic computed from the original
sample, g satisfies § > g.,. Alternatively compute a p-value from STEP 5 as the
fraction of the bootstrap samples with g, > §.

The above procedure can be suitably modified at STEPS 1 and 3 to deal with test statistics that

depend on estimates of the restricted model (Lagrange multiplier tests) or on estimates of both

restricted and unrestricted models (Likelihood ratio tests).

IV. RESULTS FROM MONTE CARLO EXPERIMENTS

Description of experiments. In this section we perform a series of Monte Carlo experiments to

assess the performance of the bootstrap procedure described above. To do that, we construct

synthetic panel datasets that are made to “look like” real datasets. The reason we do that is

N2+3N

because the Parks model has ( ) unique parameters in the error variance-covariance



matrix. There is little guidance in how best to assign values to these parameters for the purpose
of designing meaningful experiments.

Beck and Katz’s simulation experiments are based on a substantial simplification of the
error variance-covariance matrix. For example, when N=15, they reduce the number of unique
parameters from 135 to 3 by assigning half of the panel units one variance value, the other half
another, and setting all cross-sectional correlations the same. Further, their experiments do not
allow for the interaction of cross-sectional and serial correlation.® The problem with this
approach is that it greatly reduces the realism of the error variance-covariance matrix. This
raises concerns about the external validity of the associated simulation results. In contrast, we
adopt an innovative approach that assigns a unique value to every element in the error variance-
covariance matrix, along with the values of the independent variable(s) in the experimental
DGPs. We derive these values from actual panel datasets. The details of how we do this are
given below.

The first dataset we work with is Grunfeld’s (1958) investment data, one of the most
widely used panel datasets in applied econometrics (Kleiber and Zeileis, 2010)7. The dataset
consists of annual observations of three variables for 10 U.S. firms over a 20-year period (1935-
1954).8 The dependent variable is firm gross investment in plant and equipment (). The two
explanatory variables are the market value of the firm at the end of the previous year (F) and a

capital stock measure (C).

6 Beck and Katz (1985, pages 640f.): “Varying degrees of heteroscedasticity were simulated by setting the
variance of the first half of the units to 1 while the variance of the second half of the units was experimentally
manipulated. The covariance matrix of this multivariate distribution was constructed so that all pairs of units were
equally correlated, with the degree of correlation also experimentally manipulated. Errors were then generated so
that the variances and covariances of the errors were proportional to the corresponding variances and covariances
of the independent variable. The errors could therefore show panel heteroscedasticity and contemporaneous
correlation, either alone or in combination.”

" Greene (2012, page 342) writes, “The Grunfeld investment data...are a classic data set that have been used for
decades to develop and demonstrate estimators for seemingly unrelated regressions.”

8 We use the version of the dataset that appears in Hill, Griffiths, and Lin (2008).
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Our procedure for creating the synthetic datasets is best illustrated by example. Suppose
we want to generate a synthetic dataset that “looks like” the Grunfeld data, except that it has
dimensions N=2 and T=20. We begin by extracting the data for the first two firms in the
Grunfeld dataset. In this case, the data matrix X consists of a constant term and the variables F
and C. The twenty, time series values of the independent variables (F and C) are set equal to
their actual values in the Grunfeld data. To generate artificial values for the dependent variable
I, we multiply X by a coefficient vector B whose elements are all set to zero, and then add
simulated error terms.

The DGP for the simulated error terms is constructed so that the errors have the same
nonspherical properties as residuals from a regression of the Grunfeld data. Specifically, we
estimate Equation (2) using SUR and collect the residuals. These residuals are used to estimate
the elements of IT and X. The estimated values are then set as the population values for the
error variance-covariance matrix in the DGP that produces the simulated error terms. The
simulated error terms are added to X to produce simulated values of the dependent variable
l.

By generating a new set of error terms, multiple synthetic datasets having dimensions
N=2 and T=20 can be produced, each of which is constructed to have characteristics similar to
the Grunfeld data. We then use these synthetic panel datasets to run experiments testing three
linear restrictions, each having the form R = 0:

(10.a) R, =[0 1 0 0 0 0],
(10.b) R,=[0 1 0 0 —1 0], and

(10.0) R3:[1 00 —10 o]_

0100-10

Restriction (10.a) tests the statistical significance of a single parameter estimate: the
coefficient on F in the equation for the first firm. (10.b) tests a linear combination of parameter

estimates: whether the coefficient on F has the same value in the equations for the first and
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second firms. (10.c) tests multiple linear combinations of parameter estimates: whether (i) the
constant terms are equal in the equations for the first and second firms, and (ii) the coefficient
on F is the same in the equations for the first and second firms. Our experiments are designed
so that the respective null hypotheses are always true. We chose these three restrictions because
they each represent a common type of hypothesis test found in empirical research.

(10.a)-(10.c) are easily modified to allow for different numbers of firms, N, in the
synthetic, Grunfeld-type panel datasets. For these datasets, restriction matrices will have 3N
columns. The analogues to (10.a)—(10.c) for an alternative N value are identical in the first six
columns, with zeros in the remaining 3N — 6 columns.

Results from synthetic panel datasets modelled after the Grunfeld data. The first three

rows of the top panel of Table 1 (T=20) report results of Monte Carlo experiments based on
the Grunfeld data with N=5, testing each of the restrictions in (10.a)-(10.c). Each experiment
consists of 1000 replications. The first column reports 5%, asymptotic critical values for the
x? distribution with 1 degree of freedom (Restrictions 1 and 2) and 2 degrees of freedom
(Restriction 3). The next column reports the average critical values determined by the
nonparametric bootstrap procedure described in Section I11 above. Note that these are average
critical values because a critical value is produced for each replication, and the table
summarizes the results from 1000 replications.

For example, in testing the significance of the coefficient for F in the equation for the
first firm (Restriction 1), the asymptotic critical value is 3.841. This compares to an average
critical value of 8.619 for the bootstrap procedure. While this is only one experiment, these
results are qualitatively what we would expect: estimated standard errors for the Parks model
are well-known for being biased downwards in finite samples, implying that that the asymptotic
critical values will be smaller than they should be. A similar pattern emerges when testing

Restrictions 2 and 3.



The next set of three rows repeats the experiments, except now the full set of 10 firms
is used in creating the synthetic Grunfeld panel datasets. Note that the addition of data for the
extra firms does more than just increase the sample size. It introduces a new set of variances
and covariances, increasing the number of unique elements in the error variance-covariance
matrix from 20 to 65. This exacerbates the bias in the Parks standard errors. While the
asymptotic critical values are unchanged, the bootstrapped critical values increase to reflect the
greater imprecision caused by having to estimate additional parameters.

The lower panel of Table 1 (T=11) repeats the previous experiments, but this time only
uses the first 11 years of the Grunfeld data. The reason for doing this is that the finite sample
bias in the estimated Parks’s asymptotic standard errors is known to increase as a function of
N /T (Moundigbaye et al., 2018). We investigate this by decreasing T to where it is just larger
than the number of firms (T=11, N=10), noting that the Parks estimator cannot be estimated
when T < N.° The six rows of the lower panel report the results for N=5 and N=10. The results
again correspond to expectations. Compared to their values in the top panel, the smaller N/T
values are associated with larger bootstrapped critical values. Note that the asymptotic critical
values are unchanged.

Table 2 calculates the Type | error rates associated with the critical values in Table 1.
These should ideally equal 0.05, though some deviation is expected due to sampling error.
Column (1) reports Type | error rates associated with the critical values taken from the y?
distribution. Column (2) does the same when the critical values are determined from the
bootstrapping procedure described in STEP 6 above. The last column reports rejection rates

associated with the PCSE estimator. In all cases, hypotheses are rejected whenever the sample

® In principle, the Parks estimator can be calculated when T=N. We found,c however, that we sometimes
encountered problems in our simulations in this case, so we set the lower bound of T=N+1.
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statistic is greater than the critical value for a given replication. The values in the table report
rejection rates for the 1000 replications for each experiment.

There are a number of noteworthy results here. First, the rejection rates using the
asymptotic critical values range from 0.166 to 0.624. In other words, if we were to use a 5%
significance level, we would reject the true null hypothesis anywhere from 17% to 62% of the
time. Further, as foreshadowed above, performance deterioriates markedly as N increases
holding T constant (within each panel in the table), and as T decreases holding N constant (from
top panel to bottom panel). In contrast, the bootstrap procedure does much better. Rejection
rates for the bootstrap range from 0.018 to 0.060, close to the 0.05 benchmark.

The last column provides a comparison with Beck and Katz’s PCSE estimator. As noted
in the introduction, the PCSE procedure has been promoted as producing standard errors, and
associated test results, that are superior to the Parks estimator -- though at some cost in
efficiency. Indeed, the improved performance of the PCSE over the Parks estimator with
asymptotic standard errors is evident by comparing rejection rates in Column (3) and Column
(1), respectively. It is also evident, however, that it performs substantially worse than the
bootstrap procedure. A comparison of Columns (3) with Column (2) shows that rejection rates
for the PCSE are further from the 0.05 benchmark than those for the bootstrap in 11 of 12
experiments, and of equal distance in one (T=11,N=10,Restriction=1).

The last row in each panel reports mean column values across the different experiments
for T=20 and T=11, respectively. It provides a crude measure of overall performance, with
values closer to 0.05 indicating better overall performance. The bootstrap procedure
demonstrates superior performance over both the PCSE estimator and the Parks model with
asymptotic critical values. In the T=20 experiments, the mean rejection rates are 0.044 versus

0.154 and 0.276, respectively. In the T=11 experiments, they are 0.039 versus 0.182 and 0.405.
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Results from synthetic panel datasets modelled after two additional datasets. In this next

section, we perform further performance tests. The goal is to investigate whether our bootstrap
procedure continues to perform well when tested on synthetic datasets very different from those
based on the Grunfeld data. Whereas the Grunfeld data related a firm’s investment to its market
value and capital stock, the next two datasets we work with relate (i) tourism and crime in
Italian provinces from 1985-2003, and (ii) foreign aid and real per capita GDP growth for a set
of least developed countries (LDCs) from 1960-2000. We chose these studies because, in
addition to offering a sharp contrast to Grunfeld, the associated data are strongly balanced,
allow a relatively large number of N and T combinations, and are publicly available.

The first of these studies was published by Bruckner in 2013 in the Journal of Applied
Econometrics. It estimates the effect of real per capita GDP growth on the growth in
development aid for 44 countries over 25 years. Accordingly, our simulated datasets are
comprised of these two variables.%! We use the maximum number of time periods (T=25)
while allowing N to take on the values 5, 10, 15, 20, and 24 across the different experiments.

The second study was published by Biagi, Brandano, and Detotto in Economics E-
Journal in 2012. It studies the effect of tourism on crime in 95 Italian provinces over a period
of 18 years. In addition to the dependent variable measuring crime and the key explanatory
variable measuring number of tourists, it includes control variables for economic growth, the
level of income, the unemployment rate, population density, a measure of educational

attainment, and a measure of criminal “deterrence.” Accordingly, our corresponding, simulated

10 The regressions underlying our hypothesis tests are modelled after the regression reported in Table I, Column
3 on page 131 of Bruckner (2013).

Y The corresponding restriction matrices for N=2 are given by:
(102 )R, =[01 0 0],
(10.b)YR,=[0 1 0 —1],and
) 10 —-10
(10.c) Ry = | |

01 0 —1
For larger N, the Ri are identical in the first four columns, with zeros in the remaining 2N-4 columns.
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datasets consist of eight variables.*2'3® We again used the maximum number of time periods
(T=18) while allowing N to take values equal to 5, 10, 15, and 17 across the different
experiments. We followed the same procedure as previously in constructing synthetic panel
datasets to resemble these two additional datasets.

Table 3 repeats the analysis of Table 2, focussing on the Type | error rates associated
with testing restrictions Ri, Rz, and Rs. The top panel reports the experiments using the
synthetic datasets derived from the Bruckner data. As was the case with the Grunfeld datasets,
hypothesis tests which rely on asymptotic critical values (Column 1) generally perform poorly,
with rejection rates ranging from 0.114 to 0.768. The latter value is not exceptional for the
Parks estimator (see, for example, Table 2 in Beck and Katz, 1995; and Figures 5 and 6 in
Moundigbaye et al., 2018).

The bootstrap (Column 2) again does much better, producing type I error rates that have
a mean rate of 0.031 and stay within 0.034 of the nominal 0.05 test size. The PCSE approach
(Column 3) does slightly better than the bootstrap with this data set. Rejection rates have a
mean value across all experiments of 0.045 and stay within 0.022 of the nominal size. The fact
that the PCSE can, in some circumstances, do very well, is not surprising (see, for example,
Table 5, Columns 3 and 4 in Moundigbaye et al., 2018).

The bottom panel of Table 3 repeats the comparison, this time using synthetic panel
datasets derived from the Biagi et al. (2012) data on Italian crime rates. The results for the

Parks estimator with asymptotic critical values are similar to previous results, with a mean

12 The regressions underlying our hypothesis tests are modelled after the regression reported in Table I, Column
1 on page 13 of Biagi et al. (2012).

13 The corresponding restriction matrices for N=2 are given by:

(102)R,=[01 000000000000 0 0],
(10b>)R,=[010000000—-100000 0],and
mp _[10000000-10000000
(10'C)R3_0100_00_000—1000000]'

For larger N, the Riare identical in the first sixteen columns, with zeros in the remaining 8N-16 columns.
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Type | error rate of 0.510. The corresponding Type | error rates for the PCSE approach are
unacceptably large, as they were in Table 2, with a mean rejection rate of 0.234. The bootstrap

procedure performs substantially better, with a mean rejection rate of 0.038.

V. CONCLUSION

Although the Parks estimator has desirable efficiency properties both asymptotically and in
finite samples; its poorly estimated standard errors limit its usefulness for inference. As a result,
Beck and Katz’s (1995) PCSE approach has become widely adopted as an alternative, as
evidenced by its more than 2,400 Web of Science citations. Despite being more than 20 years
old, the paper’s annual citations continue to increase over time. Unfortunately, the PCSE
approach, while reducing size distortion, does not entirely eliminate it; and it is based on a
Prais-Winsten estimator that is less efficient than the Parks estimator.

This paper develops a bootstrap procedure for testing hypotheses using the more
efficient Parks estimator. We illustrate the bootstrap’s use in a number of experiments where
we simulate panel datasets to “look like” real datasets. We show that the bootstrap procedure
performs well with these data. While the PCSE approach can sometimes also perform well, the
bootstrap usually performs better, often substantially better.

Up to this point, researchers working with panel datasets where the number of time
periods is larger than the number of cross-sections have had to give up the efficiency of the
Parks estimator to obtain greater accuracy in hypothesis testing using PCSE. The bootstrapping
procedure presented here allows researchers to retain the efficient Parks estimator and to have

test results that are generally more accurate than those offered by the PCSE approach.

14



REFERENCES

Beck, N. and Katz, J.N. (1995). What to do (and not to do) with time series cross-section data.
American Political Science Review, 89, 634-647.

Biagi, B., Brandano, M.G. & Detotto, C. (2012). The effect of tourism on crime in Italy: A
dynamic panel approach. Economics: The Open-Access, Open-Assessment E-Journal,
6, 1-24.
http://dx.doi.org/10.5018/economics-ejournal.ja.2012-25.

Bruckner, M. (2013arametric). On the simultaneity problem in the aid and growth debate.
Journal of Applied Econometrics, 28, 126-150.

Chen, X, Lin, S., and Reed, W.R. (2010). A Monte Carlo evaluation of the efficiency of the
PCSE estimator. Applied Economics Letters, 17, 7-10.

Davidson, R. and MacKinnon, J.G. (2004). Econometric Theory and Methods, New York,
Oxford University Press.

Greene, W.H. (2012). Econometric Analysis, 7th edition. Upper Saddle River, N.J: Prentice
Hall.

Grunfeld, Y. (1958). The Determinants of Corporate Investment, Unpublished Ph.D. Thesis,
Department of Economics, University of Chicago.

Guilkey, D.K. and Schmidt, P. (1973). Estimation of Seemingly Unrelated Regressions with
vector autoregressive errors. Journal of the American Statistical Association, 68, 642-
647.

Hill, R.C., Griffiths, W.E. and Lim, G.C. (2008). Principles of Econometrics, 3rd edition,
New York, John Wiley and Sons.

Horowitz, J.L. (1997) Bootstrap methods in econometrics: Theory and numerical
performance, in M. Kreps and K. F. Wallis, Advances in Economics and
Econometrics: Theory and Applications, Cambridge, Cambridge University Press,
Vol. 111, 188-222.

Judge, G.G., Griffiths, W.E., Hill, R.C., Lutkepohl, H., and Lee, T-C. (1985). The Theory and
Practice of Econometrics, 2nd edition, New York, John Wiley and Sons.

Kleiber, C. and Zeileis, A. (2010). The Grunfeld data at 50. German Economic Review, 11(4),
404-417.

Kmenta, J. and Gilbert, R.F. (1970). Estimation of seemingly unrelated regressions with
autoregressive disturbances. Journal of the American Statistical Association, 65, 186-
197.

15


http://dx.doi.org/10.5018/economics-ejournal.ja.2012-25

Messemer, C. (2003) “Kmenta-Gilbert Revisited: Small Sample Properties of the Parks
Estimator.” Essays in Multivariate Time Series Analysis with Applications to the
Movement of Real Average Earnings in the US Economy, Unpublished Ph.D.
dissertation, Department of Economics, University of Washington.

Moundigbaye, M., Rea, W.S., and Reed, W.R. (2018). Which panel data estimator should |
use?: A corrigendum and extension. Economics: The Open-Access, Open-Assessment
E-Journal, 12 (2018-4): 1-31.
http://dx.doi.org/10.5018/economics-ejournal.ja.2018-4.

Parks, R.W. (1967). Efficient estimation of a system of regression equations when disturbances
are both serially and contemporaneously correlated. Journal of the American Statistical
Association, 62, 500-5009.

Reed, W.R. and Webb, R. (2010). The PCSE Estimator is good — just not as good as you think.
Journal of Time Series Econometrics, 2(1), Article 8.

Rilstone, P. and Veall, M. (1996). Using bootstrapped confidence intervals for improved

inferences with Seemingly Unrelated Regression equations. Econometric Theory,
12(3), 569-580.

16


http://dx.doi.org/10.5018/economics-ejournal.ja.2018-4

TABLE 1
Comparison of Bootstrapped with Asymptotic Critical Values

5% Critical Values
- Asymptotic Bootstrapped
N Restriction
1) (2)
T=20
1 3.841 8.619
2 3.841 9.803
5 3 5.991 13.786
10 1 3.841 14.318
10 2 3.841 24.129
10 3 5.991 23.831
T=11
5 1 3.841 17.611
5 2 3.841 22.199
5 3 5.991 36.485
10 1 3.841 63.838
10 2 3.841 45.079
10 3 5.991 67.832

NOTE: N and T correspond to the number of cross-sectional units and time periods,
respectively. Restrictions 1 through 3 are described in the text related to discussion of
Equations (10.a) through (10.c). Asymptotic critical values are for the y? distribution with 1
degree of freedom (Restrictions 1 and 2) and 2 degrees of freedom (Restriction 3). The
bootstrapped critical values are averages over 1000 replications for each experiment The
procedure for calculating bootstrapped critical values is discussed in Section Il in the text.
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TABLE 2
Comparison of Type | Error Rates Using Asymptotic and Bootstrapped Critical Values:
Grunfeld Data

Type | Error Rates
- Asymptotic Bootstrapped PCSE
N Restriction y (1p) 2) PP 3)

T=20

1 0.166 0.050 0.126

2 0.174 0.050 0.112

5 3 0.244 0.040 0.220

10 1 0.304 0.060 0.112

10 2 0.326 0.018 0.092

10 3 0.444 0.044 0.262

Mean 0.276 0.044 0.154
T=11

5 1 0.240 0.028 0.094

5 2 0.288 0.038 0.136

5 3 0.426 0.052 0.300

10 1 0.392 0.030 0.070

10 2 0.462 0.032 0.134

10 3 0.624 0.052 0.360

Mean 0.405 0.039 0.182

NOTE: N and T correspond to the number of cross-sectional units and time periods,
respectively. Restrictions 1 through 3 are described in the text related to discussion of
Equations (10.a) through (10.c). Type | error rates report the percent of 1000 Monte Carlo
experiments where the null hypothesis was rejected.
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TABLE 3

Robustness Check: Further Analysis with Two Additional Datasets

Type | Error Rates

- Asymptotic Bootstrapped PCSE
N Restriction y (B 2) PP 3)
Aid and Growth Data: T = 25 (Bruckner, 2013)
1 0.162 0.050 0.042
2 0.114 0.038 0.048
3 0.122 0.042 0.042
10 1 0.226 0.042 0.046
10 2 0.216 0.024 0.040
10 3 0.212 0.030 0.028
15 1 0.338 0.030 0.048
15 2 0.350 0.026 0.072
15 3 0.362 0.040 0.034
20 1 0.564 0.020 0.046
20 2 0.598 0.016 0.042
20 3 0.618 0.032 0.038
24 1 0.682 0.022 0.042
24 2 0.768 0.034 0.066
24 3 0.768 0.026 0.042
Mean 0.407 0.031 0.045
Tourism and Crime Data: T = 18 (Biagi et al., 2012)
5 1 0.254 0.050 0.19
5 2 0.296 0.070 0.19
3 0.436 0.062 0.34
10 1 0.454 0.050 0.19
10 2 0.424 0.038 0.15
10 3 0.596 0.066 0.37
15 1 0.570 0.014 0.17
15 2 0.584 0.028 0.20
15 3 0.820 0.012 0.34
17 1 0.494 0.018 0.19
17 2 0.480 0.022 0.16
17 3 0.708 0.020 0.32
Mean 0.510 0.038 0.234
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NOTE: N and T correspond to the number of cross-sectional units and time periods,
respectively. Restrictions 1 through 3 are described in the text related to the discussion of
Equations (10.a) through (10.c) for the Bruckner (2013) and Biagi et al. (2012) datasets. Type
I error rates report the percent of 1000 Monte Carlo experiments where the null hypothesis was
rejected.
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APPENDIX
Step-by- Step Procedure for Computing the Parks Estimator

Assume one has to estimate the panel data equation:
y=Xp +e. (A.0)
The Parks FGLS estimator with SUR residuals is implemented in 5 steps as below:

Implement SUR with contemporaneously correlated disturbances.

- Estimate equation (A.0) using ordinary least squares and collect the residuals to

compute the contemporaneous variance-covariance matrix 3o,

P 1 —_ —_
oLs = ;:'IOLS S0LS (A1)

where Z,;¢ is a TXN matrix whose columns are made of individual OLS errors.
- Construct the OLS residuals full variance-covariance matrix as a block diagonal matrix.
ﬁOLS = 20L5®1T : (A.2)

- The SUR estimate with contemporaneously correlated errors is given by:

Bsur = [X' (@51®I X1 X' (2515®11)y] (A.3)

Use errors from the SUR model with contemporaneously correlated errors to estimate

the first-order serial correlation coefficient for each equation in system (A.0).

€= y — XBsuyr; (A.4)
and
PR X S - PP

-Fort=2,3, ..., T, and for each i, transform y; and X; series using p;.

yi = Poiy; and X} = Py;X;, (A.6)
where
5 1 0 .. 0
P =] ° _.,’3 o Lo 0 . (A7)
0 . 0 —p 1
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- Regress y; on X; using OLS and collect the residuals to compute the estimate 3} of the

contemporaneous variance-covariance matrix ..

1
T-1

S =—=FE, (A.8)
where E is a (T-1)xN matrix whose columns are OLS residuals from the regression of y;
on X;.

L

iii.  Construct the full transformation matrix P, such that:

POP' = ¥ QI;. (A.9)

P has the form:

[Py O 0]
P = ip?1 P.zz ’ 0 Jl' (A.10)
’lle ’pN,N—l ISNN
where
[Aii 0 0 0-|
P,=1l0 —-p 1 ~ o (A.11)
[ ST, oJ
0 .. 0 —p 1
a; O 0
5 0 0 -~ o0f.
Pi=1. . + of (A.12)
0 0 0
@, O 0
A= % Oz (’) (A.13)
aNl aNz s aNN

where A is defined as the product H'(B)~1, B and H are upper triangular matrices
satisfying H'H = ¥ and B'B = V,, and V,, is the contemporaneous variance-covariance
matrix of the error term € and is defined as below. By construction, the matrix A contains

initial parameters ensuring the stationarity of the error term in equation (A.0).
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iv.

011 012 01N
1-p1° 1-P1p2 1-P1PN
021 021 O2N
Vo= | 1=P2p1  1-p.° 1-P2Pn | ; (A.14)
ON1 ON2 ONN
1-pN1PN  1-D1DN2 1-pn°
011 = Xii - (A.15)

It follows that:
A1 =P S 'QI)P. (A.16)

Apply P to transform y and X and use OLS on the transformed data to get the Parks
estimator of the SUR model with contemporaneously and first order serially correlated

errors.
v = By, (A.17)
X* = PX. (A.18)
Braris = [X" ' ®INX"| X S ®ID)y"|. (A.19)

A consistent estimator of the covariance matrix of B pg,s is defined as:

VBraris) = [X' (E1@IDX] . (A.20)

23



	Last page.pdf
	The Editor


