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1 Introduction

How do human beings reason when the conditions for rationality postulated by
the model of neoclassical economics are not met — for example, when no one can

define the appropriate utility function? (Simon, 1989, p. 377)

It is sometimes more rational to admit that one does not have sufficient information

for probabilistic beliefs than to pretend that one does. (Gilboa et al., 2012, p. 28)

If we reassess the rationality question under the assumption that the uncertainty of the
natural world is largely unquantifiable, where do we end up? Organisms rely on an ability
to make accurate inferences from limited observations of complex, uncertain, and unstable
environments. This much we know, and answering the rationality question requires formulat-
ing the nature of this problem and what constitutes a solution. One fear is that by focusing
on the existence of unquantifiable uncertainty we end up in a normative free-for-all with an
ad hoc theory. In this article I argue that this fear is unfounded and we instead arrive at
a statistical theory of ecological rationality (Brighton and Gigerenzer, 2007; Gigerenzer and
Brighton, 2009; Brighton and Gigerenzer, 2012; Brighton, 2018). This argument refutes the
claim that bounded and ecological rationality offer no normative challenge to orthodox ratio-
nality. The main casualty of this rebuilding process is the goal of optimality. Once we view
optimality as a formal implication of quantified uncertainty rather than an ecologically mean-
ingful objective, the rationality question shifts from being axiomatic/probabilistic in nature
to being algorithmic/predictive in nature. In short, by reassessing the rationality question in
this way, we end up not with a revised solution to the same statistical problem but a theory
of rationality that responds to a different statistical problem.

The first stage of my argument considers how the implications of deepened uncertainty
are often obscured by a cluster of commonly held statistical intuitions collectively termed the
bias bias (Brighton and Gigerenzer, 2015). The bias bias leads many researchers in several
disciplines to neglect the relationship between two critical and controllable components of
prediction error, bias and variance. Bias is widely understood, at least intuitively, and re-
flects the ability of a model to accurately capture systematic regularities in observations. The
variance component of prediction error reflects the sensitivity of a model’s predictions to dif-
ferent observations of the same problem, such as a different sample from the same population.
These two components additively contribute to expected prediction error (O’Sullivan, 1986;
Geman et al., 1992; Hastie et al., 2001; Bishop, 2006). Unlike bias, the role of variance is less
intuitive and often neglected, causing a bias bias in statistical thinking that simplifies the role

of uncertainty, masks a wide range of predictive models from consideration, and motivates



the development of questionable theories and policies. To illustrate the bias bias I examine
examples of social and economic systems that pose problems which have no optimal solutions.

Once the statistical pathologies associated with the bias bias have been clarified, 1 argue
that the bias bias also characterizes the orthodox formulation of rational decision making un-
der uncertainty. This second stage of my argument is based on Breiman’s (2001) distinction
between two cultures of statistical modeling known as data modeling and algorithmic mod-
eling. Data modeling characterizes much of traditional statistical inquiry and rests on the
practice of conjecturing a data generating model. Algorithmic modeling proceeds under the
assumption the data generating model is indeterminable or non-existent, and does so by ana-
lyzing the relative ability of competing learning algorithms to incur low prediction error. This
distinction echoes deeper distinctions in statistics and information theory (Geisser, 1993; Ris-
sanen, 2007; Shmueli, 2010). I then argue that these distinct modes of statistical inquiry map
directly onto the practices of orthodox rationality and ecological rationality, and, crucially,
license different kinds of rationality claim (Brighton, 2018). Claims of ecological rationality
refer to the ability cognitive algorithms, such as simple heuristics, to incur low prediction
error relative to alternative cognitive algorithms. Such claims neither imply optimal function-
ing, nor do they require that an optimal response be determinable in order to be established,
explained, or justified.

The strategy of extending the categories of uncertainty assumed when formulating the
rationality question, and then examining how robust established rationality principles are to
these revised uncertainty conditions, is familiar but neglected (Binmore, 2009). A central
concern for Savage (1954) was the category small worlds that he assumed when formulating
the foundations of Bayesian decision theory. Small worlds are those that can modeled with
a decision matrix defining a mutually exclusive and exhaustive set of states of the world,
consequences, and actions that map between them. If we assume, as many do, that “the
worlds of macroeconomics and high finance certainly don’t fall into this category” (Binmore,
2009, p. 2) then this raises the question of which categories these worlds do fall into. In
this article I focus on problems characterized not only by unmeasurable uncertainty (Knight,
1921) or probabilistic ambiguity under the subjective interpretation of probability (e.g., Gilboa
and Schmeidler, 1989; Machina and Schmeidler, 1992; Epstein, 1999), but by unquantifiable
uncertainty under any definition of probability, and to the extent that it is more rational to
regard generating distributions as a non-existent than to view them as the foundation for
formulating the rationality question. As the following example illustrates, worlds of this kind

are not hard to find.



2 Bias, Variance, and the Bias/Variance Dilemma

Consider a serial offender who has committed a series of crimes while living at a single home
location. Given only the locations of these crimes, how accurately can the location of the
offender’s home be predicted? I will use this well-studied problem in geographical criminal
profiling to illustrate the relationship between bias, variance, and prediction error. Figure
1(a) depicts a map covering an area of roughly 30km? of Baltimore county, Maryland, USA.
Superimposed on this map are 15 blue circles identifying the locations of a series of burglaries
committed by a serial burglar residing at a single address!. In additional to these locations,
Figure 1(b) plots the true home location of the offender and the home locations predicted by
two geographical profiling models. The first model is the centroid method that predicts the
“center of gravity” of the crime locations, which is simply the mean z-coordinate and mean
y-coordinate of the observed crimes. The second model computes a probability surface over
the crime area using an exponential decay function. Given a crime area divided into an array
of cells, this model estimates the probability that each cell contains the home address of the
offender. As the distance d from a crime location increases, the exponential decay function
models the finding that the probability that offenders commit crimes a distance d from heir
homes decreases as a negative exponential function of d. By integrating the probabilities
calculated from each crime location, the model estimates a probability surface over the crime
area, shown in Figure 1(c). For this offender, the cell with greatest probability predicts the
true home location with nearly zero error. The centroid method, on the other hand, predicts
a point roughly 1.5km north-west of the true home location.

Is the probability surface model more accurate in general, or might this near perfect
prediction be a lucky guess? One way of addressing this question is to evaluate the two
models over a range of serial criminals (e.g., Block and Bernasco, 2009; Leitner and Kent,
2009; Levine and Block, 2011). In addition, further insights into this specific example can
be gained by deepening the uncertainty conditions under which predictions are made. For
example, how would the two models perform when, rather than predicting the home location
of the offender from all 15 crime locations, they only had 5 locations to work with? Figure 1(d)
examines this question by plotting the prediction error of the two models as a function of the
number of crimes sampled. Specifically, r crimes are repeatedly sampled without replacement
from the complete series of 15 crimes. For each such sample we measure the prediction error
of both models, and then report the mean prediction error of both models as a function of r.

What is striking about Figure 1(d) is that when fewer than 9 crimes are observed the centroid

!The data for this offender, labeled TS15D, can be found in the dataset supplied as part of the CrimeStat
(Levine, 2010) package available from https://www.icpsr.umich.edu/CrimeStat/.
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Figure 1: Panel (a) plots the locations of 15 burglaries committed by a single offender in Bal-
timore County. Panel (b) plots the true home location of the offender and the home locations
predicted by the centroid method and a probability surface model with an exponential decay
function depicted in (c¢). Panel (d) plots the prediction error of the two models as a function

of the number of crimes sampled. The relative superiority of the two models inverts after 9
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method outperforms the probability surface model. In other words, when the uncertainty
conditions are deepened the relative performance of the two models inverts. Our next step is

to understand how the concepts of bias and variance help to explain why.

2.1 Decomposing Prediction Error Into Bias and Variance

Suppose we are given n crime locations ¢y, ..., c, where each crime location ¢; = (x;,y;) is a
point in a compact 2-dimensional Euclidean space covering the crime area. For simplicity I
will assume that the offender’s home location h also lies within the crime area. The task of
the two models is to then map a series of crime locations to a point prediction of the offender’s
home location. Because the area that law enforcement may need to search before locating the
offender’s home will grow as a squared function of the prediction error, I will consider squared
loss, and specifically, the squared Fuclidean distance between the predicted and true home
location, ||h — f||2. Now, at a given sample size r, analyses of the kind shown in Figure 1(d)
sample r crimes k times to yield an ensemble of k predictions denoted £V, ... f*¥)  For a

given sample size the expected error of a model can be decomposed as follows:
Expected error = (bias)? 4 variance + noise. (1)

The derivation of this decomposition for squared loss can be found in most machine learning
textbooks (e.g., Duda et al., 2001; Hastie et al., 2001; Bishop, 2006) as well as a landmark
article by Geman et al. (1992). For this problem the bias is the distance between the mean
prediction of the ensemble defined above and true location of offender’s residence. The mean
prediction of the ensemble is simply the centroid of £), ... f(*) denoted f. Thus, bias is
given by:

(bias)? = ||f — h% (2)

Figure 2(a) provides a visual illustration of the relationship between an ensemble of 5
example predictions, the true home location, and bias. Variance is then the degree to which
the individual model predictions — the members of the ensemble — vary about the mean

prediction f:

IR
variance = % ; |E—£0))2. (3)

Figure 2(b) illustrates the relationship between the same ensemble of 5 predictions above,
the mean prediction f, and variance. Finally, the noise term in Equation 1 plays no role in
this example, but could represent the additional and irreducible error we would incur if, say,

an adversary added some normally distributed error to our predictions.



2.2 Using Bias and Variance to Analyze and Explain Relative Prediction

Error

To better understand the relative performance of the two models shown in Figure 1(d), Figure
2(c) decomposes their prediction errors into bias and variance. Focusing on bias first we see
that the centroid model suffers from high bias across all sample sizes because the assumption
that the offender’s home lies at the centroid of the crime locations fails to hold for this
offender. The probability surface model also has high bias at low sample sizes but its bias
steadily decreases as the sample size increases, eventually approaching zero. If bias were the
only concern then the probability surface model is clearly superior. Turning to variance, we
see that the “trick” behind the centroid method is that it incurs remarkably low variance until
roughly 14 crimes are observed, at which point the variance of both models approaches zero.
The key insight is that although the probability surface model is unbiased and makes a near
perfect prediction, this is only true under complete information. When uncertainty is higher
due to fewer crimes being observed, the probability surface model suffers from high variance,
the upshot being that the biased, low-variance model centroid method incurs lower total
prediction error. Thus, the ability of a model to match, represent, or capture the underlying
structure of the problem — its potential to incur low bias — is only one determinant of low
prediction error. How robust the predictions of the model are to different realizations of the

problem — its potential to incur low variance — will often prove critical.

2.3 The Bias/Variance Dilemma

There will always be an infinite number of explanations that are consistent with our obser-
vations. Models code the assumptions needed to select which explanations we entertain in
their functional form, their parameters, and in the constraints they impose on what values
these parameters can be assigned. Assumptions are like bets. For example, we could hedge
our bets by deploying a nonparametric model such as a multilayer neural network capable of
representing a wide range of systematic patterns. The hope is that the network will incur low
bias, but due to the large number of parameters needed to model layers of the network, we run
the risk of incurring high variance. Another approach is to deploy a parametric method such
as a linear model in the hope that the systematic patterns in the observations are governed by
a linear function, or something close. This risk might be worth taking, given that the fewer
parameters needed to specify the linear model could keep variance within acceptable bounds.
An even bolder approach is to deploy a parameterless model with no free parameters. Here,
we ignore the observations completely to guarantee zero variance. Unless this bold conjecture

turns to be correct, or close to correct, the problem is that the model will incur high bias.
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Figure 2: Panels (a) and (b) illustrate the calculation of bias and variance for an ensemble of
5 predictions, £, ... £, Bias, shown in (a), is the difference between the mean prediction
of the ensemble, f, shown as a blue square, and the true home location of the offender, h,
shown using a red cross. Variance, shown in (b), is variation among the individual members
of ensemble relative to the mean prediction. Panel (¢) decomposes prediction errors of the

model comparison shown in Figure 1(d) into bias and variance.



These issues clarify that whenever uncertainty surrounds our choice of model, we face
a bias/variance dilemma (Geman et al., 1992). The dilemma arises because techniques for
reducing variance tend to increase bias, and techniques for reducing bias tend to increase
variance. As we have seen, the number of observations also play critical role in determining
the bias and variance incurred by a model. All told, predictive inference involves complex
interactions between models, observations, the data generating process, and prediction error.

These complexities are often glossed over, and the bias bias explains to some extent why.

3 The Bias Bias

To suffer from the bias bias is to develop, deploy, or prefer models that are likely to achieve low
bias, while simultaneously paying little or no attention to models with low variance (Brighton
and Gigerenzer, 2015). The bias bias manifests itself in a range of statistical intuitions and
practices that over-simplify or ignore the complexities of the bias/variance dilemma. In this
sense the bias bias approximates the problem of statistical inference. This approximation is
justified when the data generating machinery is known with a high degree of certainty, or when
the number of observations asymptotes. The following four examples illustrate the dangers of
the bias bias when dealing with the uncertainty of the natural world, and social and economic

systems in particular.

3.1 Four Examples of the Bias Bias

Example 1: Geographical Criminal Profiling. A guiding concern for geographical crim-
inal profiling is achieving low prediction error and the field progresses in large part through
the competitive testing of diverse models ranging from the centroid method to sophisticated
probabilistic models (e.g., Rossmo, 1999; Canter et al., 2000; Snook et al., 2005; Levine and
Block, 2011). This seems like an unlikely field to harbor a bias bias, yet the bias/variance
perspective appears to be unfamiliar to researchers in this area?. Unlike the analysis above,
I have failed to find any studies that decompose prediction error into bias and variance or
systematically examine, for a specific offender, prediction error as a function of the number of
crimes sampled. While it is typical for studies to compare predictive models over a range of
serial offenders who have committed varying numbers of crimes, this can only offer a limited
insight into the potential of low variance models. Reversals in relative model performance,

like we see in Figure 1(d), are masked by standard practices of model evaluation, which is

2Levine (2009, pp. 177-181) discusses the related concepts of accuracy and precision, and argues that
both should considered in evaluating models, but doesn’t draw a connection to the bias and variance, or the

bias/variance dilemma.



likely to steer model development away from investigating techniques that incur low variance
under conditions of heightened uncertainty.

Failure to explicitly consider and analyze bias and variance does not necessarily imply a bias
bias, although it often goes hand in hand with a focus on bias reduction as the driving concern.
This is reflected in the tendency of recent work to use increasingly complex probabilistic
methods to model the factors thought to drive offender behavior (Block and Bernasco, 2009;
Leitner and Kent, 2009; Levine and Block, 2011). I use the terms “simple” and “complex” here
in a non-technical sense to refer to the degree to which one attempts to model the geographical,
psychological, social, and economic factors likely to drive where and how many offenses an
individual commits. In short, there is an argument to made that the field of geographical
criminal profiling suffers from a mild bias bias, principally because the concept of variance is
unfamiliar, and common techniques for reducing variance appear to play an increasingly minor
role in model development. On the other hand, this field scores highly on model diversity and
there is a broad recognition that simple models are often hard to improve on. As the following

example illustrates, the influence of the bias bias is often far stronger.

Example 2: Regulating International Banks. How can financial crises be avoided?
Regulating international banks is one option, but what rules should the regulators impose? If
systematic regularities in past bank failures can be identified then these regularities should help
to predict future failures, and then the problem can viewed, at least in part, as a prediction
problem. Focusing on the Basel accord, Haldane and Madouros (2012) point out that the
regulatory rules introduced by Basel I in 1988, and their subsequent development into Basel
IIT introduced in 2010, have undergone a striking increase in complexity. In numbers, the Basel
I agreement was 30 pages long and required banks to calculate only five risk weights, while
the post-2008 financial crisis Basel III was 616 pages long and involved calculating several
million risk weights. Has this increase in complexity made international banks more resilient
and financial crises less likely? Based on a sample of 8,500 US banks, 442 of which entered
receivership, Haldane and Madouros found that all five CAMELS indicators — a standard set
of indicators used to summarize the condition of a bank — contributed to the in-sample fit
of a linear model used to explain bank failure. Turning to the more challenging problem of
out-of-sample prediction, they then estimated the predictive accuracy of the full CAMELS
model, a number of single indicator models, and constant model.

With model parameters estimated from small samples of banks, and hence conditions
of increased uncertainty, this test of out-of-sample predictive accuracy revealed that a single
liquidity indicator model achieved the lowest prediction error, outperforming the full CAMELS

model over a range of uncertainty conditions. These results follow a similar pattern to the
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criminal profiling example. Models that integrate several factors that should, intuitively,
improve predictive accuracy can in fact reduce predictive accuracy under conditions of high
uncertainty. Appealing to further analyses, and the concepts of bias and variance, Haldane
and Madouros argue that the regulators have mistakenly assumed that complex problems like
regulating an international banking system require complex solutions. This strongly implicates
a bias bias in the intuitions of the architects of Basel I11, and the benefits of simple, low variance
models found by Haldane and Madouros support this conclusion (see also Aikman et al.,
2014). These architects appear to have overlooked basic principles of out-of-sample prediction
error and competitive model testing, and consequently overlooked effective responses to the

bias/variance dilemma.

Example 3: The Mean-Variance Portfolio. From banks to individuals, economic agents
frequently face the problem of investing money into N funds. Harry Markowitz’s Nobel priz-
ing winning contributions to portfolio theory included the mean-variance model, an optimal
solution to this problem (Markowitz, 1959). An overarching concern for this discussion is
the nature of the assumptions needed to formulate optimality results. Under conditions of
unquantifiable uncertainty these assumptions are likely to be violated, the upshot being that
the status of “optimal” solutions must be relegated to “just another model.” DeMiguel et al.
(2009) shed some light on this issue by comparing the performance of 15 models on seven
investment problems. As well as the mean-variance model they considered a range of prob-
abilistic models and a simple heuristic, 1/N, which allocates money equally to the N funds.
The task was to predict the performance of each portfolio in the following month based on
parameters estimated from the preceding 10 years of stock data. Sliding this 10-year window
forward one month at a time, DeMiguel et al. compared the accumulated performance of the
15 models and found the 1/N heuristic ranked first on certainty equivalent returns, second on
turnover, and fifth on the Sharpe ratio. Notice that 1/N embodies an extreme response to the
bias/variance dilemma. Its lack of free parameters means ignoring the observations altogether
and opting for zero variance at a potential cost of high bias, and the success of 1/N tells us
that the seven investment problems considered by DeMiguel et al. represent close to ideal
uncertainty conditions for exposing a bias bias. These conditions are not exceptional. Jagan-
nathan and Ma (2003), to take another example, examined the role of bias and variance in
the performance of portfolios constructed using regularization techniques that impose “wrong
constraints”, those that violate statistical characteristics of the population. These regularized
portfolios, like 1/N, often improved investment performance. We either view such results as

to some extent foreseeable or accept that our intuitions suffer from a bias bias.
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Example 4: Modeling Consumer Behavior. Managers in the retail industry often need
to distinguish between active and inactive customers. Omne strategy is to use observations of
past customer activity to estimate the parameters of a probabilistic model detailing the pro-
cesses thought to drive customer behavior. For example, the Pareto/NBD model estimates
the parameters of a Poisson process modeling customer purchasing behavior and the param-
eters of exponential distribution modeling customer dropout rates (Schmittlein et al., 1987).
Combined with further probabilistic assumptions about the heterogeneity of customers within
the population, categorization decisions are then made using a maximum likelihood calcu-
lation (Fader et al., 2005). An alternative strategy is to deploy a simple hiatus rule where
customers who have not made a purchase within a hiatus period of, say, 9 months are classified
as inactive, and all other customers are categorized as active. These two approaches differ
in how they prioritize either bias reduction, the ability to accurately model the regularities
of the data-generating processes, or variance reduction, the ability to limit the instability of
predictions. Pitting these two strategies against each other, Wiibben and Wangenheim (2008)
compared simple hiatus rules and the Pareto/NBD model using transaction data from the
apparel, airline, and music industries. First, they used 40 weeks of customer transaction data
to estimate the parameters of the Pareto/NBD model. Using transaction data for the sub-
sequent 40 weeks, they then estimated how accurately each model predicted future customer
activity. For the apparel, airline, and music customers, the Pareto/NBD model achieved pre-
dictive accuracies of 756%, 74%, and 77%. Hiatus rules with cutoff periods recommended by
experienced managers, on the other hand, predicted customer activity with accuracies of 83%,
77%, and 7T7%. Again, we see that prioritizing bias at the expense of variance appears to be
the wrong choice, and the intuition that accurate probabilistic models of the data generating

process will result in accurate predictions is another manifestation of the bias bias.

3.2 Modeling Under Uncertainty: Bias, Variance, and Optimality

How can these examples shed light on the rationality question? First of all, none of the four
preceding examples have optimal solutions. The social and economic processes at work are
unstable, complex, largely latent, and by any measure deeply uncertain. Of course, there is
nothing to stop us from quantifying subjective probabilities and then using probability theory
to derive and justify an optimality claim. But in doing so there is a sense in which we resort
to the strategy of changing the problem rather than the strategy of exploring the space of
potential solutions. Formulating optimal solutions to the problems of criminal profiling, bank
regulation, portfolio investment, and customer profiling runs the danger of saying more about
our modeling techniques than about the systems being modeled. This brings us to the issue

of the relationship between bias, variance, and the existence of an assumed data generating
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function. Given that the meaning and measurement of bias requires that the underlying data
generating function is known, how can I claim that the bias/variance perspective sheds any
light onto problems that lack optimal solutions?

My claim is not that the bias/variance perspective undermines the goal of optimality, but
that it offers a much needed insight into understanding how, when, and why statistical models
incur low prediction error outside of their implied optimality conditions, and relative to other
models. Indeed, the meaning and measurement of variance does not require knowledge of
the data generating function, and examples of abound of both justifying and explaining the
performance of probabilistic models in terms on their relative ability to reduce variance outside
of their optimality conditions (Hand and Yu, 2001; Domingos and Pazzani, 1997; Friedman,
1997; Ng and Jordan, 2002; Van Der Putten and Van Someren, 2004; Webb et al., 2005).
Another point worth clarifying is that the preceding examples are not meant to imply that
simple models will always be the most predictive. My point is that variance reduction is
a fundamental part of modeling under uncertainty, and that simplicity has proven to be a
highly productive heuristic for discovering low-variance models. This needs to be contrasted
with the view that we progress through greater sophistication and complexity (Hand, 2006).
Other perspectives on variance reduction include regularization (Chen and Haykin, 2002) and
ensemble methods (Seni and Elder, 2010), the latter being an example of how averaging the
predictions of potentially complex models can also reduce variance.

A final point worth making is that citing examples of the bias bias has a tendency to elicit a
defensive reaction, and specifically, the claim that the bias/variance perspective offers nothing
new to the problem of modeling social and economic systems. Indeed, the bias/variance
trade-off is well-known in statistics, machine learning, forecasting, and econometrics. But it
is imperative point out that mere familiarity with the bias/variance dilemma does not imply
that the problem of variance reduction will guide theory development as much as it should,
or that well-established models have been evaluated under conditions where variance will be
the dominant component of prediction error. My examples illustrate this. Most importantly,
if there really exists a genuine and broad recognition that many of the problems posed by
complex social and economic systems will lack optimal solutions, and that these problems
often implicate simple, low variance predictive models, then why does this statistical outlook

fall by the wayside as soon as the focus turns to the rationality question?

4 Towards Ecological Rationality

By any measure the bias/variance perspective has failed to penetrate the orthodox study of

decision making under uncertainty. Consider first the case of decision theory, where rational
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actors are seen as Bayesian maximizers of expected utility operating over a mutually exclusive
and exhaustive set of future states of the world, consequences, and the actions that map
between them (Savage, 1954). On this view rationality is a primarily a subjective matter
of axiomatic coherence rather than one of making rational inferences about the world. The
cognitive and biological sciences tend to adopt a different attitude toward the rationality
question by viewing rational decision makers as optimal Bayesian decision makers defined
relative to a probabilistic model of the task environment (McNamara and Houston, 1980;
Anderson, 1991b; Chater and Oaksford, 1999; Chater et al., 2006; Griffiths and Tenenbaum,
2006; Knill and Pouget, 2004; Gershman et al., 2015). On this view rational decisions are
probabilistically justified decisions, or equivalently, predictions whose accuracy will depend on
the fidelity of the assumed model of the environment.

This second notion of rationality, one centered on environmental correspondence rather
than axiomatic coherence, is of greater relevance to the decisions of criminal profilers, bank
regulators, portfolio managers, and marketing executives given that any loss their decisions
incur will be determined by latent or future states of the task environment (Arkes et al.,
2016). When seen in this way, we cannot escape the bias/variance dilemma when formulating
the rationality question because all claims flow from an assumed ability to model the data
generating process. On recognizing this, I will argue that orthodox rationality — the view that
rational decisions under uncertainty are optimal Bayesian decisions — can be seen as falling
foul of the bias bias. Using a different but related notion of bias, Gigerenzer (2018) argues
that behavioral economics also suffers from a bias bias in its formulation of the rationality
question. However, this second stage of my argument will center on a contrast between
Bayesian optimality and ecological rationality. To establish this contrast it is first necessary
to take a step back and consider how these two approaches to formulating the rationality

question rest on distinct forms of statistical inquiry.

4.1 Constructing the Rationality Problem

The statistician Leo Breiman (2001) characterized two cultures of statistical modeling that
I have illustrated schematically in Figure 3. Consider first the scenario where we start with
observations, each relating a set of independent variables to a dependent variable. The en-
vironment can be seen as a black box containing data-generating machinery that determines
the joint distribution over the inputs to the black box (independent variables) and the out-
put (the dependent variable) shown in Figure 3(a). Much of traditional statistical inquiry,
and this includes the orthodox study of Bayesian optimality considered here, requires that we
make a conjecture about the contents of this black box, depicted in Figure 3(b). We might,

for instance, formulate an hypothesis space, prior distribution, and various parameters that
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we fit using the available observations. Breiman termed this approach data modeling and its
defining characteristic is that at some point a conjecture is made about the contents of the
black box.

An alternative to data modeling is what Breiman termed algorithmic modeling. When
algorithmic modeling we refrain from making a conjecture about the contents of the black box
and instead try to predict its behavior. As shown in Figure 3(c), the observations are used to
estimate the predictive accuracy of competing models of inductive inference, which in practice
usually means comparing machine learning algorithms using the principles of exploratory
data analysis, much like the modeling approaches detailed in my discussion of the bias bias.
Crucially, learning algorithms and the probabilistic assumptions they imply tend not to be
seen as models or properties of the environment, but rather inductive biases likely to introduce
model infidelities in order to reduce variance. Among the algorithms being considered, one or
more will achieve the lowest prediction error. Such findings in no way license an optimality
claim. They merely provide an indication of the kinds of algorithmic design decisions or
statistical techniques that reduce prediction error, thereby suggesting further algorithms worth
evaluating. Algorithmic modeling is exploratory, yields a functional understanding of the
algorithms being considered, yet in no way invokes the concept of optimality to explain model
performance. In short, the outcome of algorithmic modeling is a relative understanding of the

ability of competing algorithms to reduce prediction error.

Defining Optimality: Data Modeling

Because the claims of Bayesian optimality being considered here are made relative to a prob-
abilistic model of the task environment they necessarily adhere to Breiman’s notion of data
modeling. To be clear on this point, probabilistic models of this kind are not (initially) seen as
subjective models personal to the actor, but the outcome of an ecological analysis conducted
by the theorist seeking to make the rationality claim. In his pioneering work on the Bayesian
analysis of cognition, for example, Anderson (1991a) states that “the structure of such a the-
ory is concerned with the outside world rather than what is inside the head” (p. 410). The
decisions of this rational actor will be probabilistically optimal with respect to the model,
but not necessarily the environment being modeled. This raises two concerns. First, how
can this model be formulated when we lack sufficient knowledge or the observations needed
to probabilistically quantify the relevant uncertainties? If we have observed only a limited
sample of banking failures over one or two crisis cycles, or observed only a small number of
offenders who commit a certain kind of serial crime, how should we proceed?

The orthodox solution is that whatever uncertainties we face, they can and should be prob-

abilistically quantified using, say, uninformed priors, second-order probabilities, or imprecise
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(a) The problem of statistical inference

X —> nature — U

(b) Data modeling (c) Algorithmic modeling

X —> Mmgy —> y X —> unknown —— y

: algorithm 1,
algorithm 2,
algorithm 3, ...

(d) Bayesian optimality modeling (e) Study of ecological rationality

X —> me — U X —— unknown —— U

v cognitive model 1, !
optimal response t---» cognitive model 2, ----
cognitive model 3, ...

Figure 3: How should the problem of statistical inference be formulated? We start with ob-
servations of an unknown functional relationship between input vectors x (the independent
variables) and output y (the dependent variable) determined by some aspect of nature, shown
in (a). Following Breiman (2001), the statistical culture of data modeling views the conjec-
ture of a stochastic model y = mg(x) of nature’s black box an essential step in statistical
inference, shown in (b). Rather than attempt to model the contents of nature’s black box,
algorithmic modeling is an incremental search for learning algorithms that can, to varying
degrees, accurately predict the input-output relationship, shown in (c). Bayesian optimality
modeling conducts data modeling in order to define an optimal response (d), while the study
of ecological rationality conducts algorithmic modeling and interprets predictive models as

potential cognitive models, shown in (e). Diagrams (a-c) adapted from Breiman (2001).
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probabilities. Alternatively, we could recall the second of the two epigraphs that began this
discussion, the proposal that “it is sometimes more rational to admit that one does not have
sufficient information for probabilistic beliefs than to pretend that one does” (Gilboa et al.,
2012, p. 28). But what is this “more rational” alternative, and how might it be justified? The
second concern is that by conjecturing an explanatory, causal, or high fidelity probabilistic
model of the environment we run the risk of succumbing to the bias bias. This modeling goal
will often diverge from the goal of predictive modeling because a simpler, possibly regularized,
and likely biased model incorporating known representational inaccuracies may incur lower
predictive accuracy. How can cases where, as Haldane and Madouros (2012) put it, “simple
does not just defeat complex; it trumps the truth” (p. 17) be reconciled with the goal of devel-
oping probabilistic models of the environment? My claim is that ecological represents a “more

rational” response that avoids the bias bias, and it proceeds through algorithmic modeling.

Exploring Ecological Rationality: Algorithmic Modeling

The study of ecological rationality considers the adaptive fit between organisms and the struc-
ture of natural environments (Gigerenzer et al., 1999; Gigerenzer and Selten, 2001; Gigerenzer
et al., 2011; Todd et al., 2012). It proceeds by examining the interaction between three compo-
nents: (1) algorithmic models of how organisms make inductive inferences, with a particular
focus on simple heuristics; (2) the properties of natural environments whose probabilistic
structure is either uncertain or unknown; and (3), a formulation of the problem of statistical
inference that defines and quantifies the meaning of an adaptive fit. A defining characteristic
of simple heuristics is that they ignore information, and the overarching hypothesis is that
these heuristics are a vital part of how organisms successfully cope with the uncertainty of the
natural world. Results supporting this hypothesis are termed less-is-more effects, and they
detail how minimalist processing strategies improve the accuracy of decisions relative to more
complex and supposedly sophisticated strategies commonly assumed in the cognitive sciences
(e.g., Gigerenzer and Goldstein, 1996; Czerlinski et al., 1999; Goldstein and Gigerenzer, 2002;
Brighton, 2006; Gigerenzer and Brighton, 2009; Simgek and Buckmann, 2015).

Because the overarching concern here is the contrast between orthodox and ecological
rationality, I will sidestep a detailed discussion of models of ecological rationality and experi-
mental studies focusing on their use by humans and other animals. I will instead focus on how
component (3) of the interaction above typically assumes the perspective algorithmic model-
ing. Because of this, rationality claims are made relative to alternative models rather than an
assumed data model. On finding that one model achieves lower prediction error than the alter-
natives, this model is regarded as more ecologically rational than the alternatives. Optimality

plays no role (Brighton and Olsson, 2009). In Figure 1(d), for instance, the centroid method
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outperformed the probability surface model at low sample sizes not because is it optimal, and
not because the centroid assumption holds for this offender. Similarly, when Haldane and
Madouros (2012) found that a single indicator model outperformed the full CAMELS model,
it was not because single indicator model was optimal, and not because the “true” economic
processes determining bank receivership reduce to a single measure of liquidity. In both cases
the simpler model was more ecologically rational than the competitors, and in both cases
this was due to knowingly biased and “incorrect” models incurring low variance. The same
statistical arguments justify the use of simple cognitive heuristics (Brighton and Gigerenzer,
2007; Gigerenzer and Brighton, 2009).

4.2 Orthodox Rationality and the Bias Bias

Advocates of ecological rationality have always maintained its incompatibility with orthodox
rationality. At the same time, several commentators have argued that while models of ecolog-
ical may yield insightful results, these results not only fail to challenge orthodox rationality
but require established rationality principles to be explained (Chater et al., 2003; Chater and
Oaksford, 1999; Oaksford and Chater, 2009; Gintis, 2012; Jones and Love, 2011). I have
argued that a fundamental incompatibility does exist, but to establish it requires that the
relationship be considered at the level of the assumed statistical problem. Previous critiques,
in contrast, have assumed that the terms of the relationship can be established by considering
the algorithmic properties of models of ecological rationality alone. Algorithms alone, though,
do not fully specify the problem they attempt to solve, leaving critics of ecological rationality
free to impute optimality as the assumed goal. The onus is therefore on advocates of ecologi-
cal rationality to not only specify component (3) of the interaction above, but explain why it
leads to an incompatibility with orthodox rationality. I will now revisit previous critiques of
ecological rationality in the light of my proposed response to this challenge.

A recurring critique is that when a heuristic works, one still needs a rational explanation
for why it works, and that the concept of ecological rationality must ultimately appeal to
established rationality principles when formulating such an explanation (Chater et al., 2003).
In particular, this explanation should be Bayesian in nature. This view extends to critics of
Bayesian optimality modeling, such as Jones and Love (2011), who argue that the two ap-
proaches are “highly compatible” because “any inference algorithm implicitly embodies a prior
expectation about the environment” (p. 186). I interpret this point to mean that a heuristic
(or any learning algorithm) is rational to the extent that this prior expectation coincides the
probabilistic structure of the environment. The problem with this line of reasoning is that
it requires that the probabilistic structure of the environment be known in order to establish

and explain instances of success. As I have shown, this assumption is incompatible with and
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challenged by ecological rationality. Furthermore, even if we assume a probabilistic model of
the task environment, this kind of explanation remains problematic. First, the relative ratio-
nality claims of ecological rationality are made relative not only to an estimate of prediction
error, but relative to the alternative models being considered. These relative claims highlight
that models can and typically do succeed outside of the their implied optimality conditions,
and for reasons not easily explained in terms of a discrepancy between these conditions and
the structure of the environment. Indeed, from bias/variance perspective, they can succeed
because of this discrepancy?®.

Compatibility arguments rest on the idea that heuristic models can be reformulated as
probabilistic models, and therefore fail to address potential incompatibilities at the level of
the assumed statistical problem. Gintis (2012) applies this reformulation argument slightly
differently by noting that advocates of bounded and ecological have failed to appreciate that
any algorithm with consistent preferences can be reformulated as maximizing an objective
function. Therefore, assuming consistent preferences, instances of heuristic success can always
be seen as solutions to an optimization problem (see also Boland, 1981). What this argument
fails to consider is that we can also establish and justify cases of relative success in task
environments where the optimal solution is undefined, and therefore in situations where we
have no basis on which to claim that optimality has been achieved. The goal of reducing
prediction error does not imply that we know what the minimum achievable prediction error
is, and hence what the optimal response is. Gintis’ argument would have some legitimacy if
the incompatibility between ecological and orthodox rationality centered exclusively on the
issue of incompatible algorithmic properties, and specifically, a contrast between an algorithms
that don’t explicitly optimize and those that do.

Finally, these issues return us to the bias bias when we consider Oaksford and Chater’s
(2009) claim that Bayesian optimality modeling “cannot be replaced by, but seeks to explain,
ecological rationality” (p. 110). Seen at the level of the assumed statistical problem, this claim
implies that Breiman’s notion of algorithmic modeling is reducible to data modeling. T have
argued that two are incompatible, but there is also an argument to made that Oaksford and
Chater’s claimed relationship should be reversed, and that data modeling is more accurately
seen a special case of algorithmic modeling. Specifically, data modeling is a special case of
algorithmic modeling where we assign a single model the authority of assumed truth and we

interpret all other models as approximations. It is relative to this “true” data model that

3 A classic example is the naive Bayes classifier, a simple learning algorithm that makes a strong assumption
that the features (i.e., cues, attributes, or independent variables) are conditionally independent of each other,
given the class. Despite this assumption being extremely unlikely to be met in practice the naive Bayes
classifier has a long history of performing surprising well, particularly when learning from sparse data (Hand
and Yu, 2001; Domingos and Pazzani, 1997; Friedman, 1997; Ng and Jordan, 2002; Webb et al., 2005).
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optimality claims are then made. Crucially, the authority of this data model stems not from
an analysis of its prediction error relative to alternative models, but faith in our ability to
formally integrate the observations and our probabilistic beliefs about the environment. This is
a form of Bayesianism, and the resulting model is assumed to be unbiased, and by conjecturing
it rather than inferring it, the variance component of prediction is rendered irrelevant. In this
view, it makes little sense to make an optimality relative to a model that sacrifices bias in
order to achieve a greater reduction in variance, and this is why orthodox formulations of

rationality can be seen as another instantiation of the bias bias.

5 Discussion

You have a big approximation and a small approximation. The big approximation
is your approximation to the problem you want to solve. The small approximation
is involved in getting the solution to the approximate problem. (attributed to
George Box [e.g., Fieberg et al., 2010, p. 10; Hand, 2014])

Individuals, groups, and organizations make decisions based on limited observations of
complex, uncertain, and unstable environments. I take this to be the overarching problem
that theories of rationality formulate and provide a normative solution to. Despite the con-
troversial status of optimality in scientific inquiry (Dupré, 1987; Schoemaker, 1991), the idea
that rationality implies optimality is so widely assumed as to seem barely worth discussing.
Optimal Bayesian decision makers in the cognitive sciences, optimal foragers in biology, and
Bayesian maximizers of expected utility in economics are different faces of the same inter-
disciplinary orthodoxy. My goal has been to reassess this view by first recognizing that in
formulating the rationality problem we necessarily make a big approximation. Specifically,
an optimal probabilistic response is a solution, a type of small approximation, to a specific
kind of big approximation that presupposes all relevant uncertainties can and should be quan-
tified. Given the uncertainty of the natural world I consider this to be an approximation
worth questioning, and the examples I used underscore this point. There exist no optimal
solutions to the problems of locating serial burglars, regulating international banks, investing
money, or identifying active customers. It is not rationality that implies optimality, but the
big approximation of quantified uncertainty that implies optimality.

For each of the problems I considered, some models incur lower prediction error than
others. For a specific task environment, it is therefore reasonable to regard some models
as being more rational than others. The concepts of bias, variance, and the bias/variance
dilemma help to disentangle the often complex relationship between the number of available

observations, properties of models being considered, and their relative performance. Moreover,
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these concepts allow us to understand how biased, low-variance models can outperform more
“principled” models under conditions of increasing uncertainty, such as in the criminal profiling
example detailed in Figure 2(c). Previous analyses of the problems I considered exhibited the
negative consequences of the bias bias, a cluster of statistical intuitions that neglect or ignore
the role of variance. As such, the bias bias is the manifestation of a big approximation to the
problem of statistical inference that masks the discovery of predictive, low variance models.
If we then run with the idea that rationality claims can be relative claims, that these relative
claims can be made in contexts where optimality is indeterminable and can be explained in
terms of variance reduction, then orthodox rationality can be seen as falling foul of the bias
bias. This is because optimality claims flow from an assumed ability to profitably conjecture
an accurate, unbiased, probabilistic model of the data generating process. Variance plays no
role in formulating conjectures of this kind. This is the point at which the substantive contrast
between orthodox rationality and ecological rationality begins, and the contrast centers not
on specific models or competing theories of cognitive processing, but on the assumed nature
of the statistical problem. It is a clash of big approximations.

The study of ecological rationality makes relative rationality claims that refer to the abil-
ity of one cognitive mechanism to incur lower prediction error relative to other cognitive
mechanisms in a given task environment. And because ecological rationality proceeds by
conjecturing and analyzing the performance of cognitive mechanisms in environments with
unknown or non-existent generating distributions, it is fundamentally exploratory. This is
the big approximation of ecological rationality, and I used to Breiman’s (2001) distinction
between data modeling and algorithmic modeling to locate this clash of big approximations
within the broader context of statistical inquiry. Although this distinction has not previously
been related to the study of rationality, I argued that Breiman’s distinction maps directly onto
the big approximations of ecological and orthodox rationality. Furthermore, this contrast is
not specific to Breiman but reflects long-standing, deep divisions in statistics (e.g., Tukey,
1962; Geisser, 1993; Vapnik, 1998; Shmueli, 2010). For example, the foundations of both algo-
rithmic modeling and ecological rationality share those of the Minimum Description Length
(MDL) principle developed by Rissanen (1978, 1986, 1989) which rests on the idea that “no
assumption of a ‘true’ data-generating distribution is needed. This changes the objective and
foundation for all model building” (Rissanen, 2007, p. 6). This mode of statistical inquiry, I
propose, also changes the foundation and objective for theories of rationality.

I began with a question: If we reassess the rationality question under the assumption that
the uncertainty of the natural world is largely unquantifiable, where do we end up? We have
arrived at the statistical, cognitive, and normative theory ecological rationality. Other arrival

points are undoubtedly feasible, but it is worth noting that this reassessment of the rationality
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question provides a converging line of argument in support of Simon’s (1956, 1978) bounded
rationality. In his critique of Homo economicus, Simon stressed that bounded rationality is
shaped not only by the computational and cognitive bounds of the decision maker, but also
informational bounds. In cognitive science and economics there is a tendency to focus on
the first aspect of Simon’s proposal, and view bounded rationality as reducing to the claim
that optimization is infeasible due to cognitive and computational limitations, and this renders
optimal responses either out of reach or in need of redefinition (e.g., Boland, 1981; Gintis, 2012;
Griffiths et al., 2015; Gershman et al., 2015). This view neglects the potential of informational
bounds to undermine the assumed objective of optimality and reshape the rationality question.
In contrast, my reassessment of the rationality question stems entirely from a consideration
of informational bounds, and specifically the impact of unquantifiable uncertainty. Yet this
statistical reassessment converges on the same conclusion. The conclusion is that rationality in
an uncertain world is algorithmic/predictive in nature rather than axiomatic/probabilistic in
nature. Reinhard Selten (2001) argued that “bounded rationality cannot be precisely defined.
It is a problem that needs to be explored” (p. 15). I agree, and my argument elaborates on
Selten’s point by concluding that once we accept that the uncertainty of the natural world
is largely unquantifiable, from a statistical standpoint, the rational response is to explore
algorithms capable of reducing uncertainty rather than precisely define a probabilistic model

that quantifies uncertainty.
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