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Which panel data estimator should I use?: A
corrigendum and extension
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Abstract
This study uses Monte Carlo experiments to produce new evidence on the performance of
a wide range of panel data estimators. It focuses on estimators that are readily available
in statistical software packages such as Stata and Eviews, and for which the number of
cross-sectional units (N) and time periods (T) are small to moderate in size. The goal is
to develop practical guidelines that will enable researchers to select the best estimator
for a given type of data. It extends a previous study on the subject (Reed and Ye, Which
panel data estimator should I use? 2011), and modifies their recommendations. The new
recommendations provide a (virtually) complete decision tree: When it comes to choosing
an estimator for efficiency, it uses the size of the panel dataset (N and T) to guide the
researcher to the best estimator. When it comes to choosing an estimator for hypothesis
testing, it identifies one estimator as superior across all the data scenarios included in the
study. An unusual finding is that researchers should use different estimators for estimating
coefficients and testing hypotheses. The authors present evidence that bootstrapping
allows one to use the same estimator for both.
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1 Introduction 

For applied researchers using panel data, there is an abundance of possible estimators one can 
choose. A key issue is how one decides to handle cross-sectional dependence. There are three 
general approaches. One approach is to model the error-variance covariance matrix in the 
framework of Seemingly Unrelated Regression (SUR). Here the common estimator is Feasible 
Generalized Least Squares (FGLS), where the cross-sectional covariances are typically modelled 
parametrically. The classic reference is Parks (1967) and the corresponding data-generating 
process (DGP) is commonly called the Parks model.  

An alternative approach is to model the cross-sectional dependencies “spatially” (Anselin, 
2013; Baltagi et al., 2013; Elhorst, 2014; Bivand and Piras, 2015). This typically involves 
modelling the dependencies across units as a function of distance, in either a continuous or binary 
fashion. While this has the advantage of greatly reducing the number of parameters to be 
estimated, it comes at the cost of possible misspecification. Misspecification occurs if the nature 
of the respective cross-sectional dependencies cannot be effectively reduced to a function of 
distance (Corrado and Fingleton, 2012). 

Another alternative is to model cross-sectional correlation as a function of time-specific 
common factors (Pesaran and Smith, 1995; Bai, 2003; Coakley et al., 2006; Pesaran, 2006; 
Eberhardt et al., 2013; Kapetanios et al., 2011). This approach has proven particularly popular in 
the macro panel literature (Eberhardt and Teal, 2011). While the multi-factor framework for cross-
sectional correlation allows one to incorporate a number of other important issues, it also comes 
at the cost of possible misspecification, because it greatly reduces the number of parameters to be 
estimated. 

Despite the existence of more recent alternatives, the Parks model continues to be relevant for 
applied researchers. It is the underlying statistical model for Stata’s xtgls procedure, as well as 
similar procedures in other software packages such SAS, Eviews, GAUSS, RATS, Shazam, and 
others. However, a major problem with this model is the large number of parameters that need to 
be estimated. In its general form, with groupwise heteroskedasticity, group-wise specific AR(1) 
autocorrelation, and time-invariant cross-sectional correlation, the classic Parks model has a total 
of �𝑁𝑁

2+3𝑁𝑁
2

� unique parameters in the error variance-covariance matrix (EVCM), where N is the 
number of cross-sectional units.  

This causes two problems. First, the FGLS estimator cannot be estimated when the number 
of time periods, T, is less than N, because the associated EVCM cannot be inverted (Beck and 
Katz, 1995). Second, even when T ≥ N, there may be relatively few observations per EVCM 
parameter, causing the associated elements of the EVCM to be estimated with great imprecision. 
As demonstrated by Beck and Katz (1995), henceforth BK, this can cause severe underestimation 
of coefficient standard errors, rendering hypothesis testing useless.  

To address these problems, BK proposed a modification of the full GLS-Parks estimator 
called Panel-Corrected Standard Errors (PCSE). PCSE preserves the (Prais-Winsten) weighting 
of observations for autocorrelation, but uses a sandwich estimator to incorporate cross-sectional 
dependence when calculating standard errors. The PCSE estimator has proven very popular, as 
evidenced by over 2000 citations in Web of Science. All of this has opened up a myriad of choices 
for applied researchers when it comes to choosing a panel data estimator. 
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It is in this context that Reed and Ye (2011), henceforth RY, conducted Monte Carlo 
experiments to test a large number of OLS and FGLS-type panel data estimators, including the 
estimators studied by BK. They studied panel datasets for which the number of cross-sectional 
units (N) and time periods (T) were small to moderate in size. Cross-sectional units ranged in size 
from 5 to 77; and time periods ranged from 5 to 25. RY presented three recommendations to guide 
researchers facing the decision of which panel data estimator to use. RY has been reasonably 
well-cited. At the time of this writing, RY has 27 Web of Science citations and approximately 84 
Google Scholar cites, indicating interest in guidance about how to choose a panel data estimator.  

There are two reasons for writing this follow-up study to RY. First, there is a mistake in the 
design of their experiments. In attempting to construct explanatory variables that have the 
properties of “real world” data, they introduced additional autocorrelation that was not present in 
the source datasets. As autocorrelation in the explanatory variables exacerbates the effect of 
autocorrelation in the error term, this should affect their analysis.  

Second, in their conclusion, RY called for additional experiments to confirm their 
recommendations. In the Parks-type error structures used by BK and RY, there are often more 
than a thousand unique elements in the respective EVCM. Rather than attempting to set 
“plausible” values for all these parameters, RY estimate these from actual datasets, and then set 
these estimated values as population values for the subsequent experiments. However, because 
RY’s experiments were based on a relatively small number of datasets, there is concern that their 
recommendations may not apply to other datasets. A replication of RY that extended their analysis 
with different datasets provides an opportunity to test the validity of their recommendations.  

Our study proceeds as follows. Section 2 summarizes the experimental design and datasets 
used for our experiments. Section 3 demonstrates that we are able to replicate RY’s main findings. 
Section 4 presents our results using an improved method for simulating values of the explanatory 
variable, and additional datasets. Section 5 concludes. 

2 Experimental Design 

The data generating process (DGP). The experimental design for our analysis is taken from RY. 
Given N cross-sectional units and T time periods, we model the following DGP, 

(1) 𝒚𝒚 = 𝒊𝒊𝛽𝛽0 + 𝒙𝒙𝛽𝛽𝑥𝑥 + 𝜺𝜺, 

where 𝒚𝒚, 𝒊𝒊, 𝒙𝒙, are each (NT×1) vectors, 𝛽𝛽0 and 𝛽𝛽𝑥𝑥 are scalars, and 𝜺𝜺 is an (NT×1) vector of error 
terms such that 

(2) 𝜺𝜺~𝑁𝑁(𝟎𝟎,𝛀𝛀𝑵𝑵𝑵𝑵), 

where 

(3) 𝜴𝜴𝑵𝑵𝑵𝑵 = 𝜮𝜮 ⨂ 𝜫𝜫, 
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𝜴𝜴𝑵𝑵𝑵𝑵 incorporates groupwise heteroskedasticity, time-invariant cross-sectional dependence, 
and first-order, common autocorrelation.1 To get realistic values for the respective EVCM 
elements, ij,εσ and ρ , we estimate these parameters from actual datasets, using the same 
procedures that Stata and Eviews use in calculating their respective FGLS estimators. 

Creation of simulated panel datasets. Table 1 lists the datasets that were employed in obtaining 
population parameter values for the DGPs in the Monte Carlo experiments. In order to evaluate 
the recommendations provided by RY, albeit with a corrected experimental design, we start with 
the same datasets they used. These are listed in the top panel of Table 1. However, we also use 
additional datasets that were not considered by RY. These are listed in the bottom panel of Table 
1 (“new datasets”).   

The first set of experiments draw data from the Penn World Table. For a given sized panel 
dataset, say N=5 and T=5, we take the first N cross-sectional units and regress the log of real 
GDP on the ratio of government expenditures to GDP and a set of country fixed effects for the 
first T available time periods. We save the residuals from that regression. We then use those 
residuals to obtain estimates of the individual elements of the EVCM, ij,ˆεσ , i,j = 1,2,…,N, and 
ρ̂ .2 We then repeat that procedure for all possible samples of T contiguous years. These estimates 

are then averaged to obtain a “representative” EVCM, 
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_________________________ 

1 Following BK and RY, we set the AR(1), autocorrelation parameter, 𝜌𝜌, to be the same for all cross-sectional units.  
2 The reason we do not average cross-sectional covariances over different sets of cross-sectional units is that it would 
work against our goal of producing parameters that “looked like” real world data. There is no reason to believe that 
averaging the cross-sectional covariances of, say, (i) the US and France, (ii) the US and South Africa, and (iii) Russia 
and Fiji would produce anything that looked like a cross-sectional covariance from an actual pair of countries. 
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Table 1: Description of Datasets Used to Generate Population Parameters 
Dataset Source Dependent Variable Independent Variables N T 

REED AND YE (2011) DATASETS 

1 Penn World Table Log of real GDP Ratio of government expenditures to GDP 
Country fixed effects 5, 10, 20, 50, 77 5, 10, 15, 20, 25 

2 Penn World Table Real GDP growth Ratio of government expenditures to GDP 
Country fixed effects 5, 10, 20, 50, 77 5, 10, 15, 20, 25 

3 Reed (2008) Log of real state PCPI Tax Burden  
State fixed effects 5, 10, 20, 48 5, 10, 15, 20, 25 

4 Reed (2008) Real state PCPI growth Tax Burden  
State fixed effects 5, 10, 20, 48 5, 10, 15, 20, 25 

5 Penn World Table Log of real GDP 
Ratio of government expenditures to GDP 
Country fixed effects 
Time fixed effects 

5, 10, 20, 50, 77 5, 10, 15, 20, 25 

6 Penn World Table Real GDP growth 
Ratio of government expenditures to GDP  
Country fixed effects 
Time fixed effects 

5, 10, 20, 50, 77 5, 10, 15, 20, 25 

7 Reed (2008) Log of real state PCPI 
Tax Burden  
State fixed effects 
Time fixed effects 

5, 10, 20, 48 5, 10, 15, 20, 25 

8 Reed (2008) Real state PCPI growth 

Tax Burden  
State fixed effects 
Time fixed effects 
 

5, 10, 20, 48 5, 10, 15, 20, 25 

NEW DATASETS 

9  Kersting & Kilby (2014) 
Gross Aid Disbursement as 
Share of GDP (Germany 
Aid Allocation) 

Freedom House Score 
Country fixed effects 5, 10, 20, 50, 77 10, 15, 20, 25 

10 Casper & Tufis (2003) Vanhanen's Democracy 
Index 

Primary education enrolment (share of population) 
Country fixed effects 5, 10, 20, 50 10, 15, 20, 25 

11 Biagi et al. (2012) Crime per 100000 
inhabitants 

Tourists arrivals per square kilometre Country fixed 
effects 5, 10, 20, 50, 77 10, 15, 19 
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Dataset Source Dependent Variable Independent Variables N T 

12 Nunn & Qian (2014) Any Conflict US-Wheat Aid (1000 MT) 
Country fixed effects 5, 10, 20, 50, 77 10, 15, 20, 25 

13  Kersting & Kilby (2014) 
Gross Aid Disbursement as 
Share of GDP (Germany 
Aid Allocation) 

Freedom House Score 
Country fixed effects 
Year fixed effects 

5, 10, 20, 50, 77 10, 15, 20, 25 

14 Casper & Tufis (2003) Vanhanen's Democracy 
Index 

Primary education enrolment (share of population) 
Country fixed effects 
Year fixed effects 

5, 10, 20, 50 10, 15, 20, 25 

15 Biagi et al. (2012) Crime per 100000 
inhabitants 

Tourists arrivals per square kilometre Country fixed 
effects 
Year fixed effects 

5, 10, 20, 50, 77 10, 15, 19 

16 Nunn & Qian (2014) Any Conflict 
US-Wheat Aid (1000 MT) 
Country fixed effects 
Year fixed effects 

5, 10, 20, 50, 77 10, 15, 20, 25 
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To obtain a representative vector of 𝒙𝒙 values, we randomly select one contiguous, T-year 
period.3 Let these values be given by 𝒙𝒙�. Then for given values of 𝛽𝛽0 and 𝛽𝛽𝑥𝑥, we generate simulated 
𝒚𝒚� values from the following DGP:  

(6) 𝒚𝒚� = 𝒊𝒊𝛽𝛽0 + 𝒙𝒙�𝛽𝛽𝑥𝑥 + 𝜺𝜺�, 

where 𝜺𝜺� consists of simulated, normally distributed error terms having mean 0 and an EVCM 
equal to 𝜴𝜴��𝑵𝑵𝑵𝑵. The vector of 𝒚𝒚� and 𝒙𝒙� values are then used to obtain estimates of 𝛽𝛽𝑥𝑥 for each of the 
estimators under study.  

This procedure was followed for each of the N and T values listed in Table 1, and each of the 
respective datasets.4 Note that each N and T pair produces a unique set of ij,ˆεσ , i,j = 1,2,…,N, 
and ρ̂  values (and thus unique EVCM), as well as unique 𝒙𝒙� values. Accordingly, each of the 
original sixteen datasets becomes the parent for anywhere from 15 to 25 artificial datasets, 
depending on the number of possible (N,T) combinations. These “offspring” datasets, besides 
having different sizes, also have different characteristics. For example, a cross-country dataset 
that has level of income as its dependent variable and that includes the world’s largest economies 
such as the US, China, Germany, Japan, and the UK, will have very different heteroskedasticity 
characteristics than a dataset that omits these countries. Further, cross-country dependencies will 
vary greatly depending on the specific countries that are included.  

The datasets listed in Table 1 are quite diverse. In particular, the new datasets listed in the 
bottom panel are distinctly different from the original RY datasets. The original RY datasets used 
dependent variables that were income-based, either cross-country/GDP values (level and growth) 
or US state/PCPI values (level and growth). In contrast, the dependent variables for the new 
datasets are (i) international aid (Datasets 9 and 13), (ii) a democracy index (Datasets 10 and 14); 
(iii) crime per capita (Datasets 11 and 15), and (iv) a binary variable indicating conflict (Datasets 
12 and 16). And not just the dependent variables, but the explanatory variables are very different. 
This should produce a wide variety of artificial panel datasets having very different EVCMs.  

_________________________ 
3 RY made a mistake in their experimental design by averaging the X values. This introduced excessive 
autocorrelation in 𝒙𝒙�. When the error terms are serially correlated, the serial correlation in the regressor 
affects the variance of its OLS coefficient estimator variance. The following relationship connects the 
variance of OLS slope estimator characterised by first order serial correlation of both the error term and the 
regressor, 𝑉𝑉𝑉𝑉𝑉𝑉�𝛽̂𝛽𝐴𝐴𝐴𝐴(1)�, on the one hand, and that of the usual OLS slope estimator, 𝑉𝑉𝑉𝑉𝑉𝑉�𝛽̂𝛽𝑂𝑂𝑂𝑂𝑂𝑂�, on the other 
(see Gujarati 2004, p 452): 𝑉𝑉𝑉𝑉𝑉𝑉�𝛽̂𝛽𝐴𝐴𝐴𝐴(1)� =  𝑉𝑉𝑉𝑉𝑉𝑉�𝛽̂𝛽𝑂𝑂𝑂𝑂𝑂𝑂� �

1+𝑟𝑟𝑟𝑟
1−𝑟𝑟𝑟𝑟

�, where r and ρ denote the first order serial 
correlation coefficients of the regressor and the error term respectively. Thus, exaggerating the serial 
correlation in the regressor worsens the bias in the estimated coefficient standard error. We note that Beck 
and Katz (1995) made a related error on the other side in their Monte Carlo experiments by generating 𝑥𝑥𝑖𝑖𝑖𝑖  
values that were “random draws from a zero-mean normal distribution” (BK, page 638). By ignoring the 
role of autocorrelation in the explanatory variable, they diminished the problems caused by autocorrelation. 
This was pointed out in a replication study by Reed and Webb (2010). 
4 The maximum N and T values listed in Table 1 are often less than the size of the panel dataset in the 
original dataset. For example, the original Dataset 1 used by RY contained data on 97 countries for 40 years 
(1961-2000). However, data issues, usually caused by problems with the Cholesky decomposition function 
in creating simulated error terms, forced us to limit the sizes of some of the panel datasets. For the same 
reason, the actual number of datasets we were able to create is less than the total possible combinations 
from pairing all possible N and T values in the table. 
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Table 2: List and Description of Panel Data Estimators to Be Studied 

Estimator Procedure Assumed Error Structure 

1 OLS-1A IID 

2 OLS-1B Robust heteroskedasticity 

3 OLS-1C Robust heteroskedasticity + Robust autocorrelation 

4 OLS-1D Robust heteroskedasticity + Robust cross-sectional dependence 

5 FGLS-1A Groupwise heteroskedasticity 

6 FGLS-2 Groupwise heteroskedasticity + autocorrelation 

7 FGLS-3 (Parks) Groupwise heteroskedasticity + autocorrelation + cross-sectional dependence  

8 FGLS-4 (PCSE) Groupwise heteroskedasticity + autocorrelation + cross-sectional dependence 

9 FGLS-1B Weight = Groupwise heteroskedasticity 
Var-Cov = Robust heteroskedasticity + Robust cross-sectional dependence 

10 FGLS-1C Weight = Groupwise heteroscedasticity 
Var-Cov = Robust heteroskedasticity + Robust autocorrelation 

11 FGLS-1D Weight = Groupwise heteroskedasticity 
Var-Cov = Robust heteroskedasticity 

Note: Interpretation of the numbering and lettering of the procedures is given in Section 2 in the text. Further details about the estimator is given in the Appendix. 
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The estimators. Through this gauntlet of diverse data environments we run the respective 
estimators. These are identified in Table 2. These are the same estimators studied by RY. All of 
the estimators correspond to a particular Stata or Eviews panel data estimator.5 Each estimator is 
a special case of the following: 

(7) 𝜷𝜷� = �𝑿𝑿′𝑾𝑾−𝟏𝟏𝑿𝑿�−1𝑿𝑿′𝑾𝑾−𝟏𝟏𝒚𝒚 

(8) 𝑉𝑉𝑉𝑉𝑉𝑉�𝜷𝜷�� = �𝑿𝑿′𝑾𝑾−𝟏𝟏𝑿𝑿�−1𝑿𝑿′𝑾𝑾−𝟏𝟏𝜴𝜴�𝑾𝑾−𝟏𝟏𝑿𝑿�𝑿𝑿′𝑾𝑾−𝟏𝟏𝑿𝑿�−1 

where 𝑿𝑿 = [𝒊𝒊 𝒙𝒙�], 𝜷𝜷� = [𝛽̂𝛽0 𝛽̂𝛽𝑥𝑥], 𝑾𝑾 is the “weighting” matrix, and 𝜴𝜴�  is the estimated EVCM.6 
For example, in the case of OLS with an assumed IID error structure (Estimator 1), 𝑾𝑾 = 𝑰𝑰 and 
𝜴𝜴� = 𝜎𝜎�2𝑰𝑰. In the case of Estimator 5 (FGLS-1A), 𝑾𝑾 = 𝜴𝜴� , where 𝜴𝜴�  is the diagonal matrix with 
group-specific variances on the main diagonal. Estimator 9 (FGLS-1B) has the same weighting 
matrix 𝑾𝑾, and thus produces an identical estimate, 𝜷𝜷�, but estimates 𝜴𝜴 using a robust estimator 
that clusters on time period, and thus produces different standard errors than Estimator 5.  

Table 2 employs the notation that estimators with the same weighting matrix 𝑾𝑾 have the same 
number index. Estimators with different 𝜴𝜴�  matrices have different letter indices. So all the FGLS-
1 estimators use the same weighting matrix (based on groupwise heteroskedasticity), but FGLS-
1A calculates different standard errors than FGLS-1B, FGLS-1C, and FGLS-1D. 

Estimators 1, 7, and 8 are particularly worth noting. Estimator 1 is conventional (pooled) 
OLS.7 This will serve as the benchmark estimator against which the other estimators will be 
compared. Estimator 7 is the Parks estimator. It is asymptotically efficient, but requires T ≥ N.8 
Estimator 8 is BK’s PCSE estimator which has become a popular substitute for the Parks estimator 
because of its claimed finite sample advantages. 

Performance measures. The experiments compare the respective panel data estimators on two 
dimensions, efficiency and accuracy in hypothesis testing. An experiment consists of 1000 
replications, where each replication draws a unique panel data sample simulated from a common 
DGP, corresponding to given “offspring” dataset. For each experiment and each estimator, we 
calculate an EFFICIENCY value defined by,  

(9) 
( )
( )∑

∑

=

=

−

−
⋅=

R

1r

2(r)
OLS

R

1r

2(r)

ˆ

ˆ
100

x

xEstimator
EstimatorEFFICIENCY

ββ

ββ
,  

where xβ  is the true value of the slope coefficient, and (r)
OLSβ̂  and (r)ˆ

Estimatorβ  are the estimated 

values of xβ  in a given replication r as estimated by OLS and the estimator that is being 
_________________________ 

5 The Appendix lists the specific commands in Stata or Eviews that correspond to each estimator. 
6 Note that 𝜴𝜴� ≠ 𝜴𝜴��𝑵𝑵𝑵𝑵. 𝜴𝜴��𝑵𝑵𝑵𝑵 is the population EVCM used in the DGP to generate the simulated 𝒚𝒚� and 𝒙𝒙� data. 𝜴𝜴�  is the 
EVCM estimated from residuals generated by regressing 𝒚𝒚� on 𝒙𝒙� . 
7 Note that the DGP does not contain fixed effects, so we omit fixed effects estimators from the choice set. 
8 It is possible to estimate the full Parks model in Stata when T < N. This is made possible through the use of a 
generalized inverse function in Stata that allows one to invert matrices that are not full rank. However, our own 
investigations indicate that the resulting estimators do not perform well.   
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compared to OLS, respectively. Smaller values indicate a more efficient estimator. OLS is defined 
to have an EFFICIENCY value of 100. Estimators with EFFICIENCY values less than 100 are 
thus more efficient than OLS for datasets having the given characteristics. 

To measure accuracy in hypothesis testing, we calculate two measures. The first is the 
coverage rate, Coverage, defined as the percent of 95% confidence intervals around 𝛽̂𝛽𝑥𝑥 that 
include the true value of 𝛽𝛽𝑥𝑥. We also calculate the absolute value of the difference between 95% 
and the coverage rate, |95 – Coverage|. Estimators for which |95 – Coverage| is closest to zero are 
judged to be superior with respect to accuracy in hypothesis testing.  

As seen in Table 2, estimators 5, 9, 10, and 11 all share the same weighting matrix, 𝑾𝑾, 
weighting solely on (groupwise) heteroskedasticity. As a result, these estimators will produce 
identical coefficient estimates 𝜷𝜷� when using the same data (cf. Equation 7). Thus, in comparing 
estimators on the dimension of efficiency, we treat these estimators as one and refer to Estimator 
5/9/10/11. When it comes to assessing their accuracy in hypothesis testing, they will be treated 
separately because they produce different estimates of 𝑉𝑉𝑉𝑉𝑉𝑉�𝜷𝜷�� (cf. Equation 8). 

RY’s three recommendations. Based on their analysis of the performances of the eleven 
estimators in Table 3, RY provide three recommendations.9 

1. When the primary concern is efficiency and T/N ≥ 1.50, use Estimator 7. 

2. When the primary concern is efficiency, T/N < 1, and Heteroskedasticity > 1.67, use 
either Estimator 5 or Estimator 6. 

3. When the primary concern is constructing accurate confidence intervals and 
Autocorrelation < 0.30, use either Estimator 8 or Estimator 4. 

These recommendations are designed as guides for applied researchers, mapping 
observed/measurable characteristics of the data – such as the ratio of time periods to units, or the 
degree of heteroskedasticity or autocorrelation – to the choice of a “best” estimator.  

Two things are noteworthy in this regard. First, the recommendations have “gaps.” For 
example, when choosing estimators on the basis of efficiency, there is a recommendation for cases 
where T/N ≥ 1.50 and T/N < 1, but nothing for 1 ≤ T/N < 1.50. And when it comes to selecting 
an estimator based on accurate confidence intervals, and hence preferred for hypothesis testing, 
there is no recommendation when Autocorrelation ≥ 0.30. The reason for these gaps is that RY 
could not identify a consistently best estimator for these data situations. 

Also noteworthy is the fact that RY recommend different estimators depending on whether 
one’s primary interest is efficiency or accuracy in hypothesis testing. While this is unusual, it is 
not contradictory. The expression for 𝑉𝑉𝑉𝑉𝑉𝑉�𝜷𝜷�� in Equation (8) does not have finite sample validity. 
The substitution of 𝜴𝜴�  for 𝜴𝜴 is justified on the basis of the “analogy principle” (Manski, 1988). 
While correct asymptotically – assuming the respective estimates of the EVCM elements are 
consistent – it may be a better or worse substitute in finite samples for some estimators versus 
others depending on the specifics of the deviation between 𝜴𝜴�  and 𝜴𝜴. Further, because 𝜴𝜴�  factors 
differently into Equations (7) and (8), it is possible that this deviation affects an estimator’s 
relative performance in hypothesis testing more or less than its relative performance in efficiency. 
_________________________ 

9 In order to make their recommendations easier to understand, we have replaced their terminology with the 
nomenclature from this paper. The substituted terms are italicized. 
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To summarize, RY’s recommendations provide a potentially useful guide to applied 
researchers facing a choice of panel data estimators. However, their recommendations are 
incomplete, and they have the unusual feature of advising different estimators for coefficient 
efficiency and accuracy in hypothesis testing. While their analysis introduced additional 
autocorrelation in the simulated values of the explanatory variables, it’s not clear to what extent 
this affected their results. Our analysis attempts to see whether correcting this mistake alters their 
recommendations, and if it does, whether the new recommendations are robust when these 
recommendations are applied to entirely new datasets.  

Table 3: Replication of Table 3 in Reed and Ye (2011) 

Reed and Ye (2011) 

 Average EFFICIENCY Percent of experiments where estimator is 
more efficient than OLS 

 𝑵𝑵 ≤ 𝑻𝑻 𝑵𝑵 > 𝑻𝑻 𝑵𝑵 ≤ 𝑻𝑻 𝑵𝑵 > 𝑻𝑻 

Estimator 5/9/10/11 95.2 82.9 58.8 84.4 

Estimator 6 95.1 83.1 71.3 79.7 

Estimator 7 73.9 --- 96.3 -- 

Estimator 8 100.8 101.0 62.5 51.6 

Replication 

 Average EFFICIENCY Percent of experiments where estimator is 
more efficient than OLS 

 𝑵𝑵 ≤ 𝑻𝑻 𝑵𝑵 > 𝑻𝑻 𝑵𝑵 ≤ 𝑻𝑻 𝑵𝑵 > 𝑻𝑻 

Estimator 5/9/10/11 95.2 82.9 58.8 84.4 

Estimator 6 95.1 82.6 71.3 81.3 

Estimator 7 73.7 -- 96.3 -- 

Estimator 8 100.8 101.0 63.8 57.8 

3 Replication 

Reproducing the RY’s original results. The first step in our analysis is to confirm that we are able 
to reproduce RY’s findings. As we had access to their computer code, this was straightforward. 
The top panel of Table 3 copies the values from Table 3 in RY and reports two measures of 
efficiency for the different panel data estimators: (i) average EFFICIENCY, and (ii) the percent 
of experiments where the estimator is more efficient than OLS. The experimental results are 
reported separately for datasets having 𝑁𝑁 ≤ 𝑇𝑇 and 𝑁𝑁 > 𝑇𝑇. We recall that lower values indicate 
greater efficiency.  

The bottom panel of Table 3 reports our replication of RY’s results. We obtain very similar 
results. Note that our replication is unable to exactly reproduce their results. Because the datasets 
are randomly generated, differences will necessarily arise due to sampling error. However, as the 
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results are averaged over 1000 replications for each experiment, these differences are expected to 
be relatively small. Indeed, that is the case. 

Table 4 repeats the replication exercise, this time focussing on two measures of accuracy in 
hypothesis testing: (i) coverage rates, and (ii) the absolute value of the difference between 95 and 
the coverage rate. Once again, the top panel copies the results from RY (see Table 5 in RY). The 
bottom panel reports our replication. While there are differences, they are, again, relatively small.  

Having confirmed that we are able to reproduce RY’s key results for efficiency and accuracy 
in hypothesis testing, we next turn to correcting the mistake in RY and re-doing their analysis 
using both the datasets that they used, and extending their analysis to a new set of datasets.  

Correlation in the explanatory variable. As discussed above, RY’s original procedure 
introduced excessive autocorrelation in the explanatory variable. Table 5 illustrates the extent of 
the problem using Dataset 1 (see Table 1). There are a total of 25 different NT combinations, 
(N=5/T=5, N=5/T=10, … , N=77/T=20, N=77/T=25). For each of these NT combinations, we 
simulated 1000 datasets, first using RY’s original method, then using the corrected method.  

RY’s original method is best explained via example. Let the values of the explanatory variable 
x for a given cross-sectional unit i from the parent “real” dataset be given by (xi1, xi2, xi3, xi4, xi5, 
xi6, … , xiT). To create the corresponding values of x for a simulated panel dataset having size T=5, 
RY take all possible, contiguous 5-year periods: (xi1, xi2, xi3, xi4, xi5), (xi2, xi3, xi4, xi5, xi6), (xi3, xi4, 
xi5, xi6, xi7), … (xi,T-4, xi,T-3, xi,T-2, xi,T-1, xiT). 𝑥𝑥�1 is calculated as the average of the first element across 
all possible sets of contiguous, 5-year periods, 𝑥𝑥�2 is the average of the second element across all 
5-year sets, and so on. Note that the averages 𝑥𝑥�1 and 𝑥𝑥�2 will share a large number of underlying 
x values, so that a regression of 𝑥𝑥�𝑡𝑡 on 𝑥𝑥�𝑡𝑡−1 will produce a high degree of “autocorrelation” in 
excess of any autocorrelation that may exist in the underlying values of x. The corrected method 
randomly selects one 5-year period of x values from the set of all possible 5-year sets and thus 
avoids this manufactured, spurious autocorrelation. 

Table 5 compares the average, estimated AR(1) coefficient for the explanatory variable in 
each of the simulated, NT datasets generated from Dataset 1 using both RY”s method and the 
corrected method. For example, for simulated datasets having dimension N=5,T=5, RY’s method 
produces explanatory variables having an average, estimated AR(1) parameter equal to 0.979. In 
contrast, randomly selected, 5-year contiguous periods have an average, estimated AR(1) 
coefficient of 0.602. Across all simulated datasets, RY’s method produces an average 
autocorrelation of 0.969, with minimum and maximum values of 0.926 and 0.995. In contrast, the 
corrected method produces an average autocorrelation coefficient of 0.635, with minimum and 
maximum values of 0.204 and 0.833. The next section reports the results of our analysis using the 
corrected method for generating values of the explanatory variable. We also extend RY’s analysis 
by expanding the set of datasets used in our simulations. 
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Table 4: Replication of Table 5 in Reed and Ye (2011) 

Reed and Ye (2011) 
 𝑵𝑵 ≤ 𝑻𝑻 𝑵𝑵 > 𝑻𝑻 

 COVERAGE 
Absolute value of 
(95-COVERAGE) 

over all experiments 
COVERAGE 

Absolute value of 
(95-COVERAGE) 

over all experiments 
Estimator 1 73.6 21.9 74.2 21.9 
Estimator 2 73.7 21.8 77.9 18.8 
Estimator 3 83.5 11.6 91.8 3.9 
Estimator 4 72.7 22.5 74 21.3 
Estimator 5 69.8 25.6 72.6 22.9 
Estimator 6 86.4 9.3 88.8 7.2 
Estimator 7 43.3 51.7 -- -- 
Estimator 8 87.8 7.2 88.1 6.9 
Estimator 9 66.1 28.9 65.4 29.6 
Estimator 10 68.1 26.9 80.1 14.9 
Estimator 11 69.5 25.9 72.4 23.2 

Replication 
 𝑵𝑵 ≤ 𝑻𝑻 𝑵𝑵 > 𝑻𝑻 

 COVERAGE 
Absolute value of 
(95-COVERAGE) 

over all experiments 
COVERAGE 

Absolute value of 
(95-COVERAGE) 

over all experiments 
Estimator 1 73.6 21.9 75.7 20.5 
Estimator 2 73.7 21.8 79.3 17.5 
Estimator 3 83.5 11.6 92.7 3.0 
Estimator 4 72.7 22.5 75.8 19.6 
Estimator 5 69.8 25.6 74.1 21.4 
Estimator 6 86.4 9.3 90.2 5.5 
Estimator 7 43.3 51.7 -- -- 
Estimator 8 87.8 7.2 89.1 5.9 
Estimator 9 66.1 28.9 66.7 28.3 
Estimator 10 68.1 26.9 81.5 13.5 
Estimator 11 69.5 25.9 73.9 21.7 
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Table 5: Example of Excessive Autocorrelation in Reed and Ye (2011) 

N T 
Average Autocorrelation  
in Explanatory Variable 

Reed and Ye (2011) Corrected 
5 5 0.979 0.602 
5 10 0.995 0.608 
5 15 0.970 0.690 
5 20 0.959 0.798 
5 25 0.976 0.805 

10 5 0.980 0.204 
10 10 0.993 0.581 
10 15 0.970 0.716 
10 20 0.964 0.768 
10 25 0.975 0.751 
20 5 0.953 0.239 
20 10 0.971 0.598 
20 15 0.973 0.645 
20 20 0.973 0.755 
20 25 0.979 0.833 
50 5 0.955 0.261 
50 10 0.943 0.557 
50 15 0.963 0.720 
50 20 0.971 0.777 
50 25 0.978 0.797 
77 5 0.926 0.318 
77 10 0.957 0.615 
77 15 0.969 0.706 
77 20 0.974 0.738 
77 25 0.979 0.789 
Minimum 0.926 0.204 
Maximum 0.995 0.833 
Average 0.969 0.635 

Note: Autocorrelations are estimated for the independent variable in Dataset 1 (see Table 1) under the (i) original Reed 
and Ye (2011) and (ii) corrected experimental designs. 
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4 Results10  

Sample characteristics of simulated datasets. Table 6 provides descriptive statistics for the 
elements of the EVCMs estimated from the simulated datasets. Reported are measures of 
heteroskedasticity, autocorrelation, and cross-sectional dependence. As before, the top panel 
reports details about the original RY datasets, while the new datasets are featured in the bottom 
panel, Within each panel, datasets are divided depending on whether T ≥ N or T < N. Each dataset 
produces either ten or eleven observations of 𝛽̂𝛽𝑥𝑥, one for each estimator (more on the estimators 
below). There are fewer observations per dataset when T < N, because, as noted above, one of the 
estimators (the fully specified FGLS with heteroskedasticity, autocorrelation, and cross-sectional 
dependence; also known as the Parks estimator), cannot be estimated in this case.  

Heteroskedasticity is calculated from a given dataset’s group-specific variances. We sort the 
associated standard deviations and take the ratio of the 3rd and 1st quartile values, 

⎝

⎜
⎛�σ̂

𝜀𝜀,3𝑟𝑟𝑟𝑟 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞

�σ̂
𝜀𝜀,1𝑠𝑠𝑠𝑠 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞⎠

⎟
⎞

.11 Larger values indicate greater heteroskedasticity. Autocorrelation is 

estimated by ρ̂ . These values should range between -1 and 1, with the expectation that most of 
the AR(1) parameters will be positive. Cross-sectional dependence is measured by the absolute 
values of the cross-sectional correlations, averaged over all possible pairs of cross-sectional units. 
These, in turn, are calculated from the respective cross-sectional covariances, ijε,σ̂ , i,j = 1,2,…,N,  

i ≠ j. These values should also range between 0 and 1.  
Both the original RY datasets and the datasets new for this study demonstrate a wide range of 

error behaviours. Heteroskedasticity ranges from a low of 1.21 to a high of 40.21.12 
Autocorrelation ranges from –0.06 to 0.79, and cross-sectional correlation from 0.20 to 0.79. The 
new datasets are generally characterized by greater heteroskedasticity and cross-sectional 
dependence, but lesser autocorrelation.  
Efficiency. This section compares the performance of the respective estimators. All the results 
follow the procedures discussed above, and incorporate the correction to RY’s original 
experimental design.13 Table 7 reports average performance measures for efficiency for different 
subgroups of experiments. The first two columns report average EFFICIENCY values for all 
experiments according to whether T/N ≤ 1.5 or T/N > 1.5, where EFFICIENCY is calculated 
using Equation (9). We choose the cut-off of 1.5 to be consistent with RY’s first  
 

_________________________ 

10 Data and code to replicate the results in this paper are posted at Dataverse:  

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi%3A10.7910%2FDVN%2FYKSATT. 
11 Note that the 𝜎𝜎��𝜀𝜀 terms are variances, and not standard deviations. 
12 The particularly high heteroskedasticity values come from Datasets 12 and 16, where the dependent variable is zero-
one.  
13 See Section 3 for our replication of RY’s results without correction to their experimental design.  
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Table 6: Description of Simulated Datasets Used in the Experiments 

  Heteroskedasticity Autocorrelation Cross-sectional 
Dependence 

REED AND YE (2011) DATASETS 

N ≤ T 
(80 datasets; 

880 observations) 

Minimum 1.21 -0.06 0.20 

Mean 1.68 0.36 0.44 

Maximum 2.35 0.78 0.90 

N > T 
(64 datasets; 

640 observations) 

Minimum 1.34 -0.04 0.22 

Mean 1.76 0.34 0.43 

Maximum 2.25 0.79 0.79 

NEW DATASETS 

N ≤ T 
(72 datasets; 

792 observations) 

Minimum 1.26 0.08 0.22 

Mean 4.47 0.47 0.35 

Maximum 40.21 0.73 0.52 

N > T 
(68 datasets; 

680 observations) 

Minimum 1.47 0.16 0.23 

Mean 6.93 0.46 0.34 

Maximum 34.91 0.73 0.49 

  Note: For more details on the construction of the simulated datasets, see Section 2 in the text. 
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Table 7: Comparison of Estimator EFFICIENCY 

Estimator Average EFFICIENCY Percentage of Times the Estimator  
Is More Efficient Than OLS 

 T/N > 1.5 
 (1) 

T/N ≤ 1.5 
 (2) 

T/N > 1.5 
 (3) 

T/N ≤ 1.5 
 (4) 

REED AND YE (2011) DATASETS 

Estimator 5/9/10/11 96.6 84.2 68.8 78.9 

Estimator 6 82.8 74.7 75.0 89.1 

Estimator 7 (Parks) 45.5 66.1* 100.0 100.0* 

Estimator 8 (PCSE) 86.9 89.1 62.5 72.7 

NEW DATASETS 

Estimator 5/9/10/11 70.8 54.5 88.6 97.9 

Estimator 6 61.5 48.0 97.7 99.0 

Estimator 7 (Parks) 46.9 80.1* 97.7 96.4* 

Estimator 8 (PCSE) 85.1 92.1 95.5 80.2 

* The results for Estimator 7 are not comparable to the other estimators when T/N ≤ 1.5 because they are based on a subset of the experiments, since Estimator 7 cannot be 
estimated when T/N < 1.0.  

       Note: The EFFICIENCY measure is defined in Section 2 in the text. Yellow-coloured cells indicate “best” estimator for a given data-ty 
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recommendation, and also based on our own analysis. The next two columns provide a different 
perspective on efficiency. They report the percent of experiments where a given estimator is more 
efficient than OLS. The “best” estimators are indicated by yellow-highlighting the respective cells 
in the table.  

The top panel reports the results for the datasets used by RY. According to RY’s first 
recommendation, when researchers are primarily interested in efficiency and T/N is greater than 
1.5, they should choose Estimator 7, the Parks estimator. Our findings confirm this 
recommendation for the Reed and Ye (2011) datasets. When T/N > 1.5, the average EFFICIENCY 
of Estimator 7 is 45.5, substantially lower than that of the other estimators. Moreover, Estimator 
7 is always better than OLS (100 percent). The other estimators are more efficient than OLS most, 
but not all, of the time. 

The bottom part of the panel reports the results of experiments based on the new datasets. 
This represents a clean “out of sample” test of RY’s recommendation, because none of these 
datasets were included in RY’s analysis. Focussing again on the experiments where T/N > 1.5, 
we see that Estimator 7 (FGLS-Parks) has a much lower average EFFICIENCY value than the 
other estimators. Further, it is more efficient than OLS approximately 98 percent of the time, tied 
for best most among all estimators. 

Averages can mask much variation. Accordingly, Figures 1 and 2 plot the average 
EFFICIENCY values for each of the estimators as a function of T/N when T/N > 1.5. Figure 1 
does this for the RY datasets, and Figure 2 does this for the new datasets. The dotted, black line 
at Average Efficiency = 100 represents the OLS estimator, which serves as a benchmark for the 
other estimators.  

Each line connects a series of points that report average EFFICIENCY, where the lines have 
been smoothed for the sake of readability. There are five points underlying each line in Figure 1 
(for T/N = 2.0, 2.5, 3.0, 4.0 and 5.0), and seven points in Figure 2 (T/N = 1.9, 2.0, 2.5, 3.0, 3.8, 
4.0 and 5.0). The reason the lines do not change monotonically with T/N is that other 
characteristics (heteroskedasticity, autocorrelation, cross-sectional dependence) are changing 
simultaneously with T/N. The movement from one T/N value to another is, in fact, a movement 
to a different DGP, with different population EVCM values. 

Each of the estimators are color-coded in Figures 1 and 2. It is clear from both figures that the 
light blue line, corresponding to Estimator 7 (the Parks estimator), strictly dominates the others. 
For every T/N value included in our analysis, the average EFFICIENCY value for this estimator 
lies strictly below that of the other estimators, indicating greater efficiency. This confirms RY’s 
first recommendation. 

We return to Table 7 and next examine the experiments where T/N ≤ 1.5. While Estimator 7 
is included in the table, its results are not directly comparable to the other estimators because its 
results are based on a much smaller number of experiments, since it cannot be estimated when 
T/N < 1.0. Ignoring Estimator 7 for the moment, it is seen that Estimator 6 performs better than 
the other estimators both in terms of having a lower average EFFICIENCY value (74.7 and 48.0 
for the RY and new datasets, respectively), and in terms of besting OLS more frequently than the 
other estimators (89.1 and 99.0 percent, respectively). Estimator 6 is essentially the Parks 
estimator (Estimator 7), except that it does not accommodate cross-sectional dependence.  
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Figure 1: Comparison of Estimator EFFICIENCY: Reed and Ye (2011) Datasets, T/N > 1.5 

 
Note: The EFFICIENCY measure is defined in Section 2 in the text. Estimators are identified in Table 3. 

Figure 2: Comparison of Estimator EFFICIENCY: New Datasets, T/N > 1.5 

 
Note: The EFFICIENCY measure is defined in Section 2 in the text. Estimators are identified in Table 3. 
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Figures 3 and 4 further highlight the superior performance of Estimator 6 when it comes to 
efficiency. We first note that the lines in the figures connect a larger number of points than in the 
preceding figures. There are 16 points underlying each line in Figure 3 (for T/N = 0.13, 0.19, 
0.20, 0.21, 0.26, 0.30, 0.31, 0.32, 0.40, 0.42, 0.50, 0.52, 0.75, 1.00, 1.25, and 1.50), and 15 points 
in Figure 4 (T/N = 0.13, 0.19, 0.20, 0.25, 0.26, 0.30, 0.32, 0.38, 0.40, 0.50, 0.75, 0.95, 1.00, 1.25, 
and 1.50). Estimator 6 is represented by the solid black line.  

With one exception, Estimator 6 strictly dominates the other estimators over all values of T/N 
reported in Figures 3 and 4. The lone exception involves Estimator 7 in the Reed and Ye (2011) 
datasets for T/N = 1.50. For smaller values of T/N (1.00 and 1.25), Estimator 6 lies strictly below 
Estimator 7 (indicating superior efficiency). When we turn to Figure 4 and the new datasets, we 
see that Estimator 6 bests Estimator 7 even when T/N = 1.50. Thus, our results indicate that T/N 
= 1.50 is a crossing-over point. For values less than that, Estimator 6 is most efficient. For values 
greater than that, Estimator 7 is most efficient. For values in the immediate vicinity of 1.50, either 
estimator may be most efficient, depending on other characteristics of the dataset. 

It is interesting to note that the superior performance of Estimator 6 for 1.0 ≤ T/N < 1.5 is an 
example of the “shrinkage principle.” This principle “asserts that the imposition of restrictions -- 
even false restrictions” can improve estimator performance (Diebold, 2007, p. 45). Even though 
the population EVCM is characterized by cross-sectional dependence, the estimator that “falsely” 
omits cross-sectional dependence (Estimator 6) outperforms the estimator that correctly includes 
it (Estimator 7). The reason this “false restriction” is effective in these cases is because there are 
insufficient observations to obtain reliable estimates of the cross-sectional covariances in 𝜮𝜮 (cf. 
Equation 3). 

Our findings call for a modification of RY’s second recommendation, which states: “When 
the primary concern is efficiency, T/N < 1, and Heteroskedasticity > 1.67, use either Estimator 5 
or Estimator 6.” For one, there is no need to condition the recommendation on heteroskedasticity. 
Second, Estimator 6 dominates Estimator 5 for all values of T/N ≤ 1.5, so that Estimator 5 can be 
omitted as a “best” option. And lastly, the superior performance of Estimator 6 extends for a wider 
range of T/N values than determined by RY. 

Taken together, the above results sketch a (virtually) complete decision tree for choosing the 
most efficient panel data estimator, provided the estimators the researcher is choosing from are 
included in Stata’s or Eviews’ standard statistical software package. This can be summarized in 
the following two modified recommendations:  

RECOMMENDATION 1: When the primary concern is efficiency and  
T/N > 1.50, use Estimator 7 ( = Parks estimator). 

RECOMMENDATION 2: When the primary concern is efficiency and 
T/N < 1.50, use Estimator 6 (= Parks estimator without cross-sectional 
dependence). 

Accuracy in hypothesis testing. Table 8 reports performance results with respect to accuracy 
in hypothesis testing. The key columns are those that report the average value of the absolute 
difference between 95 percent and the coverage rate, |95 – Coverage|.  An estimator should have  
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Figure 3: Comparison of Estimator EFFICIENCY: Reed and Ye (2011) Datasets, T/N ≤ 1.5 

 
Note: The EFFICIENCY measure is defined in Section 2 in the text. Estimators are identified in Table 3. 

Figure 4: Comparison of Estimator EFFICIENCY: New Datasets, T/N ≤ 1.5 

 
Note: The EFFICIENCY measure is defined in Section 2 in the text. Estimators are identified in Table 3. 
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Table 8: Comparison of Estimator Coverage Rates 
 Autocorrelation < 0.30 Autocorrelation ≥ 0.30 

 Coverage 
(1) 

|95 – Coverage| 
(2) 

Coverage 
(3) 

|95 – Coverage| 
(4) 

REED AND YE (2011) DATASETS (T/N ≥ 1) 

Estimator 1 65.7 29.3 90.9 6.1 

Estimator 2 64.1 30.9 91.0 4.9 

Estimator 3 86.5 8.9 88.6 6.5 

Estimator 4 60.1 34.9 91.5 3.8 

Estimator 5 59.8 35.2 88.6 6.4 

Estimator 6 88.0 7.1 90.9 4.4 

Estimator 7 (Parks) 42.9 52.1 45.6 49.4 

Estimator 8 (PCSE) 89.5 5.5 92.7 2.3 

Estimator 9 51.9 43.1 85.6 9.4 

Estimator 10 70.5 24.5 77.3 17.7 

Estimator 11 58.5 36.5 88.2 6.8 

NEW DATASETS (T/N ≥ 1) 

Estimator 1 87.9 9.3 74.6 21.4 

Estimator 2 83.1 11.9 73.2 22.0 

Estimator 3 88.4 6.6 90.2 6.7 

Estimator 4 83.6 11.4 74.7 20.3 

Estimator 5 85.8 9.2 73.4 22.9 

Estimator 6 90.9 4.1 90.9 5.7 

Estimator 7 (Parks) 38.1 56.9 42.0 53.0 

Estimator 8 (PCSE) 91.4 3.6 92.1 3.3 

Estimator 9 75.5 19.5 64.7 30.3 

Estimator 10 68.9 26.1 72.7 22.4 

Estimator 11 80.6 14.4 68.6 26.4 

REED AND YE (2011) DATASETS (T/N < 1) 

Estimator 1 70.4 24.6 93.8 5.8 

Estimator 2 67.1 27.9 93.7 4.0 

Estimator 3 91.7 5.3 92.4 4.8 

Estimator 4 61.9 33.1 94.1 1.3 

Estimator 5 60.3 34.7 92.6 3.7 

Estimator 6 86.9 8.2 93.2 3.4 

Estimator 7 (Parks) --- --- --- --- 

Estimator 8 (PCSE) 90.6 4.4 93.3 1.8 
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 Autocorrelation < 0.30 Autocorrelation ≥ 0.30 

 Coverage 
(1) 

|95 – Coverage| 
(2) 

Coverage 
(3) 

|95 – Coverage| 
(4) 

Estimator 9 50.3 44.7 87.2 7.8 

Estimator 10 76.6 18.4 86.2 8.8 

Estimator 11 59.2 35.8 92.2 3.8 

NEW DATASETS (T/N < 1) 

Estimator 1 84.0 11.2 80.2 15.2 

Estimator 2 81.9 13.1 78.2 16.8 

Estimator 3 83.5 11.5 93.6 3.3 

Estimator 4 88.3 6.7 75.6 19.4 

Estimator 5 88.3 8.0 75.8 20.5 

Estimator 6 93.6 4.0 93.2 3.9 

Estimator 7 (Parks) --- --- --- --- 

Estimator 8 (PCSE) 91.5 3.5 92.3 2.7 

Estimator 9 71.8 23.2 63.6 31.4 

Estimator 10 82.7 12.3 82.9 12.1 

Estimator 11 84.4 10.6 71.2 23.8 

Note: The performance measures Coverage and |95 – Coverage| are defined in Section 2 in the text. A yellow-coloured 
cell indicates that Estimator 8 performs best for a given data-type. A green-coloured cell indicates that this estimator is 
second best. 

 
a coverage rate close to 95 percent. Coverage rates less than (greater than) than 95 percent will 
reject the null hypothesis H0: 𝛽𝛽𝑥𝑥 = 𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 too often (not often enough). Both outcomes 
distort hypothesis testing. Thus the “best” estimator on the dimension of accuracy in hypothesis 
testing is one for which |95 – Coverage| is closest to zero.  

The table has four panels. The first two panels report performance results for the experiments 
where T/N ≥ 1 for the Reed and Ye (2011) datasets and the new datasets, respectively. The next 
two panels report results for T/N < 1. T/N = 1 is selected as the cut-off because Estimator 7 (the 
Parks estimator) cannot be estimated when T/N is less than this.  

The table also has four columns, with the first two columns collecting experiments where the 
associated datasets are characterized by Autocorrelation values less than 0.30, and the next two 
columns reporting results when Autocorrelation ≥ 0.30. This cut-off is motivated by RY’s third 
recommendation. RY reported that Estimator 8 (the PCSE estimator) performed best for 
hypothesis testing when Autocorrelation < 0.30, while no estimator performed acceptably for 
autocorrelation values larger than this.  

In the table, cells where Estimator 8 has the smallest |95 – Coverage| values are color-coded 
yellow. Cells where Estimator 8 has the second smallest |95 – Coverage| value are color-coded 
green. An inspection of the first two columns confirms RY’s third recommendation for both the 
Reed and Ye (2011) datasets and the new datasets, irrespective of the value of T/N. Across the 
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four subsets of experiments (Reed and Ye, 2011, T/N < 1 and T/N ≥ 1; and New Datasets, T/N < 
1 and T/N ≥ 1), the values of | 95 – Coverage | range from a low of 3.5 to a high of 5.5.  

However, the results allow one to go even further. When Autocorrelation ≥ 0.30, Estimator 8 
either has the smallest, or close to the smallest |95 – Coverage| value in each of the four 
subsamples. Further, the corresponding values of |95 – Coverage| are quite small, ranging from 
1.8 to 3.3.  

It is worth noting that both Estimator 7 (Parks) and Estimator 8 (PCSE) estimate the same 
number of parameters. Yet, as Table 8 makes clear, their performance with respect to inference 
is markedly different. The main difference between the two is that Estimator 7 inverts 𝜮𝜮 when 
calculating the coefficient covariance matrix, while Estimator 8 does not. It is the act of inverting 
𝜮𝜮, especially when T is close to N so that the matrix is barely full rank, that is the source of the 
Parks estimator’s problem in producing reliable standard errors.14  

Figures 5 to 8 provide more detail about the relative performances of the estimators with 
respect to hypothesis testing. Unlike the previous figures, there are a great many unique points on 
the horizontal axis, which causes the lines to be far less regular.  For example, each estimator line 
in Figure 5 connects 80 individual points. Because each estimator has a unique estimate of the 
estimated coefficient’s standard error, there are now either 11 lines (Figures 5 and 7) or 10 
(Figures 6 and 8), to include in each figure. 

In order to maintain readability, Figures 5 and 6 highlight just three estimators: Estimator 8 
(solid black line, PCSE estimator), Estimator 6 (solid red line), and Estimator 7 (solid blue line). 
The other estimators are represented by identical dotted lines. We focus on Estimator 8 because 
Table 8 identified this estimator as “best” on the dimension of accuracy in hypothesis testing. We 
also highlight Estimator 6 because Table 8 indicates that this estimator also does relatively well. 
And we draw attention to Estimator 7 – the Parks estimator and the estimator chosen as best for 
efficiency when T/N > 1.5 – to show just how poorly this estimator performs when it comes to 
hypothesis testing. Figures 7 and 8 omit Estimator 7 because it cannot be estimated when T/N < 
1. 

Figures 5 and 6 illustrate the general point that hypothesis testing can be very unreliable when 
using standard panel data estimators. While the performance of Estimator 7 is uniquely dismal, 
many of the other estimators also perform unacceptably poorly. Even the “best” estimator, 
Estimator 8, has instances where its performance is less than stellar.  

Looking across all four Figures, it is clear that Estimator 8 (PCSE) generally dominates the 
other estimators across the diverse collection of experiments represented in Figures 5 through 8. 
While there are instances where one or more of the other estimators perform better than Estimator 
8 in a given experiment, it is difficult to know whether this is anything more than sampling error. 
Table 8, along with Figures 5 through 8 allow then the following modification to RY’s third 
recommendation:  

RECOMMENDATION 3: When the primary concern is hypothesis testing, use 
Estimator 8 (PCSE). 

_________________________ 

14 This suggests that an alternative FGLS estimator that restricted the number of cross-sectional elements in 𝜮𝜮, such 
as the one employed in O’Connell (1998), could mitigate the problem faced by the Parks estimator in producing reliable 
standard errors. We thank an anonymous reviewer for suggesting this. 
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Figure 5: Comparison of | 95 – Coverage | Values: Reed and Ye (2011) Datasets, T/N ≥ 1.0 

 
Note: The performance measure | 95 – Coverage | is defined in Section 2 in the text. Estimators are identified in 
Table 3. 

Figure 6: Comparison of | 95 – Coverage | Values: New Datasets, T/N ≥ 1.0 

 
Note: The performance measure | 95 – Coverage | is defined in Section 2 in the text. Estimators are identified in 
Table 3. 
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Figure 7: Comparison of | 95 – Coverage | Values: Reed and Ye (2011) Datasets, T/N < 1.0 

 
Note: The performance measure | 95 – Coverage | is defined in Section 2 in the text. Estimators are identified in 
Table 3. 

Figure 8: Comparison of | 95 – Coverage | Values: New Datasets, T/N < 1.0 

 
Note: The performance measure | 95 – Coverage | is defined in Section 2 in the text. Estimators are identified in 
Table 3. 

 

http://www.economics-ejournal.org/


Economics: The Open-Access, Open-Assessment E-Journal 12 (2018–4) 

www.economics-ejournal.org 27 

Together, Recommendations 1 through 3 allow an applied researcher choosing panel data 
estimators from Stata or Eviews to easily select the “best” estimator. When it comes to choosing 
an estimator for efficiency, the researcher only needs to know the size of the panel dataset (N and 
T). That is sufficient to determine his/her selection. When it comes to choosing an estimator for 
hypothesis testing, the choice is even simpler: choose Estimator 8, the PCSE estimator.  

Bootstrapping. While useful to applied researchers, the recommendations above require one 
to use different estimators depending on whether the primary interest is coefficient efficiency or 
accuracy in hypothesis testing. At the very least, this is awkward and difficult to motivate. It 
would be better if a researcher could use the same estimator for both estimation and inference. 

In a recent study, Moundigbaye et al. (2017) develop bootstrap methods for SUR models with 
autocorrelated errors. In this section, we demonstrate the feasibility of these methods by 
bootstrapping the Parks estimator. Table 9 compares the accuracy of the PCSE estimator with the 
parametric bootstrap from Moundigbaye et al. (2017). A full comparison lies beyond the purview 
of this study. However, the table provides some examples using Dataset 1 (cf. Table 1) for varying 
N and T values. In every case, the bootstrapping method produces more accurate inference results 
than the PCSE estimator. For example, when N = 5 and T = 10, 87.3 percent of the 95% 
confidence intervals calculated from the PCSE estimator contain the true value of 𝛽𝛽𝑥𝑥. In contrast, 
95.2 percent of confidence intervals contain the true value of 𝛽𝛽𝑥𝑥 using the bootstrapped method.  

While only an example, this exercise suggests that when 𝑁𝑁 ≤ 𝑇𝑇, a single-estimator approach 
that uses the Parks estimator with bootstrapping can be superior to the two-estimator approach 
that relies on the Parks estimator for coefficient estimates and the PCSE estimator for hypothesis 
testing. This is a topic for future research. 

Table 9: A Comparison of the PCSE and Bootstrapped Parks Estimators With Respect to Inference:  
An Example 

N T 
PCSE Estimator 7 - Bootstrapped 

Coverage 
(1) 

|95 – Coverage| 
(2) 

Coverage 
(3) 

|95 – Coverage| 
(4) 

5 10 87.3 7.7 95.2 0.2 
5 15 89.8 5.2 95.4 0.4 
5 20 90.0 5.0 95.2 0.2 
5 25 92.5 2.5 96.4 1.4 

10 10 88.3 6.7 97.3 2.3 
10 15 91.0 4.0 98.5 3.5 
10 20 92.5 2.5 96.4 1.4 
10 25 93.0 2.0 96.3 1.3 

Note:  PCSE coverage rates are taken from Monte Carlo experiments using Dataset 1 and the respective N and T values.  
Bootstrapped coverage rates are calculated using the parametric bootstrap method of Moundigbaye et al. (2016). 
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5 Conclusion 

This study follows up a previous analysis of panel data estimators in Reed and Ye (2011). RY 
conducted Monte Carlo experiments to study the performance of a wide range of Parks-type panel 
data estimators. They focused on estimators that are readily available in statistical software 
packages such as Stata and Eviews, and for which the number of cross-sectional units (N) and 
time periods (T) are small to moderate in size. They developed three recommendations for applied 
researchers seeking guidance about which panel data estimator to use in their research. 

We identify a mistake in RY that affects their recommendations. Accordingly, we repeat the 
Monte Carlo experiments undertaken by RY, correcting their mistake. We also extend their study 
by including more real-world panel datasets on which to base our simulations. The result is a 
cleaner and more complete set of recommendations. In particular, we identify two estimators, a 
FGLS estimator that weights on heteroskedasticity and the Parks estimator, as being most efficient 
depending on whether T/N is less than or greater than 1.50, respectively. And we identify the 
PCSE estimator as being best for hypothesis testing in all situations. 

A major contribution of our study is that it maps observable characteristics of the data to a 
specific estimator choice. Our recommendations are based solely on the ratio of T/N, which is 
readily observable. The ability to map observable data characteristics to estimator selection is 
potentially very valuable for applied researchers.  

We note that while OLS with cluster robust standard errors is widely used by applied 
researchers, our experiments find that it performs relatively poorly on both efficiency and 
inference grounds for the small to moderately-sized panel datasets studied here. Thus, another 
contribution of our study is that it alerts researchers that there are better alternatives to OLS when 
the underlying DGP is assumed to be of the Parks variety. 

Our analysis leaves several issues unresolved. One such issue is unbalanced data. All of the 
experiments above assumed that the panel datasets are balanced. It is not clear how these 
recommendations need to be modified when this is not the case. Another issue concerns dynamic 
panel data. All of the experiments above assumed static DGPs. As is well known, dynamic panel 
data have a number of complications that require special attention. Similarly, our analysis does 
not include many other panel data estimators, some of which we mention in the introduction 
above. 

While we acknowledge the limitations of our study, it is still the case that the panel data 
estimators that come packaged in Stata and Eviews are widely used by many researchers. The fact 
that the best estimators separate out so clearly, across a wide variety of data environments, is 
striking. While additional work needs to be done, the findings of this study provide a useful start 
for researchers deciding which panel data estimator they should use. 
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Appendix 

List and Description of Panel Data Estimators 

Estimator Package Command 

1 Stata command = xtreg 

2 Stata command = xtreg 
options = robust 

3 Stata command = xtreg 
options = cluster(name of cross-sectional variable) 

4 Stata command = xtreg 
options = cluster(name of time period variable) 

5 Stata command = xtgls 
options = corr(independent)  panels(heteroscedastic) 

6 Stata command = xtgls 
options = corr(ar1)  panels(heteroscedastic) 

7 (Parks) Stata command = xtgls 
options = corr(ar1)  panels(correlated) 

8 (PCSE) Stata command = xtpcse 
options = corr(ar1) 

9 EViews GLS Weights = Cross-section weights 
Coef covariance method = White cross-section 

10 EViews GLS Weights = Cross-section weights 
Coef covariance method = White period 

11 EViews GLS Weights = Cross-section weights 
Coef covariance method = White (diagonal) 

Source: Table 1 in Reed and Ye (2011). 
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