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Abstract

This study uses Monte Carlo experimentsto produce new evidence on the performance of
awide range of panel data estimators. It focuses on estimators that are readily available
in statistical software packages such as Stata and Eviews, and for which the number of
cross-sectional units (N) and time periods (T) are small to moderate in size. The goal is
to develop practical guidelines that will enable researchers to select the best estimator
for agiven type of data. It extends a previous study on the subject (Reed and Ye, Which
panel data estimator should | use? 2011), and modifies their recommendations. The new
recommendations provide a (virtually) complete decision tree: When it comesto choosing
an estimator for efficiency, it uses the size of the panel dataset (N and T) to guide the
researcher to the best estimator. When it comes to choosing an estimator for hypothesis
testing, it identifies one estimator as superior across al the data scenarios included in the
study. An unusual finding isthat researchers should use different estimatorsfor estimating
coefficients and testing hypotheses. The authors present evidence that bootstrapping
allows one to use the same estimator for both.

(Replication Study)

JEL C23 C33
Keywords Pand data estimators; Monte Carlo simulation; PCSE; Parks model

Authors

Mantobaye Moundigbaye, University of Canterbury, New Zealand

William S. Rea, = University of Canterbury, New Zealand, bill.rea@canterbury.ac.nz
W. Robert Reed, Department of Economics and Finance, University of Canterbury,
Christchurch, New Zealand

Citation Mantobaye Moundigbaye, William S. Rea, and W. Robert Reed

(2018). Which panel data estimator should | use?: A corrigendum and extension.
Economics: The Open-Access, Open-Assessment E-Journal, 12 (2018-4): 1-31. http://
dx.doi.org/10.5018/economics-gjournal .ja.2018-4

Received July 25, 2017 Published as Economics Discussion Paper August 28, 2017
Revised November 24, 2017 Accepted January 9, 2018 Published January 30, 2018

© Author(s) 2018. Licensed under the Creative Commons License - Attribution 4.0 International (CC BY 4.0)


http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.5018/economics-ejournal.ja.2018-4
http://www.economics-ejournal.org/special-areas/replications

Economics: The Open-Access, Open-Assessment E-Journal 11 (2018-n)

1 Introduction

For applied researchers using panel data, there is an abundance of possible estimators one can
choose. A key issue is how one decides to handle cross-sectional dependence. There are three
general approaches. One approach is to model the error-variance covariance matrix in the
framework of Seemingly Unrelated Regression (SUR). Here the common estimator is Feasible
Generalized Least Squares (FGLS), where the cross-sectional covariances are typically modelled
parametrically. The classic reference is Parks (1967) and the corresponding data-generating
process (DGP) is commonly called the Parks model.

An alternative approach is to model the cross-sectional dependencies “spatially” (Anselin,
2013; Baltagi et al., 2013; Elhorst, 2014; Bivand and Piras, 2015). This typically involves
modelling the dependencies across units as a function of distance, in either a continuous or binary
fashion. While this has the advantage of greatly reducing the number of parameters to be
estimated, it comes at the cost of possible misspecification. Misspecification occurs if the nature
of the respective cross-sectional dependencies cannot be effectively reduced to a function of
distance (Corrado and Fingleton, 2012).

Another alternative is to model cross-sectional correlation as a function of time-specific
common factors (Pesaran and Smith, 1995; Bai, 2003; Coakley et al., 2006; Pesaran, 2006;
Eberhardt et al., 2013; Kapetanios et al., 2011). This approach has proven particularly popular in
the macro panel literature (Eberhardt and Teal, 2011). While the multi-factor framework for cross-
sectional correlation allows one to incorporate a number of other important issues, it also comes
at the cost of possible misspecification, because it greatly reduces the number of parameters to be
estimated.

Despite the existence of more recent alternatives, the Parks model continues to be relevant for
applied researchers. It is the underlying statistical model for Stata’s xtgls procedure, as well as
similar procedures in other software packages such SAS, Eviews, GAUSS, RATS, Shazam, and
others. However, a major problem with this model is the large number of parameters that need to
be estimated. In its general form, with groupwise heteroskedasticity, group-wise specific AR(1)
autocorrelation, and time-invariant cross-sectional correlation, the classic Parks model has a total

2
of (N ;3N) unique parameters in the error variance-covariance matrix (EVCM), where N is the

number of cross-sectional units.

This causes two problems. First, the FGLS estimator cannot be estimated when the number
of time periods, T, is less than N, because the associated EVCM cannot be inverted (Beck and
Katz, 1995). Second, even when T > N, there may be relatively few observations per EVCM
parameter, causing the associated elements of the EVCM to be estimated with great imprecision.
As demonstrated by Beck and Katz (1995), henceforth BK, this can cause severe underestimation
of coefficient standard errors, rendering hypothesis testing useless.

To address these problems, BK proposed a modification of the full GLS-Parks estimator
called Panel-Corrected Standard Errors (PCSE). PCSE preserves the (Prais-Winsten) weighting
of observations for autocorrelation, but uses a sandwich estimator to incorporate cross-sectional
dependence when calculating standard errors. The PCSE estimator has proven very popular, as
evidenced by over 2000 citations in Web of Science. All of this has opened up a myriad of choices
for applied researchers when it comes to choosing a panel data estimator.
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It is in this context that Reed and Ye (2011), henceforth RY, conducted Monte Carlo
experiments to test a large number of OLS and FGLS-type panel data estimators, including the
estimators studied by BK. They studied panel datasets for which the number of cross-sectional
units (N) and time periods (T) were small to moderate in size. Cross-sectional units ranged in size
from 5 to 77; and time periods ranged from 5 to 25. RY presented three recommendations to guide
researchers facing the decision of which panel data estimator to use. RY has been reasonably
well-cited. At the time of this writing, RY has 27 Web of Science citations and approximately 84
Google Scholar cites, indicating interest in guidance about how to choose a panel data estimator.

There are two reasons for writing this follow-up study to RY. First, there is a mistake in the
design of their experiments. In attempting to construct explanatory variables that have the
properties of “real world” data, they introduced additional autocorrelation that was not present in
the source datasets. As autocorrelation in the explanatory variables exacerbates the effect of
autocorrelation in the error term, this should affect their analysis.

Second, in their conclusion, RY called for additional experiments to confirm their
recommendations. In the Parks-type error structures used by BK and RY, there are often more
than a thousand unique elements in the respective EVCM. Rather than attempting to set
“plausible” values for all these parameters, RY estimate these from actual datasets, and then set
these estimated values as population values for the subsequent experiments. However, because
RY’s experiments were based on a relatively small number of datasets, there is concern that their
recommendations may not apply to other datasets. A replication of RY that extended their analysis
with different datasets provides an opportunity to test the validity of their recommendations.

Our study proceeds as follows. Section 2 summarizes the experimental design and datasets
used for our experiments. Section 3 demonstrates that we are able to replicate RY’s main findings.
Section 4 presents our results using an improved method for simulating values of the explanatory
variable, and additional datasets. Section 5 concludes.

2 Experimental Design

The data generating process (DGP). The experimental design for our analysis is taken from RY.
Given N cross-sectional units and T time periods, we model the following DGP,

(1) y=ifotxpyte,

where y, i, x, are each (NTx1) vectors, 3, and B, are scalars, and € is an (NTx1) vector of error
terms such that

2 e~N (0, Qpr),
where

(3) Oy =2Q11,
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2y incorporates groupwise heteroskedasticity, time-invariant cross-sectional dependence,
and first-order, common autocorrelation.l To get realistic values for the respective EVCM
elements, o, andp, we estimate these parameters from actual datasets, using the same
procedures that Stata and Eviews use in calculating their respective FGLS estimators.

Creation of simulated panel datasets. Table 1 lists the datasets that were employed in obtaining
population parameter values for the DGPs in the Monte Carlo experiments. In order to evaluate
the recommendations provided by RY, albeit with a corrected experimental design, we start with
the same datasets they used. These are listed in the top panel of Table 1. However, we also use
additional datasets that were not considered by RY. These are listed in the bottom panel of Table
1 (“new datasets™).

The first set of experiments draw data from the Penn World Table. For a given sized panel
dataset, say N=5 and T=5, we take the first N cross-sectional units and regress the log of real
GDP on the ratio of government expenditures to GDP and a set of country fixed effects for the
first T available time periods. We save the residuals from that regression. We then use those
residuals to obtain estimates of the individual elements of the EVCM, &, 1j=1.2,...N, and
p .2 We then repeat that procedure for all possible samples of T contiguous years. These estimates
are then averaged to obtain a “representative” EVCM,

1 = =2 =T-17]
r— - — —_ p p LIy p
O¢ll Ogl2 =+ OgIN — 1 — —7-2
= = = p p p
3 5 Og21 Og22 -+ Og2N ® — _ —7.3
3) NT = D p 1 p
_O-S,Nl O=N2 T O sNN a —=T-1 —=<T-2 —=<7-3
P p -1

1 Following BK and RY, we set the AR(1), autocorrelation parameter, p, to be the same for all cross-sectional units.

2 The reason we do not average cross-sectional covariances over different sets of cross-sectional units is that it would
work against our goal of producing parameters that “looked like” real world data. There is no reason to believe that
averaging the cross-sectional covariances of, say, (i) the US and France, (ii) the US and South Africa, and (iii) Russia
and Fiji would produce anything that looked like a cross-sectional covariance from an actual pair of countries.
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Table 1: Description of Datasets Used to Generate Population Parameters

Dataset Source Dependent Variable Independent Variables N T

REED AND YE (2011) DATASETS

1 Lo of real GDP Ratio of government expenditures to GDP

Ratio of government expenditures to GDP

2 Penn World Table Real GDP growth A 5, 10, 20, 50, 77 5, 10, 15, 20, 25
Country fixed effects
Tax Burden
3 Reed (2008) Log of real state PCPI State fixed effects 5, 10, 20, 48 5, 10, 15, 20, 25
4 Reed (2008) Real state PCPI growth Tax Burden 5, 10, 20, 48 5, 10, 15, 20, 25

State fixed effects

Ratio of government expenditures to GDP
5 Penn World Table Log of real GDP Country fixed effects 5, 10, 20, 50, 77 5, 10, 15, 20, 25
Time fixed effects

Ratio of government expenditures to GDP

6 Penn World Table Real GDP growth Country fixed effects 5, 10, 20, 50, 77 5, 10, 15, 20, 25
Time fixed effects
Tax Burden
7 Reed (2008) Log of real state PCPI State fixed effects 5, 10, 20, 48 5, 10, 15, 20, 25
Time fixed effects
Tax Burden
State fixed effects
8 Reed (2008) Real state PCPI growth Time fixed effects 5, 10, 20, 48 5, 10, 15, 20, 25
NEW DATASETS
Gross Aid Disbursement as Freedom House Score
9 Kersting & Kilby (2014) Share of GDP (Germany . 5, 10, 20, 50, 77 10, 15, 20, 25
. ) Country fixed effects
Aid Allocation)
10 Casper & Tufis (2003) Vanhanen's Democracy Primary educatlon enrolment (share of population) 5. 10, 20, 50 10, 15, 20, 25
Index Country fixed effects
1 Biagi et al. (2012) prlme:- per 100000 Tourists arrivals per square kilometre Country fixed 5, 10, 20, 50, 77 10, 15, 19
inhabitants effects
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Dataset Source Dependent Variable Independent Variables N T
. . US-Wheat Aid (1000 MT)
12 Nunn & Qian (2014) Any Conflict Country fixed effects 5, 10, 20, 50, 77 10, 15, 20, 25
Gross Aid Disbursement as Freedom House Score
13 Kersting & Kilby (2014) Share of GDP (Germany Country fixed effects 5, 10, 20, 50, 77 10, 15, 20, 25
Aid Allocation) Year fixed effects
vanhanen's Democrac Primary education enrolment (share of population)
14 Casper & Tufis (2003) y Country fixed effects 5,10, 20, 50 10, 15, 20, 25
Index .
Year fixed effects
. Tourists arrivals per square kilometre Country fixed
15 Biagi et al. (2012) Crime ~ per 100000 oeoors 5, 10, 20, 50, 77 10, 15, 19
inhabitants .
Year fixed effects
US-Wheat Aid (1000 MT)
16 Nunn & Qian (2014) Any Conflict Country fixed effects 5, 10, 20, 50, 77 10, 15, 20, 25

Year fixed effects
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To obtain a representative vector of x values, we randomly select one contiguous, T-year
period.3 Let these values be given by X. Then for given values of 8, and S,., we generate simulated
y values from the following DGP:

6) Y=iBo+Xp+E

where & consists of simulated, normally distributed error terms having mean 0 and an EVCM
equal to 2,7. The vector of ¥ and ¥ values are then used to obtain estimates of 8, for each of the
estimators under study.

This procedure was followed for each of the N and T values listed in Table 1, and each of the
respective datasets.4 Note that each N and T pair produces a unique set of G W=12,.N,
and p values (and thus unique EVCM), as well as unique X values. Accordingly, each of the
original sixteen datasets becomes the parent for anywhere from 15 to 25 artificial datasets,
depending on the number of possible (N,T) combinations. These “offspring” datasets, besides
having different sizes, also have different characteristics. For example, a cross-country dataset
that has level of income as its dependent variable and that includes the world’s largest economies
such as the US, China, Germany, Japan, and the UK, will have very different heteroskedasticity
characteristics than a dataset that omits these countries. Further, cross-country dependencies will
vary greatly depending on the specific countries that are included.

The datasets listed in Table 1 are quite diverse. In particular, the new datasets listed in the
bottom panel are distinctly different from the original RY datasets. The original RY datasets used
dependent variables that were income-based, either cross-country/GDP values (level and growth)
or US state/PCPI values (level and growth). In contrast, the dependent variables for the new
datasets are (i) international aid (Datasets 9 and 13), (ii) a democracy index (Datasets 10 and 14);
(iii) crime per capita (Datasets 11 and 15), and (iv) a binary variable indicating conflict (Datasets
12 and 16). And not just the dependent variables, but the explanatory variables are very different.
This should produce a wide variety of artificial panel datasets having very different EVCMs.

3 RY made a mistake in their experimental design by averaging the X values. This introduced excessive
autocorrelation in X¥. When the error terms are serially correlated, the serial correlation in the regressor
affects the variance of its OLS coefficient estimator variance. The following relationship connects the
variance of OLS slope estimator characterised by first order serial correlation of both the error term and the

regressor, Var (Br (1), on the one hand, and that of the usual OLS slope estimator, Var(B,.s), on the other
(see Gujarati 2004, p 452): Var(Barcy) = Var(Bovs) (i—:’;), where r and p denote the first order serial

correlation coefficients of the regressor and the error term respectively. Thus, exaggerating the serial
correlation in the regressor worsens the bias in the estimated coefficient standard error. We note that Beck
and Katz (1995) made a related error on the other side in their Monte Carlo experiments by generating x;;
values that were “random draws from a zero-mean normal distribution” (BK, page 638). By ignoring the
role of autocorrelation in the explanatory variable, they diminished the problems caused by autocorrelation.
This was pointed out in a replication study by Reed and Webb (2010).

4 The maximum N and T values listed in Table 1 are often less than the size of the panel dataset in the
original dataset. For example, the original Dataset 1 used by RY contained data on 97 countries for 40 years
(1961-2000). However, data issues, usually caused by problems with the Cholesky decomposition function
in creating simulated error terms, forced us to limit the sizes of some of the panel datasets. For the same
reason, the actual number of datasets we were able to create is less than the total possible combinations
from pairing all possible N and T values in the table.
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Table 2: List and Description of Panel Data Estimators to Be Studied

Estimator Procedure Assumed Error Structure
1 OLS-1A 11D
2 OLS-1B Robust heteroskedasticity
3 OoLS-1C Robust heteroskedasticity + Robust autocorrelation
4 OLS-1D Robust heteroskedasticity + Robust cross-sectional dependence
5 FGLS-1A Groupwise heteroskedasticity
6 FGLS-2 Groupwise heteroskedasticity + autocorrelation
7 FGLS-3 (Parks) Groupwise heteroskedasticity + autocorrelation + cross-sectional dependence
8 FGLS-4 (PCSE) Groupwise heteroskedasticity + autocorrelation + cross-sectional dependence
9 FGLS-1B Weight = Groupwise heteroskedasticity
Var-Cov = Robust heteroskedasticity + Robust cross-sectional dependence
10 FGLS-1C Weight = Groupwise heteroscedasticity
Var-Cov = Robust heteroskedasticity + Robust autocorrelation
11 FGLS-1D Weight = Groupwise heteroskedasticity

Var-Cov = Robust heteroskedasticity

Note: Interpretation of the numbering and lettering of the procedures is given in Section 2 in the text. Further details about the estimator is given in the Appendix.
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The estimators. Through this gauntlet of diverse data environments we run the respective
estimators. These are identified in Table 2. These are the same estimators studied by RY. All of
the estimators correspond to a particular Stata or Eviews panel data estimator.® Each estimator is
a special case of the following:

7 B=(xwlx) xwly
©®  var(B) = (xwx) " Xwlawlx(xw-1x)

where X =[i %], B=1[8, P.], W is the “weighting” matrix, and £ is the estimated EVCM.®
For example, in the case of OLS with an assumed 11D error structure (Estimator 1), W = I and
0 = 621 In the case of Estimator 5 (FGLS-1A), W = 2, where £ is the diagonal matrix with
group-specific variances on the main diagonal. Estimator 9 (FGLS-1B) has the same weighting
matrix W, and thus produces an identical estimate, 8, but estimates £ using a robust estimator
that clusters on time period, and thus produces different standard errors than Estimator 5.

Table 2 employs the notation that estimators with the same weighting matrix W have the same
number index. Estimators with different £ matrices have different letter indices. So all the FGLS-
1 estimators use the same weighting matrix (based on groupwise heteroskedasticity), but FGLS-
1A calculates different standard errors than FGLS-1B, FGLS-1C, and FGLS-1D.

Estimators 1, 7, and 8 are particularly worth noting. Estimator 1 is conventional (pooled)
OLS.” This will serve as the benchmark estimator against which the other estimators will be
compared. Estimator 7 is the Parks estimator. It is asymptotically efficient, but requires 7> N.8
Estimator 8 is BK’s PCSE estimator which has become a popular substitute for the Parks estimator
because of its claimed finite sample advantages.

Performance measures. The experiments compare the respective panel data estimators on two
dimensions, efficiency and accuracy in hypothesis testing. An experiment consists of 1000
replications, where each replication draws a unique panel data sample simulated from a common
DGP, corresponding to given “offspring” dataset. For each experiment and each estimator, we
calculate an EFFICIENCY value defined by,

R ~ ® )2
\/Zrzl Estimator ﬂx
Estimator — 100- ,
R ( ~ (I’) )2
ZH oLs — :Bx

where /3, is the true value of the slope coefficient, and A% and B% are the estimated

Estimator

9  EFFICIENCY

values of [, in a given replication r as estimated by OLS and the estimator that is being

S The Appendix lists the specific commands in Stata or Eviews that correspond to each estimator.

6 Note that 2 = .(Zlm. .(ZzNT is the population EVCM used in the DGP to generate the simulated 7 and ¥ data. £ is the
EVCM estimated from residuals generated by regressing ¥ on X .

7 Note that the DGP does not contain fixed effects, so we omit fixed effects estimators from the choice set.

8 1t is possible to estimate the full Parks model in Stata when T < N. This is made possible through the use of a
generalized inverse function in Stata that allows one to invert matrices that are not full rank. However, our own
investigations indicate that the resulting estimators do not perform well.
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compared to OLS, respectively. Smaller values indicate a more efficient estimator. OLS is defined
to have an EFFICIENCY value of 100. Estimators with EFFICIENCY values less than 100 are
thus more efficient than OLS for datasets having the given characteristics.

To measure accuracy in hypothesis testing, we calculate two measures. The first is the
coverage rate, Coverage, defined as the percent of 95% confidence intervals around S, that
include the true value of §,. We also calculate the absolute value of the difference between 95%
and the coverage rate, |95 — Coverage|. Estimators for which |95 — Coverage| is closest to zero are
judged to be superior with respect to accuracy in hypothesis testing.

As seen in Table 2, estimators 5, 9, 10, and 11 all share the same weighting matrix, W,
weighting solely on (groupwise) heteroskedasticity. As a result, these estimators will produce
identical coefficient estimates 8 when using the same data (cf. Equation 7). Thus, in comparing
estimators on the dimension of efficiency, we treat these estimators as one and refer to Estimator
5/9/10/11. When it comes to assessing their accuracy in hypothesis testing, they will be treated
separately because they produce different estimates of Var(ﬁ) (cf. Equation 8).

RY’s three recommendations. Based on their analysis of the performances of the eleven
estimators in Table 3, RY provide three recommendations.9

1. When the primary concern is efficiency and 7/N > 1.50, use Estimator 7.

2. When the primary concern is efficiency, T/N < 1, and Heteroskedasticity > 1.67, use
either Estimator 5 or Estimator 6.

3. When the primary concern is constructing accurate confidence intervals and
Autocorrelation < 0.30, use either Estimator 8 or Estimator 4.

These recommendations are designed as guides for applied researchers, mapping
observed/measurable characteristics of the data — such as the ratio of time periods to units, or the
degree of heteroskedasticity or autocorrelation — to the choice of a “best” estimator.

Two things are noteworthy in this regard. First, the recommendations have “gaps.” For
example, when choosing estimators on the basis of efficiency, there is a recommendation for cases
where 7/N > 1.50 and T/N < 1, but nothing for 1 < T/N < 1.50. And when it comes to selecting
an estimator based on accurate confidence intervals, and hence preferred for hypothesis testing,
there is no recommendation when Autocorrelation > 0.30. The reason for these gaps is that RY
could not identify a consistently best estimator for these data situations.

Also noteworthy is the fact that RY recommend different estimators depending on whether
one’s primary interest is efficiency or accuracy in hypothesis testing. While this is unusual, it is
not contradictory. The expression for Var(ﬁ) in Equation (8) does not have finite sample validity.
The substitution of 2 for £ is justified on the basis of the “analogy principle” (Manski, 1988).
While correct asymptotically — assuming the respective estimates of the EVCM elements are
consistent — it may be a better or worse substitute in finite samples for some estimators versus
others depending on the specifics of the deviation between £ and 2. Further, because 2 factors
differently into Equations (7) and (8), it is possible that this deviation affects an estimator’s
relative performance in hypothesis testing more or less than its relative performance in efficiency.

9 In order to make their recommendations easier to understand, we have replaced their terminology with the
nomenclature from this paper. The substituted terms are italicized.
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To summarize, RY’s recommendations provide a potentially useful guide to applied
researchers facing a choice of panel data estimators. However, their recommendations are
incomplete, and they have the unusual feature of advising different estimators for coefficient
efficiency and accuracy in hypothesis testing. While their analysis introduced additional
autocorrelation in the simulated values of the explanatory variables, it’s not clear to what extent
this affected their results. Our analysis attempts to see whether correcting this mistake alters their
recommendations, and if it does, whether the new recommendations are robust when these
recommendations are applied to entirely new datasets.

Table 3: Replication of Table 3 in Reed and Ye (2011)

Reed and Ye (2011)

N<T N>T N<T N>T
Estimator 5/9/10/11 95.2 82.9 58.8 84.4
Estimator 6 95.1 83.1 713 79.7
Estimator 7 73.9 96.3 --
Estimator 8 100.8 101.0 62.5 51.6
Replication

Percent of experiments where estimator is

Average EFFICIENCY more efficient than OLS

N<T N>T N<T N>T
Estimator 5/9/10/11 95.2 82.9 58.8 84.4
Estimator 6 95.1 82.6 713 81.3
Estimator 7 73.7 -- 96.3 --
Estimator 8 100.8 101.0 63.8 57.8

3 Replication

Reproducing the RY’s original results. The first step in our analysis is to confirm that we are able
to reproduce RY’s findings. As we had access to their computer code, this was straightforward.
The top panel of Table 3 copies the values from Table 3 in RY and reports two measures of
efficiency for the different panel data estimators: (i) average EFFICIENCY, and (ii) the percent
of experiments where the estimator is more efficient than OLS. The experimental results are
reported separately for datasets having N < T and N > T. We recall that lower values indicate
greater efficiency.

The bottom panel of Table 3 reports our replication of RY’s results. We obtain very similar
results. Note that our replication is unable to exactly reproduce their results. Because the datasets
are randomly generated, differences will necessarily arise due to sampling error. However, as the
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results are averaged over 1000 replications for each experiment, these differences are expected to
be relatively small. Indeed, that is the case.

Table 4 repeats the replication exercise, this time focussing on two measures of accuracy in
hypothesis testing: (i) coverage rates, and (ii) the absolute value of the difference between 95 and
the coverage rate. Once again, the top panel copies the results from RY (see Table 5 in RY). The
bottom panel reports our replication. While there are differences, they are, again, relatively small.

Having confirmed that we are able to reproduce RY’s key results for efficiency and accuracy
in hypothesis testing, we next turn to correcting the mistake in RY and re-doing their analysis
using both the datasets that they used, and extending their analysis to a new set of datasets.

Correlation in the explanatory variable. As discussed above, RY’s original procedure
introduced excessive autocorrelation in the explanatory variable. Table 5 illustrates the extent of
the problem using Dataset 1 (see Table 1). There are a total of 25 different NT combinations,
(N=5/T=5, N=5/T=10, ... , N=77/T=20, N=77/T=25). For each of these NT combinations, we
simulated 1000 datasets, first using RY’s original method, then using the corrected method.

RY’s original method is best explained via example. Let the values of the explanatory variable
x for a given cross-sectional unit i from the parent “real” dataset be given by (Xi1, Xiz, Xis, Xia, Xis,
Xis, ... , XiT). TO create the corresponding values of x for a simulated panel dataset having size T=5,
RY take all possible, contiguous 5-year periods: (Xi1, Xi2, Xis, Xia, Xis), (Xi2, Xi3, Xia, Xis, Xis), (Xis, Xia,
Xis, Xi6, Xi7), ... (Xi7-4, Xi.7-3, XiT-2, Xi 7-1, Xi7). X1 IS calculated as the average of the first element across
all possible sets of contiguous, 5-year periods, %, is the average of the second element across all
5-year sets, and so on. Note that the averages X, and X, will share a large number of underlying
x values, so that a regression of %, on X,_, will produce a high degree of “autocorrelation” in
excess of any autocorrelation that may exist in the underlying values of x. The corrected method
randomly selects one 5-year period of x values from the set of all possible 5-year sets and thus
avoids this manufactured, spurious autocorrelation.

Table 5 compares the average, estimated AR(1) coefficient for the explanatory variable in
each of the simulated, NT datasets generated from Dataset 1 using both RY”s method and the
corrected method. For example, for simulated datasets having dimension N=5,T=5, RY’s method
produces explanatory variables having an average, estimated AR(1) parameter equal to 0.979. In
contrast, randomly selected, 5-year contiguous periods have an average, estimated AR(1)
coefficient of 0.602. Across all simulated datasets, RY’s method produces an average
autocorrelation of 0.969, with minimum and maximum values of 0.926 and 0.995. In contrast, the
corrected method produces an average autocorrelation coefficient of 0.635, with minimum and
maximum values of 0.204 and 0.833. The next section reports the results of our analysis using the
corrected method for generating values of the explanatory variable. We also extend RY’s analysis
by expanding the set of datasets used in our simulations.
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Table 4: Replication of Table 5 in Reed and Ye (2011)

Reed and Ye (2011)

N<T
Absolute value of

N>T
Absolute value of

COVERAGE (95-COVERAGE) COVERAGE (95-COVERAGE)
over all experiments over all experiments
Estimator 1 73.6 21.9 74.2 21.9
Estimator 2 73.7 21.8 77.9 18.8
Estimator 3 83.5 11.6 91.8 3.9
Estimator 4 72.7 22.5 74 21.3
Estimator 5 69.8 25.6 72.6 22.9
Estimator 6 86.4 9.3 88.8 7.2
Estimator 7 43.3 51.7 -- --
Estimator 8 87.8 7.2 88.1 6.9
Estimator 9 66.1 28.9 65.4 29.6
Estimator 10 68.1 26.9 80.1 14.9
Estimator 11 69.5 25.9 72.4 23.2
Replication
N<T N>T
Absolute value of Absolute value of
COVERAGE (95-COVERAGE) COVERAGE (95-COVERAGE)
over all experiments over all experiments
Estimator 1 73.6 21.9 75.7 20.5
Estimator 2 73.7 21.8 79.3 17.5
Estimator 3 83.5 11.6 92.7 3.0
Estimator 4 72.7 22.5 75.8 19.6
Estimator 5 69.8 25.6 74.1 21.4
Estimator 6 86.4 9.3 90.2 55
Estimator 7 43.3 51.7 -- --
Estimator 8 87.8 7.2 89.1 5.9
Estimator 9 66.1 28.9 66.7 28.3
Estimator 10 68.1 26.9 815 135
Estimator 11 69.5 25.9 73.9 21.7
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Table 5: Example of Excessive Autocorrelation in Reed and Ye (2011)

Average Autocorrelation

N T in Explanatory Variable
Reed and Ye (2011) Corrected

5 5 0.979 0.602
5 10 0.995 0.608
5 15 0.970 0.690
5 20 0.959 0.798
5 25 0.976 0.805
10 5 0.980 0.204
10 10 0.993 0.581
10 15 0.970 0.716
10 20 0.964 0.768
10 25 0.975 0.751
20 5 0.953 0.239
20 10 0.971 0.598
20 15 0.973 0.645
20 20 0.973 0.755
20 25 0.979 0.833
50 5 0.955 0.261
50 10 0.943 0.557
50 15 0.963 0.720
50 20 0.971 0.777
50 25 0.978 0.797
77 5 0.926 0.318
77 10 0.957 0.615
77 15 0.969 0.706
77 20 0.974 0.738
77 25 0.979 0.789
Minimum 0.926 0.204
Maximum 0.995 0.833
Average 0.969 0.635

Note: Autocorrelations are estimated for the independent variable in Dataset 1 (see Table 1) under the (i) original Reed
and Ye (2011) and (ii) corrected experimental designs.
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4 Results1o

Sample characteristics of simulated datasets. Table 6 provides descriptive statistics for the
elements of the EVCMs estimated from the simulated datasets. Reported are measures of
heteroskedasticity, autocorrelation, and cross-sectional dependence. As before, the top panel
reports details about the original RY datasets, while the new datasets are featured in the bottom
panel, Within each panel, datasets are divided depending on whether 7> N or T < N. Each dataset
produces either ten or eleven observations of f,, one for each estimator (more on the estimators
below). There are fewer observations per dataset when T < N, because, as noted above, one of the
estimators (the fully specified FGLS with heteroskedasticity, autocorrelation, and cross-sectional
dependence; also known as the Parks estimator), cannot be estimated in this case.
Heteroskedasticity is calculated from a given dataset’s group-specific variances. We sort the
associated standard deviations and take the ratio of the 3 and 1% quartile values,

- g3rd quartile

~

Q|

A1 Larger values indicate greater heteroskedasticity. Autocorrelation is

g1st quartile

estimated by 7 . These values should range between -1 and 1, with the expectation that most of

the AR(1) parameters will be positive. Cross-sectional dependence is measured by the absolute
values of the cross-sectional correlations, averaged over all possible pairs of cross-sectional units.
Thesg, in turn, are calculated from the respective cross-sectional covariances, &, ;,1,j =1.2,....N,

i #J. These values should also range between 0 and 1.

Both the original RY datasets and the datasets new for this study demonstrate a wide range of
error behaviours. Heteroskedasticity ranges from a low of 1.21 to a high of 40.21.12
Autocorrelation ranges from —0.06 to 0.79, and cross-sectional correlation from 0.20 to 0.79. The
new datasets are generally characterized by greater heteroskedasticity and cross-sectional
dependence, but lesser autocorrelation.

Efficiency. This section compares the performance of the respective estimators. All the results
follow the procedures discussed above, and incorporate the correction to RY’s original
experimental design.13 Table 7 reports average performance measures for efficiency for different
subgroups of experiments. The first two columns report average EFFICIENCY values for all
experiments according to whether T/N < 1.5 or T/N > 1.5, where EFFICIENCY is calculated
using Equation (9). We choose the cut-off of 1.5 to be consistent with RY’s first

10 pata and code to replicate the results in this paper are posted at Dataverse:
https://dataverse.harvard.edu/dataset.xhtml?persistentld=d0i%3A10.7910%2FDVN%2FY KSATT.
11 Note that the &, terms are variances, and not standard deviations.

12 The particularly high heteroskedasticity values come from Datasets 12 and 16, where the dependent variable is zero-
one.

13 see Section 3 for our replication of RY’s results without correction to their experimental design.
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Table 6: Description of Simulated Datasets Used in the Experiments

Cross-sectional

Heteroskedasticity Autocorrelation Dependence
REED AND YE (2011) DATASETS
N<T Minimum 1.21 -0.06 0.20
(80 datasets; Mean 1.68 0.36 0.44
880 observations) Maximum 2.35 0.78 0.90
N>T Minimum 1.34 -0.04 0.22
(64 datasets; Mean 1.76 0.34 0.43
640 observations) Maximum 2.25 0.79 0.79
NEW DATASETS

N<T Minimum 1.26 0.08 0.22
(72 datasets; Mean 4.47 0.47 0.35
792 observations) Maximum 40.21 0.73 0.52
N>T Minimum 1.47 0.16 0.23
(68 datasets; Mean 6.93 0.46 0.34
680 observations) Maximum 34.91 0.73 0.49

Note: For more details on the construction of the simulated datasets, see Section 2 in the text.
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Table 7: Comparison of Estimator EFFICIENCY

Percentage of Times the Estimator

Estimator Average EFFICIENCY Is More Efficient Than OLS
TIN>15 T/NL15 T/IN>15 I/N<L15
(1) ©) ©) (4)
REED AND YE (2011) DATASETS

Estimator 5/9/10/11 96.6 84.2 68.8 78.9

Estimator 6 82.8 74.7 75.0 89.1
Estimator 7 (Parks) 45.5 66.1* 100.0 100.0*

Estimator 8 (PCSE) 86.9 89.1 62.5 72.7

NEW DATASETS

Estimator 5/9/10/11 70.8 54.5 88.6 97.9

Estimator 6 61.5 48.0 97.7 99.0
Estimator 7 (Parks) 46.9 80.1* 97.7 96.4*

Estimator 8 (PCSE) 85.1 921 95.5 80.2

* The results for Estimator 7 are not comparable to the other estimators when 7/N < 1.5 because they are based on a subset of the experiments, since Estimator 7 cannot be
estimated when T/N < 1.0.

Note: The EFFICIENCY measure is defined in Section 2 in the text. Yellow-coloured cells indicate “best” estimator for a given data-ty
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recommendation, and also based on our own analysis. The next two columns provide a different
perspective on efficiency. They report the percent of experiments where a given estimator is more
efficient than OLS. The “best” estimators are indicated by yellow-highlighting the respective cells
in the table.

The top panel reports the results for the datasets used by RY. According to RY’s first
recommendation, when researchers are primarily interested in efficiency and T/N is greater than
1.5, they should choose Estimator 7, the Parks estimator. Our findings confirm this
recommendation for the Reed and Ye (2011) datasets. When T/N > 1.5, the average EFFICIENCY
of Estimator 7 is 45.5, substantially lower than that of the other estimators. Moreover, Estimator
7 is always better than OLS (100 percent). The other estimators are more efficient than OLS most,
but not all, of the time.

The bottom part of the panel reports the results of experiments based on the new datasets.
This represents a clean “out of sample” test of RY’s recommendation, because none of these
datasets were included in RY’s analysis. Focussing again on the experiments where T/N > 1.5,
we see that Estimator 7 (FGLS-Parks) has a much lower average EFFICIENCY value than the
other estimators. Further, it is more efficient than OLS approximately 98 percent of the time, tied
for best most among all estimators.

Averages can mask much variation. Accordingly, Figures 1 and 2 plot the average
EFFICIENCY values for each of the estimators as a function of T/N when T/N > 1.5. Figure 1
does this for the RY datasets, and Figure 2 does this for the new datasets. The dotted, black line
at Average Efficiency = 100 represents the OLS estimator, which serves as a benchmark for the
other estimators.

Each line connects a series of points that report average EFFICIENCY, where the lines have
been smoothed for the sake of readability. There are five points underlying each line in Figure 1
(for T/N = 2.0, 2.5, 3.0, 4.0 and 5.0), and seven points in Figure 2 (T/N = 1.9, 2.0, 2.5, 3.0, 3.8,
4.0 and 5.0). The reason the lines do not change monotonically with T/N is that other
characteristics (heteroskedasticity, autocorrelation, cross-sectional dependence) are changing
simultaneously with T/N. The movement from one T/N value to another is, in fact, a movement
to a different DGP, with different population EVCM values.

Each of the estimators are color-coded in Figures 1 and 2. It is clear from both figures that the
light blue line, corresponding to Estimator 7 (the Parks estimator), strictly dominates the others.
For every T/N value included in our analysis, the average EFFICIENCY value for this estimator
lies strictly below that of the other estimators, indicating greater efficiency. This confirms RY’s
first recommendation.

We return to Table 7 and next examine the experiments where 7/N < 1.5. While Estimator 7
is included in the table, its results are not directly comparable to the other estimators because its
results are based on a much smaller number of experiments, since it cannot be estimated when
T/N < 1.0. Ignoring Estimator 7 for the moment, it is seen that Estimator 6 performs better than
the other estimators both in terms of having a lower average EFFICIENCY value (74.7 and 48.0
for the RY and new datasets, respectively), and in terms of besting OLS more frequently than the
other estimators (89.1 and 99.0 percent, respectively). Estimator 6 is essentially the Parks
estimator (Estimator 7), except that it does not accommaodate cross-sectional dependence.
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Figure 1: Comparison of Estimator EFFICIENCY: Reed and Ye (2011) Datasets, T/N > 1.5
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Note: The EFFICIENCY measure is defined in Section 2 in the text. Estimators are identified in Table 3.

Figure 2: Comparison of Estimator EFFICIENCY: New Datasets, T/N > 1.5
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Note: The EFFICIENCY measure is defined in Section 2 in the text. Estimators are identified in Table 3.
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Figures 3 and 4 further highlight the superior performance of Estimator 6 when it comes to
efficiency. We first note that the lines in the figures connect a larger number of points than in the
preceding figures. There are 16 points underlying each line in Figure 3 (for T/N = 0.13, 0.19,
0.20, 0.21, 0.26, 0.30, 0.31, 0.32, 0.40, 0.42, 0.50, 0.52, 0.75, 1.00, 1.25, and 1.50), and 15 points
in Figure 4 (T/N = 0.13, 0.19, 0.20, 0.25, 0.26, 0.30, 0.32, 0.38, 0.40, 0.50, 0.75, 0.95, 1.00, 1.25,
and 1.50). Estimator 6 is represented by the solid black line.

With one exception, Estimator 6 strictly dominates the other estimators over all values of T/N
reported in Figures 3 and 4. The lone exception involves Estimator 7 in the Reed and Ye (2011)
datasets for T/N = 1.50. For smaller values of T/N (1.00 and 1.25), Estimator 6 lies strictly below
Estimator 7 (indicating superior efficiency). When we turn to Figure 4 and the new datasets, we
see that Estimator 6 bests Estimator 7 even when T/N = 1.50. Thus, our results indicate that T/N
=1.50 is a crossing-over point. For values less than that, Estimator 6 is most efficient. For values
greater than that, Estimator 7 is most efficient. For values in the immediate vicinity of 1.50, either
estimator may be most efficient, depending on other characteristics of the dataset.

It is interesting to note that the superior performance of Estimator 6 for 1.0 <T/N<1.5isan
example of the “shrinkage principle.” This principle “asserts that the imposition of restrictions --
even false restrictions” can improve estimator performance (Diebold, 2007, p. 45). Even though
the population EVCM is characterized by cross-sectional dependence, the estimator that “falsely”
omits cross-sectional dependence (Estimator 6) outperforms the estimator that correctly includes
it (Estimator 7). The reason this “false restriction” is effective in these cases is because there are
insufficient observations to obtain reliable estimates of the cross-sectional covariances in X (cf.
Equation 3).

Our findings call for a modification of RY’s second recommendation, which states: “When
the primary concern is efficiency, T/N < 1, and Heteroskedasticity > 1.67, use either Estimator 5
or Estimator 6.” For one, there is no need to condition the recommendation on heteroskedasticity.
Second, Estimator 6 dominates Estimator 5 for all values of 7/N <1.5, so that Estimator 5 can be
omitted as a “best” option. And lastly, the superior performance of Estimator 6 extends for a wider
range of T/N values than determined by RY.

Taken together, the above results sketch a (virtually) complete decision tree for choosing the
most efficient panel data estimator, provided the estimators the researcher is choosing from are
included in Stata’s or Eviews’ standard statistical software package. This can be summarized in
the following two modified recommendations:

RECOMMENDATION 1: When the primary concern is efficiency and
T/N > 1.50, use Estimator 7 ( = Parks estimator).

RECOMMENDATION 2: When the primary concern is efficiency and
T/N < 150, use Estimator 6 (= Parks estimator without cross-sectional
dependence).

Accuracy in hypothesis testing. Table 8 reports performance results with respect to accuracy
in hypothesis testing. The key columns are those that report the average value of the absolute
difference between 95 percent and the coverage rate, |95 — Coverage|. An estimator should have
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Figure 3: Comparison of Estimator EFFICIENCY: Reed and Ye (2011) Datasets, T/N < 1.5
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Figure 4: Comparison of Estimator EFFICIENCY: New Datasets, T/N < 1.5
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Table 8: Comparison of Estimator Coverage Rates

Autocorrelation < 0.30 Autocorrelation > 0.30
Coverage |95 — Coverage| Coverage |95 — Coverage|
(1) 2) 3) (4)
REED AND YE (2011) DATASETS (T/IN>1)
Estimator 1 65.7 29.3 90.9 6.1
Estimator 2 64.1 30.9 91.0 4.9
Estimator 3 86.5 8.9 88.6 6.5
Estimator 4 60.1 34.9 91.5 3.8
Estimator 5 59.8 35.2 88.6 6.4
Estimator 6 88.0 7.1 90.9 44
Estimator 7 (Parks) 42.9 52.1 45.6 49.4
Estimator 8 (PCSE) 89.5 5.5 92.7 2.3
Estimator 9 51.9 43.1 85.6 94
Estimator 10 70.5 245 77.3 17.7
Estimator 11 58.5 36.5 88.2 6.8
NEW DATASETS (TIN>1)
Estimator 1 87.9 9.3 74.6 214
Estimator 2 83.1 11.9 73.2 22.0
Estimator 3 88.4 6.6 90.2 6.7
Estimator 4 83.6 114 747 20.3
Estimator 5 85.8 9.2 734 22.9
Estimator 6 90.9 4.1 90.9 5.7
Estimator 7 (Parks) 38.1 56.9 42.0 53.0
Estimator 8 (PCSE) 91.4 3.6 921 3.3
Estimator 9 75.5 195 64.7 30.3
Estimator 10 68.9 26.1 72.7 22.4
Estimator 11 80.6 144 68.6 26.4
REED AND YE (2011) DATASETS (T/N < 1)
Estimator 1 70.4 24.6 93.8 5.8
Estimator 2 67.1 217.9 93.7 4.0
Estimator 3 91.7 5.3 92.4 4.8
Estimator 4 61.9 33.1 94.1 1.3
Estimator 5 60.3 34.7 92.6 3.7
Estimator 6 86.9 8.2 93.2 34
Estimator 7 (Parks)
Estimator 8 (PCSE) 90.6 4.4 93.3 1.8
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Autocorrelation < 0.30 Autocorrelation > 0.30
Coverage |95 — Coverage| Coverage |95 — Coverage|

(1) (2) (3) (4)

Estimator 9 50.3 447 87.2 7.8
Estimator 10 76.6 18.4 86.2 8.8
Estimator 11 59.2 35.8 92.2 3.8

NEW DATASETS (T/N < 1)

Estimator 1 84.0 11.2 80.2 15.2
Estimator 2 81.9 131 78.2 16.8
Estimator 3 83.5 115 93.6 3.3
Estimator 4 88.3 6.7 75.6 19.4
Estimator 5 88.3 8.0 75.8 20.5
Estimator 6 93.6 4.0 93.2 3.9
Estimator 7 (Parks)
Estimator 8 (PCSE) 91.5 3.5 92.3 2.7
Estimator 9 71.8 23.2 63.6 31.4
Estimator 10 82.7 12.3 82.9 12.1
Estimator 11 84.4 10.6 71.2 23.8

Note: The performance measures Coverage and |95 — Coverage| are defined in Section 2 in the text. A yellow-coloured
cell indicates that Estimator 8 performs best for a given data-type. A green-coloured cell indicates that this estimator is
second best.

a coverage rate close to 95 percent. Coverage rates less than (greater than) than 95 percent will
reject the null hypothesis Hy: 8, = its true value too often (not often enough). Both outcomes
distort hypothesis testing. Thus the “best” estimator on the dimension of accuracy in hypothesis
testing is one for which |95 — Coverage| is closest to zero.

The table has four panels. The first two panels report performance results for the experiments
where T/N > 1 for the Reed and Ye (2011) datasets and the new datasets, respectively. The next
two panels report results for T/N < 1. T/N = 1 is selected as the cut-off because Estimator 7 (the
Parks estimator) cannot be estimated when T/N is less than this.

The table also has four columns, with the first two columns collecting experiments where the
associated datasets are characterized by Autocorrelation values less than 0.30, and the next two
columns reporting results when Autocorrelation > 0.30. This cut-off is motivated by RY’s third
recommendation. RY reported that Estimator 8 (the PCSE estimator) performed best for
hypothesis testing when Autocorrelation < 0.30, while no estimator performed acceptably for
autocorrelation values larger than this.

In the table, cells where Estimator 8 has the smallest |95 — Coverage| values are color-coded
yellow. Cells where Estimator 8 has the second smallest |95 — Coverage| value are color-coded
green. An inspection of the first two columns confirms RY’s third recommendation for both the
Reed and Ye (2011) datasets and the new datasets, irrespective of the value of T/N. Across the
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four subsets of experiments (Reed and Ye, 2011, T/N < 1 and 7/N > 1; and New Datasets, T/N <
1 and 7/N > 1), the values of | 95 — Coverage | range from a low of 3.5 to a high of 5.5.

However, the results allow one to go even further. When Autocorrelation > 0.30, Estimator 8
either has the smallest, or close to the smallest |95 — Coverage| value in each of the four
subsamples. Further, the corresponding values of |95 — Coverage| are quite small, ranging from
1.8t03.3.

It is worth noting that both Estimator 7 (Parks) and Estimator 8 (PCSE) estimate the same
number of parameters. Yet, as Table 8 makes clear, their performance with respect to inference
is markedly different. The main difference between the two is that Estimator 7 inverts X when
calculating the coefficient covariance matrix, while Estimator 8 does not. It is the act of inverting
X, especially when T is close to N so that the matrix is barely full rank, that is the source of the
Parks estimator’s problem in producing reliable standard errors.14

Figures 5 to 8 provide more detail about the relative performances of the estimators with
respect to hypothesis testing. Unlike the previous figures, there are a great many unique points on
the horizontal axis, which causes the lines to be far less regular. For example, each estimator line
in Figure 5 connects 80 individual points. Because each estimator has a unique estimate of the
estimated coefficient’s standard error, there are now either 11 lines (Figures 5 and 7) or 10
(Figures 6 and 8), to include in each figure.

In order to maintain readability, Figures 5 and 6 highlight just three estimators: Estimator 8
(solid black line, PCSE estimator), Estimator 6 (solid red line), and Estimator 7 (solid blue line).
The other estimators are represented by identical dotted lines. We focus on Estimator 8 because
Table 8 identified this estimator as “best” on the dimension of accuracy in hypothesis testing. We
also highlight Estimator 6 because Table 8 indicates that this estimator also does relatively well.
And we draw attention to Estimator 7 — the Parks estimator and the estimator chosen as best for
efficiency when T/N > 1.5 — to show just how poorly this estimator performs when it comes to
hypothesis testing. Figures 7 and 8 omit Estimator 7 because it cannot be estimated when T/N <
1.

Figures 5 and 6 illustrate the general point that hypothesis testing can be very unreliable when
using standard panel data estimators. While the performance of Estimator 7 is uniquely dismal,
many of the other estimators also perform unacceptably poorly. Even the “best” estimator,
Estimator 8, has instances where its performance is less than stellar.

Looking across all four Figures, it is clear that Estimator 8 (PCSE) generally dominates the
other estimators across the diverse collection of experiments represented in Figures 5 through 8.
While there are instances where one or more of the other estimators perform better than Estimator
8 in a given experiment, it is difficult to know whether this is anything more than sampling error.
Table 8, along with Figures 5 through 8 allow then the following modification to RY’s third
recommendation:

RECOMMENDATION 3: When the primary concern is hypothesis testing, use
Estimator 8 (PCSE).

14 This suggests that an alternative FGLS estimator that restricted the number of cross-sectional elements in X, such
as the one employed in O’Connell (1998), could mitigate the problem faced by the Parks estimator in producing reliable
standard errors. We thank an anonymous reviewer for suggesting this.
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Figure 5: Comparison of | 95 — Coverage | Values: Reed and Ye (2011) Datasets, T/N > 1.0

100 -

0 Dﬂ

80

70 4

. —

60

50

40 -

|95 %% - Coverage|

30 4

-0.1 0 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Autocorrelation

Estimator 4 =eeee=- Estimator 5 e Estimator 6
Estimator 10 ===«===+ Estimator 11

-++ Estimator 3

= Estimator 7 e Ectimator § =e«==-=+ Estimator 9

Note: The performance measure | 95 — Coverage | is defined in Section 2 in the text. Estimators are identified in

Table 3.

Figure 6: Comparison of | 95 — Coverage | Values: New Datasets, T/N > 1.0
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Note: The performance measure | 95 — Coverage | is defined in Section 2 in the text. Estimators are identified in

Table 3.
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Figure 7: Comparison of | 95 — Coverage | Values: Reed and Ye (2011) Datasets, T/N < 1.0
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Note: The performance measure | 95 — Coverage | is defined in Section 2 in the text. Estimators are identified in
Table 3.

Figure 8: Comparison of | 95 — Coverage | Values: New Datasets, T/N < 1.0
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Note: The performance measure | 95 — Coverage | is defined in Section 2 in the text. Estimators are identified in
Table 3.
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Together, Recommendations 1 through 3 allow an applied researcher choosing panel data
estimators from Stata or Eviews to easily select the “best” estimator. When it comes to choosing
an estimator for efficiency, the researcher only needs to know the size of the panel dataset (N and
T). That is sufficient to determine his/her selection. When it comes to choosing an estimator for
hypothesis testing, the choice is even simpler: choose Estimator 8, the PCSE estimator.

Bootstrapping. While useful to applied researchers, the recommendations above require one
to use different estimators depending on whether the primary interest is coefficient efficiency or
accuracy in hypothesis testing. At the very least, this is awkward and difficult to motivate. It
would be better if a researcher could use the same estimator for both estimation and inference.

In a recent study, Moundigbaye et al. (2017) develop bootstrap methods for SUR models with
autocorrelated errors. In this section, we demonstrate the feasibility of these methods by
bootstrapping the Parks estimator. Table 9 compares the accuracy of the PCSE estimator with the
parametric bootstrap from Moundigbaye et al. (2017). A full comparison lies beyond the purview
of this study. However, the table provides some examples using Dataset 1 (cf. Table 1) for varying
N and T values. In every case, the bootstrapping method produces more accurate inference results
than the PCSE estimator. For example, when N = 5 and T = 10, 87.3 percent of the 95%
confidence intervals calculated from the PCSE estimator contain the true value of ,. In contrast,
95.2 percent of confidence intervals contain the true value of 5, using the bootstrapped method.

While only an example, this exercise suggests that when N < T, a single-estimator approach
that uses the Parks estimator with bootstrapping can be superior to the two-estimator approach
that relies on the Parks estimator for coefficient estimates and the PCSE estimator for hypothesis
testing. This is a topic for future research.

Table 9: A Comparison of the PCSE and Bootstrapped Parks Estimators With Respect to Inference:

An Example
PCSE Estimator 7 - Bootstrapped

N T Coverage |95 — Coverage| Coverage |95 — Coverage|

Q) ) @) (4)
5 10 87.3 7.7 95.2 0.2
5 15 89.8 5.2 95.4 0.4
5 20 90.0 5.0 95.2 0.2
5 25 92.5 2.5 96.4 1.4
10 10 88.3 6.7 97.3 2.3
10 15 91.0 4.0 98.5 35
10 20 92.5 2.5 96.4 1.4
10 25 93.0 2.0 96.3 1.3

Note: PCSE coverage rates are taken from Monte Carlo experiments using Dataset 1 and the respective N and T values.
Bootstrapped coverage rates are calculated using the parametric bootstrap method of Moundigbaye et al. (2016).
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5 Conclusion

This study follows up a previous analysis of panel data estimators in Reed and Ye (2011). RY
conducted Monte Carlo experiments to study the performance of a wide range of Parks-type panel
data estimators. They focused on estimators that are readily available in statistical software
packages such as Stata and Eviews, and for which the number of cross-sectional units (N) and
time periods (T) are small to moderate in size. They developed three recommendations for applied
researchers seeking guidance about which panel data estimator to use in their research.

We identify a mistake in RY that affects their recommendations. Accordingly, we repeat the
Monte Carlo experiments undertaken by RY, correcting their mistake. We also extend their study
by including more real-world panel datasets on which to base our simulations. The result is a
cleaner and more complete set of recommendations. In particular, we identify two estimators, a
FGLS estimator that weights on heteroskedasticity and the Parks estimator, as being most efficient
depending on whether T/N is less than or greater than 1.50, respectively. And we identify the
PCSE estimator as being best for hypothesis testing in all situations.

A major contribution of our study is that it maps observable characteristics of the data to a
specific estimator choice. Our recommendations are based solely on the ratio of T/N, which is
readily observable. The ability to map observable data characteristics to estimator selection is
potentially very valuable for applied researchers.

We note that while OLS with cluster robust standard errors is widely used by applied
researchers, our experiments find that it performs relatively poorly on both efficiency and
inference grounds for the small to moderately-sized panel datasets studied here. Thus, another
contribution of our study is that it alerts researchers that there are better alternatives to OLS when
the underlying DGP is assumed to be of the Parks variety.

Our analysis leaves several issues unresolved. One such issue is unbalanced data. All of the
experiments above assumed that the panel datasets are balanced. It is not clear how these
recommendations need to be modified when this is not the case. Another issue concerns dynamic
panel data. All of the experiments above assumed static DGPs. As is well known, dynamic panel
data have a number of complications that require special attention. Similarly, our analysis does
not include many other panel data estimators, some of which we mention in the introduction
above.

While we acknowledge the limitations of our study, it is still the case that the panel data
estimators that come packaged in Stata and Eviews are widely used by many researchers. The fact
that the best estimators separate out so clearly, across a wide variety of data environments, is
striking. While additional work needs to be done, the findings of this study provide a useful start
for researchers deciding which panel data estimator they should use.

www.economics-ejournal.org 28


http://www.economics-ejournal.org/

Economics: The Open-Access, Open-Assessment E-Journal 12 (2018-4)

References

Anselin, L. (2013). Spatial econometrics: methods and models (\VVol. 4). Springer Science & Business
Media.

Bai, J., (2003). Inferential theory for factor models of large dimensions. Econometrica, 71: 135-173.
http://www.jstor.org/s Table/3082043

Baltagi, B.H., Egger, P., and Pfaffermayr, M. (2013). A generalized spatial panel data model with random
effects. Econometric Reviews, 32(5-6): 650-685. https://doi.org/10.1080/07474938.2012.742342

Beck, N. and Katz, J.N. (1995). What to do (and not to do) with time series cross-section data. American
Political Science Review, 89: 634-647. http://www.jstor.org/s Table/2082979

Biagi, B., Brandano, M.G., and Detotto, C. (2012). The effect of tourism on crime in Italy: a dynamic panel
approach. Economics: The Open-Access, Open-Assessment E-Journal, 6 (2012-25): 1-24.
http://dx.doi.org/10.5018/economics-ejournal.ja.2012-25

Bivand, R., and Piras, G. (2015). Comparing implementations of estimation methods for spatial
econometrics. Journal of Statistical Software, Vol. 63(18).
https://www.jstatsoft.org/article/view/v063i18

Casper, G. and Tufis, C. (2003). Correlation versus interchangeability: The limited robustness of empirical
findings on democracy using highly correlated data sets. Political Analysis, 11(2):
196-203.
https://www.researchgate.net/publication/245023372_Correlation_Versus_Interchangeability_The
_Limited_Robustness_of Empirical_Findings_on_Democracy_Using_Highly Correlated_Data_S
ets

Coakley, J., Fuertes, A.-M., and Smith, R.P. (2006). Unobserved heterogeneity in panel time series models.
Computational Statistics & Data Analysis, 50(9): 2361-2380.
https://doi.org/10.1016/j.csda.2004.12.015

Corrado, L., and Fingleton, B. (2012). Where is the economics in spatial econometrics? Journal of Regional
Science, 52(2): 210-239.
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9787.2011.00726.x/abstract

Diebold, F.X. (2007). Elements of forecasting, 4" Edition. Ohio: Thomson, South-Western.

Eberhardt, M., Helmers, C., and Strauss, H. (2013). Do spillovers matter when estimating private returns
to R&D? The Review of Economics and Statistics, 95(2): 436-448.
https://doi.org/10.1162/REST_a_00272

Eberhardt, M., and Teal, F. (2011). Econometrics for grumblers: a new look at the literature on cross-
country growth empirics. Journal of Economic Surveys, 25(1): 109-155.
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-6419.2010.00624.x/abstract

Elhorst, J.P. (2014). Spatial panel data models. In Spatial Econometrics (pp. 37-93). Springer: Berlin,
Heidelberg. https://www.researchgate.net/publication/226957388_Spatial_Panel_Data_Models

Guijarati, D.N. (2004). Basic econometrics, 4th Edition. The McGraw—Hill Companies.

www.economics-ejournal.org 29


http://www.economics-ejournal.org/
http://www.jstor.org/stable/3082043
https://doi.org/10.1080/07474938.2012.742342
http://www.jstor.org/stable/2082979
http://dx.doi.org/10.5018/economics-ejournal.ja.2012-25
https://www.jstatsoft.org/article/view/v063i18
https://www.researchgate.net/publication/245023372_Correlation_Versus_Interchangeability_The_Limited_Robustness_of_Empirical_Findings_on_Democracy_Using_Highly_Correlated_Data_Sets
https://www.researchgate.net/publication/245023372_Correlation_Versus_Interchangeability_The_Limited_Robustness_of_Empirical_Findings_on_Democracy_Using_Highly_Correlated_Data_Sets
https://www.researchgate.net/publication/245023372_Correlation_Versus_Interchangeability_The_Limited_Robustness_of_Empirical_Findings_on_Democracy_Using_Highly_Correlated_Data_Sets
https://doi.org/10.1016/j.csda.2004.12.015
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9787.2011.00726.x/abstract
https://doi.org/10.1162/REST_a_00272
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-6419.2010.00624.x/abstract
https://www.researchgate.net/publication/226957388_Spatial_Panel_Data_Models
http://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=Damodar+N.+Gujarati&search-alias=books&text=Damodar+N.+Gujarati&sort=relevancerank

Economics: The Open-Access, Open-Assessment E-Journal 12 (2018-4)

Kapetanios, G., Pesaran, M.H., and Yamagata, T. (2011). Panels with nonstationary multifactor error
structures. Journal of Econometrics, 160(2): 326-348.
https://doi.org/10.1016/j.jeconom.2010.10.001

Kersting, E. and Kilby, C. (2014). Aid and democracy redux. European Economic Review, 67: 125-143.
https://doi.org/10.1016/j.euroecorev.2014.01.016

Manski, C.F. (1988). Analog estimation methods in econometrics. New York: Chapman & Hall.

Moundigbaye, M., Messemer, C., Parks, R.W., and Reed, W.R. (2017) Bootstrap methods for inference in
a SUR model with autocorrelated disturbances. Working paper, Department of Economics and
Finance, University of Canterbury.
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=613081

Nunn, N. and Qian, N. (2014). US food aid and civil conflict. American Economic Review, 104(6):
1630-1666. http://dx.doi.org/10.1257/aer.104.6.1630

O’Connell, P.G.J. (1998). The overvaluation of purchasing power parity. Journal of International
Economics, 44: 1-19. https://doi.org/10.1016/S0022-1996(97)00017-2

Parks, R.W. (1967). Efficient estimation of a system of regression equations when disturbances are both
serially and contemporaneously correlated. Journal of the American Statistical Association, 62:
500-509. http://www.jstor.org/s Table/2283977

Pesaran, M.H. (2006). Estimation and inference in large heterogeneous panels with a multifactor error
structure. Econometrica, 74: 967-1012. http://www.jstor.org/s Table/3805914

Pesaran, M.H., and Smith, R. P. (1995). Estimating long-run relationships from dynamic heterogeneous
panels. Journal of Econometrics, 68: 79-113.
https://doi.org/10.1016/0304-4076(94)01644-F

Reed, W.R. (2008). The robust relationship between taxes and U.S. state economic growth. National Tax
Journal, 61(1): 57-80. http://www.jstor.org/s Table/41790431

Reed, W.R. and Webb, R. (2010). The PCSE estimator is good — just not as good as you think. Journal of
Time Series Econometrics, 2(1), Article 8.
https://www.researchgate.net/publication/46464697 _The PCSE_estimator_is_good_-
_just_not_as_good_as_you_think

Reed, W.R. and Ye, H. (2011). Which panel data estimator should | use? Applied Economics, 43(8):
985-1000. https://doi.org/10.1080/00036840802600087

www.economics-ejournal.org 30


http://www.economics-ejournal.org/
https://doi.org/10.1016/j.jeconom.2010.10.001
https://doi.org/10.1016/j.euroecorev.2014.01.016
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=613081
http://dx.doi.org/10.1257/aer.104.6.1630
https://doi.org/10.1016/S0022-1996(97)00017-2
http://www.jstor.org/stable/2283977
http://www.jstor.org/stable/3805914
https://doi.org/10.1016/0304-4076(94)01644-F
http://www.jstor.org/stable/41790431
https://www.researchgate.net/publication/46464697_The_PCSE_estimator_is_good_-_just_not_as_good_as_you_think
https://www.researchgate.net/publication/46464697_The_PCSE_estimator_is_good_-_just_not_as_good_as_you_think
https://doi.org/10.1080/00036840802600087

Economics: The Open-Access, Open-Assessment E-Journal 12 (2018-4)

Appendix
List and Description of Panel Data Estimators
Estimator Package Command
1 Stata command = xtreg
5 Stata comman_d = xtreg
options = robust
3 Stata command = xtreg
options = cluster(name of cross-sectional variable)
command = xtreg
4 Stata options = cluster(name of time period variable)
5 Stata command = xtgls
options = corr(independent) panels(heteroscedastic)
command = xtgls
6 Stata options = corr(arl) panels(heteroscedastic)
command = xtgls
7 (Parks) Stata options = corr(arl) panels(correlated)
8(PCSE) | Stata | cOMmMand = xtpcse
options = corr(arl)
9 EViews GLS Weights = Cross-section weights
Coef covariance method = White cross-section
. GLS Weights = Cross-section weights
10 EViews Coef covariance method = White period
. GLS Weights = Cross-section weights
11 EViews Coef covariance method = White (diagonal)

Source: Table 1 in Reed and Ye (2011).
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