Open assessment of the paper

"Labor market opportunities for women in the digital age"
by Christiane Krieger-Boden and Alina Sorgner,
submitted to Economics: The Open-Access, Open-Assessment E-Journal,

Diganta Mukherjee, Indian Statistical Institute, Kolkata, India, diganta@isical.ac.in

Global Solutions Papers section

Preamble:

I have read the paper **DP2018-18** with considerable interest and delight. It is a very timely issue dealt with reasonable empathy but also necessary technical provess. In fact, it motivated me to create a very simple model depicting the situation the authors describe, which I present below.

A back of the envelope model for the paper

Population consists of equal number of male and female, so w.l.g. assume that we have 1 male and 1 female in the population.

There are two sectors, Skilled (S) and Unskilled (U). θ fraction of male labour work in the U sector. Assume that access to each sector is less for the female than the male; λ fraction for the U sector (manual work) and $(\lambda + \epsilon)$ for the S sector (technical / non-manual work), hence female disadvantage is less in the S sector.

Sector	Wage rate	male wage	female wage
U	u	θ	$\lambda \theta$
S	\mathbf{s}	$(1-\theta)$	$\left (\lambda + \epsilon)(1 - \theta) \right $

Here s > u and $0 < \lambda < \lambda + \epsilon \le 1$.

So total male earning $y_M = \theta u + (1 - \theta)s$ and total female earning $y_F = \lambda \theta u + (\lambda + \epsilon)(1 - \theta)s$.

After **digitisation**, assume that the unskilled sector vanishes and the skilled sector stays as before (ceteris paribus). So now $y_M' = (1 - \theta)s$ and $y_F' = (\lambda + \epsilon)(1 - \theta)s$. It is easy to see that the wage disparity will be reduced:

$$\frac{y_F}{y_M} < \frac{y_F'}{y_M'} = (\lambda + \epsilon)$$

In fact, the situation can be even better if we consider that digitisation will empower females more (with access to online education etc.), implying an increase in ϵ .

Now consider the situation where there is a **entrepreneurial opportunity** created through digitisation, but the access is partial. $0 < \rho < 1$ fraction of unskilled workers get access to entrepreneurial opportunities and earn $e \ (< s \ \text{but} > u)$. We consider two possibilities.

Case (i): We again assume that access for the female is in the same λ fraction of the male (due to networks existing and / or chauvinism). So now $y_M'' = (1-\theta)s + \rho\theta e$ and $y_F'' = (\lambda + \epsilon)(1-\theta)s + \lambda\rho\theta e$ It is easy to check that:

$$\frac{y_F}{y_M} > \frac{y_F''}{y_M''} \Leftrightarrow u < \rho e$$

So creation of sufficient entrepreneurial opportunities through digitisation may actually increase the wage gap!

Case (ii): But this disadvantage may vanish if access to female is better than λ (in fact, the situation will necessarily improve if access fraction is $\geq (\lambda + \epsilon)$. In general, suppose this access fraction is $(\lambda + h)$ (h = 0 in case (i)). Then

$$\frac{y_F}{y_M} > \frac{y_F''}{y_M''} \Leftrightarrow s(1-\theta)[\epsilon u + (h-\epsilon)\rho e] + h\rho\theta eu < 0$$

Again, suppose $u < \rho e$. It is now possible to have an increase in wage gap even with a strictly positive h (but $< \epsilon$) if θ is small enough. That is, if the U sector was small to begin with, then the gain for females through better access will not be large enough to mitigate the disadvantage.

Concluding comments:

The model above can generate parametrically testable implications in line with the policy recommendations 1 - 4. The first one may be formulated as the question whether h = 0 or ϵ . The second one is related to testing whether ϵ can be increased? Recommendation 3 is linked with an increase of h. And finally the fourth one is a combination of 2 and 3. Where is the fifth one as mentioned? I could not locate it.

The model may also be generalised to a three sector model where there are two U sectors (one manual repetitive type, so replaceable and another interactive type, hence non-replaceable).

I hope that the authors find the above discussion useful for empirical testing in their future work on the topic.

Minor comment: In figures 2 and 3, the gap may be clarified as wage ratio.