
Received April 30, 2012  Published as Economics Discussion Paper May 24, 2012
Revised November 28, 2014  Accepted December 3, 2014  Published December 10, 2014

© Author(s) 2014. Licensed under the  Creative Commons License - Attribution 3.0

Vol. 8,  2014-43 | December 10, 2014 |  http://dx.doi.org/10.5018/economics-ejournal.ja.2014-43

Consistent Estimation in Pseudo Panels in the
Presence of Selection Bias

Jhon James Mora Rodríguez and Juan Muro

Abstract
In the presence of selection bias the traditional estimators for pseudo panel data models are
inconsistent. This paper discusses a method to achieve consistency in static linear pseudo
panels in the presence of selection bias and a testing procedure for sample selection bias.
The authors’ approach uses a bias correction term proportional to the inverse Mills ratio with
argument equal to the “normit” of a consistent estimation of the conditional probability of
being observed given cohort membership. Monte Carlo analysis shows the test does not reject
the null for fixed T at a 5% significance level in finite samples. As a “side effect” the authors
utilize the enlarged pseudo panel to provide a GMM consistent estimation of the pseudo panel
parameters under rejection of the null and apply the procedure to estimate the rate of return
to education in Colombia.
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1  Introduction 

Despite the continuous generalization of panel data surveys, most countries still 
collect microeconomic information on the behavior of economic agents by means 
of repeated independent and representative cross-sections (RCS). The current 
pseudo panel analysis starts with the seminal article of Deaton (1985) who 
establishes that individual data can be replaced with cohort data with measurement 
error. Moffit (1993) introduces a consistent instrumental variable (IV) estimator 
for pseudo panel models using cohort dummies as instruments. 

Sample selection bias is common in economic models based on micro data. 
Since Heckman (1979) selectivity bias treatment has been extended to panel data 
models by, among others, Wooldridge (1995), Kyriazidou (1997), Vella and 
Verbeek (1999), Rochina-Barrachina (1999) and Lee (2001) (see Jensen, Rosholm 
and Verner 2002 for a good survey of the literature). Discussing sample selection 
bias in pseudo panels, however, is an unfinished task. Traditionally, empirical 
labour literature utilizes influential articles by Gronau (1974) and Lewis (1974), 
hereafter G-L, and eliminates selectivity bias by means of a correction term 
proportional to the inverse Mills ratio with an argument equal to the inverse 
normal cumulative distribution function (normit) of the proportion of individuals 
observed in each cohort. Although selectivity analysis with grouped data is prior to 
Heckman´s contribution for the individual case, the connection between them 
remains unclear.  

This article presents a testing procedure for selectivity bias in pseudo panels. 
We describe a pseudo panel model in which under convenient expansion of the 
original specification with a selection bias correction term the method allows us to 
use a Wald test of H0: ρ=0 as a test of the null hypothesis of the absence of sample 
selection bias. We show that the proposed selection bias correction term is 
proportional to the inverse Mills ratio of the normit of a consistent estimation of 
the observed proportion of individuals in each cohort. This finding can be 
considered a cohort counterpart of Heckman’s selectivity bias correction term for 
the individual case and generalizes to some extent previous existing results in 
empirical labour literature. Monte Carlo analysis shows that the test does not reject 
the null for fixed T at a 5% significance level in finite samples and increases its 
power when utilizing cohort size corrections as suggested by Deaton (1985). As a 
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“side effect” our method enables us to make a consistent estimation of the pseudo 
panel parameters under rejection of the null. 

The article is structured as follows: Section 2 provides a review of the 
selectivity bias issue in cross-section and RCS models. Section 3 discusses the 
identification conditions, the selection-bias correction term modeling and the 
associated selectivity bias test. In Section 4 we introduce a GMMC approach to 
estimate linear static pseudo panels in the presence of selection bias. In Section 5 
we present a Monte Carlo simulation to assess the power and size of the selectivity 
bias test and we use Section 6 to apply our procedure to estimate the rate of return 
to education in Colombia. Finally, the conclusions are presented in Section 7. 

2 Selectivity Bias in a Cross-Section Model and in a 
Repeated Cross-Section (RCS) Model 

In this section we review some results related with the consistent estimation of a 
cross-section model with individual data and sample selection bias and in turn we 
analyze the repeated cross-section (RCS) model in the presence of selection bias.  

We start with a cross-section model with individual data and sample selection 
bias. Let the population model be 

yi* = x´i β+ ui ; i = 1, …, N,  (1) 

si* = z´i γ+ vi;          si =1[si* >0],  (2) 

yi = yi*  when  si =1; yi     unobserved otherwise.  (3) 

Where yi* is the variable of interest, si* the selection, z explain si, and ui, vi are 
usual errors.  Usual exclusion restrictions hold. As is well known, Heckman 
(1979), a consistent estimation of the equation of primary interest in (1) can be 
obtained by ordinary least squares (OLS) by adding a selectivity bias correction 
term in (1). This term is 

E (ui| xi, si* > 0) ≡ E (ui| xi, si =1) = E (ui| xi, z´i γ+ vi > 0).  (4) 

The final result under the assumption of joint normality of ui and vi with 
correlation ρ (or a less restrictive assumption as E (ui| vi) = ρvi) is that the 
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selectivity correction term is proportional to the inverse Mills ratio (IMR) with 
argument z´i γ, i.e., 

E (ui| xi, z´i γ+ vi > 0)  ∝  ϕ (z´i γ)/ Φ (z´i γ),  (5) 

where ϕ(.) and Φ(.) are standard normal pdf and cumulative distribution functions, 
respectively. Note that in the individual case Prob (si* > 0)≡ Prob (si=1) = Φ (z´i γ).  

Then under normality assumption 

Φ-1 [Φ (z´i γ)]=  z´i γ = Φ-1 [Prob (si* > 0)] ≡ Φ-1 [Prob (si =1)]. 

And (5) can be rewritten as 

E (ui| xi, si* > 0)   

≡ E (ui| xi, si =1) ∝  ϕ (Φ-1 [Prob (si =1)])/ Φ (Φ-1 [Prob (si =1)]).  (6) 

Hence with individual data the argument of the IMR is the inverse standard 
normal cumulative distribution function or normit function of the probability 
associated with the observational rule (si* > 0). This is a standard result of the 
statistical literature. 

Let us now continue with a repeated cross-section (RCS) model with sample 
selection bias. The sample model for individual i and time t is 

yi(t),t = x´i(t),t β + ui(t),t ;  i = 1, …, Nt; t = 1, 2.......T;  yi(t),t  is only observed when  

si(t),t =1, (7) 

where subscript (t) means different individuals are observed in each time period t. 
To simplify notation we will drop subscript (t) hereafter. As we observe different 
individuals in a RCS model we use cohort dummies as matching instruments. 
Taking expectations in (1) we get the cohort population model 

E(yit*| Xit, gi Є Ic) 

= E(x´it| Xit, gi Є Ic) β + E(uit| Xit, gi Є Ic); i= 1,.,Nt; t= 1,.,T ; c=1,.,C,            (8) 

where gi Є Ic denotes that individual i belongs to a specific cohort c. The cohort 
regression in the absence of selection bias (8) can be used as an errors-in-variable 
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estimating equation taking sample cohort-means as population cohort-means 
subject to errors, Deaton (1985). In the presence of selection bias however the 
relevant equation is (7) and taking expectations  

E(yit| Zit, sit=1 | gi Є Ic) 

= E(x´it| Zit, sit=1 | gi Є Ic) β + E(uit| Zit, sit=1 | gi Є Ic); i= 1,.,Nt; t= 1,.,T.       (9) 

Expression in (9) highlights two relevant features of the RCS model with 
sample selection. Firstly, that the sample counterpart of the conditional 
expectations of interest and determinant variables are not simple cohort-means of 
observed values but weighted means with conditional probabilities of selected 
values as weights. Secondly, that using (9) as an errors-in-variable estimating 
equation leads to inconsistent estimates unless E(uit| Zit, sit=1 |gi Є Ic) is zero or 
time invariant. In the case that selection is time invariant FE estimators not only 
remove fixed effects but also eliminate selection biases. It can be noted that in the 
transit between individual and cohort data the emphasis goes from the probability 
of being observed, in the cross-section model, to the conditional probability of 
being observed given a specific cohort, in the RCS model.  

A solution to achieve consistency is modeling E(uit| Z´it, sit=1 |gi Є Ic). To 
cover the main characteristics of the panel data literature we must assume that uit is 
a compound error with two components: individual effect and idiosyncratic error. 
As in Ridder and Moffitt (2007) the sample main equation we consider is a linear 
individual effects regression 

Yit = β1Xit + δZi0+ fi+ єit ,  (10) 

where fi are individual effects; єit idiosyncratic errors; Xit are time-varying 
variables (tvc) and Zi0 time invariant variables (tic). Fixed effects are potentially 
correlated with Xit, Zi0. Usually Zi0 is a dummy cohort-indicators matrix. 

The selection equation is a time-varying selection mechanism, Semykina and 
Wooldridge (2010), 

sit = γtZ1it + fi+ εit , (11) 

where sit is a dichotomous variable that takes 1, 0 values (1 when individual i is 
observed, 0 otherwise); Z1it is a matrix of determinants of the selection process. Z1it 
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relevant terms are time-varying variables but do not exclude time-invariant 
covariates. Yit is only observed when sit =1. Due to the time-varying assumption 
the fixed effects in (11) are unidentified in the cross-section but can be 
approximated, Semykina and Wooldridge (2010), by Mundlak’s (1978) modeling 
procedure. Taking expectations in (11) for fixed t gives: 

E (si| gi Є Ic) = 1*[Prob (si =1| gi Є Ic)]  

  + 0*[Prob (si =0| si =1, gi Є Ic)] = Prob (si =1| gi Є Ic) (12) 

This expression, as we will see in the next section, forms the basis to use the 
selection equation as a relevant element to estimate a bias correction term for the 
main equation.   

3 Identification and Selection-Bias Correction Term 
Modeling 

As stated before cohort variables are used in a RCS model as matching 
instruments. To estimate the system of equations (10) and (11), or their equivalent 
cohort system, we need a set of identifying restrictions. Although we allow for two 
sources of selection biases we assume the only nonzero time-varying expectation 
arises from the idiosyncratic errors.  Our approach is in the line of Gronau (1974) 
and encompasses Moscarini and Vella (2002). As in Gronau´s work there is a 
time-varying source of selectivity bias that comes from the idiosyncratic terms; 
however, we take into account tvc variables, different from time and non-
monotonous with respect to time, could play an important role in determining the 
selection process. As in Moscarini and Vella´s research there is a time-invariant 
source of selectivity bias that comes from individual effects and therefore can be 
eliminated through FE estimators. 

 



 

www.economics-ejournal.org  7 

Assumption 

a). (Z1i, si) are observables; (yi, Xi) are observed when si = 1.1 

b). (ui, vi) independent from Z1i and E[ui| Z1i] = E[vi| Z1i] = 0. 

c). vi is distributed as N (0,1). 

d). E[ui| vi]= ρvi . 

e). E(λct| λct)= λc. 

f). E(ect| λct)= E(λct| ηct)=0. 

Assumption d) holds for instance when we assume the idiosyncratic errors of 
both equations are jointly bivariate normally distributed. 

Under assumption d), a linear projection of uit onto vit is 

uit = ρvit + ηit , 

where ηit is independent of vit, Meijer and Wansbeek (2007). The relevant bias 
correction term in equation (9) becomes: 

E(uit|Zit, sit=1|gi Є Ic, sit)= E (ρvit + ηit |Zit, sit=1|gi Є Ic) = ρ E (vit |Zit, sit=1|gi Є Ic) 
=  ρ E (vit | sit=1|gi Є Ic)              (13) 

If we denote αct = Prob(sit=1 |gi Є Ic), the time-varying conditional probability 
that an individual is observed given this individual is a member of a specific 
cohort, a standard statistic result we have reviewed above is that the expectation 
term is equal to the IMR with argument the normit of αct. A consistent estimation 
of this probability can be obtained from the selection equation. Substituting (13) in 
(9) gives 

E(yit| Zit, sit=1 | gi Є Ic) 

                 = E(x´it| Zit, sit=1 |gi Є Ic) β1 + ρ λct(αct); i= 1,.,Nt; t= 1,.,T    (14) 

where λct(.) is the IMR. Then in the presence of selection bias due to a time-vary-
ing selection mechanism to achieve consistency in the estimation of (10) we have 
_________________________ 
1
 Remember that variables included in X could be always observed. 
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to augment the specification with an additional regressor, λct. The value of this 
cohort-time regressor is fixed for all observed individuals in cohort c and time t. 

We have to note that a test for the presence of selection bias will involve 
testing the null hypothesis of ρ=0 in (14), that is Ho: ρ=0. As usual the test can be 
viewed as an omitted-variable test in (14). 

The estimating augmented main equation is 

Yit = β1Xit + δZi0+ ρ λct + fi+ єit.                                                   (15) 

If we could observe λct an IV estimation would give a consistent estimation of 
the parameters of the model. As λct depends on unknown parameters this direct 
procedure is unviable. In the next section we will present a generalized method of 
moments corrected (GMMC) estimator. Equation (15) is in the line of the seminal 
contribution of G-L. The Gronau suggestion of correcting for selection bias in the 
cohort equation with an additional term equal to the IMR with argument the 
normit of the observed proportions of the individuals in each cohort (proportion of 
1 in each cohort) implies that the consistent estimation of the Prob(sit=1 |gi Є Ic) 
can be obtained through a linear specification (a linear probability model) of the 
selection equation in which the time-varying selection mechanism only depends on 
cohort dummies, as we will see later on.  

Deaton (1985) shows that an errors-in-variables pseudo panel model can be a 
good approximation to the population model. It implies that IV moments equation 
derived from (15) must be modified to account for the presence of measurement 
errors. This suggest a generalized method of moments corrected (GMMC) system. 
Formally, moments equation associated with (15) is 

𝐸[(𝑌𝑖𝑖 −  𝑋′𝑖𝑖𝛽1 − 𝑍′0𝑖𝛿 − 𝜌𝜆𝑐𝑐)ℎ(𝑍0𝑖 ,𝑍2𝑖𝑖)] = 𝐵𝐵 + 𝑏                           (16) 

where 𝑍2𝑖𝑖 are time-varying instrumental variables; h(.) is a known function 
usually a set of time and cohort-time interactions although any other time-varying 
variable is not discarded; β = (β1’ δ’ ρ)’; B, b depend on the covariance matrix of 
the measurement errors. For known λct moments equation in (16) has been 
extensively studied in the literature, Deaton (1985), Verbeek and Nijman (1993), 
Verbeek (1996), Collado (1997), Ridder and Moffitt (2007) among others. 
Properties of moment estimators are well known in general, Hansen (1982). 
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We will now proceed to the discussion of the way of modeling the argument of 
the IMR bias correction term in the main equation. 

In G-L the argument of the IMR is the normit of the proportion of 1 in each 
cohort. This term is cohort-time specific. G-L suggestion has been often used in 
the empirical labour literature, see for example Blundell et al. (1998). Our 
suggestion (MM) is to use as argument of the IMR the normit of a consistent 
estimation of the conditional probability that an individual is observed given a 
specific cohort membership. Our approach is equivalent to consider relevant the 
distinction between the observed conditional probability (real proportion of 1 in 
each cohort-time) and a consistent estimation of this conditional probability that 
takes into account their observed determinants (consistent estimation obtained 
through a selection rule equation). Many arguments can be given to support the 
idea that improving the specification of the selection equation will lead to better 
estimates of the equation of interest. To say the least in the empirical labour 
literature is usual to assume that variables such as age, education, household 
characteristics, among others, play an important role among the determinants of 
the participation rate and therefore must be included in the specification of the 
selection equation.2  

Under the assumption of a time-varying selection equation, G-L and MM can 
be expressed in formal terms as the result of an OLS estimation of two different 
individual data regressions for each cross-section. 

G-L suggestion can be interpreted as a cross-section regression that in matrix 
expression is 

S= Z0α + ε ,                             (17) 

where S{si} is a Nt column vector that contains a selection variable (it takes the 
value 1 when an individual is observed and 0 otherwise); Z0 is a (Nt x C) dummy 
cohort indicators matrix; α is a (C x 1) parameter vector and ε a column vector of 
error terms; Nt is the cross-section sample size. An OLS estimator of α 

_________________________ 
2 Needless to say that the equivalence between G-L and MM can be achieved through a thorough 
definition of cohorts so that each cohort only contains homogeneous individuals in terms of the 
complete set of determinants of the participation rate. This argument is theoretically unbeatable but 
empirically weak because cohorts are usually defined in terms of a small set of time-invariant 
variables just to preserve the desired size. 



 

www.economics-ejournal.org  10 

α
∧

 = (Z’0 Z0)-1Z’0 S = AS, (18) 

gives us a column (Cx1) vector of proportions of 1 in each cohort, α
∧

{ac}. Matrix 
A= (Z’0 Z0)-1Z’0 is a cohort-means operator.3A trivial feature of equation (17) is 
that is fully determined (R2=1) so their estimations are not subject to errors. In G-L 
the observed proportions ac are “true” values of the conditional probability of 
being observed given a specific cohort membership. 

MM regression is a reduced-form equation 

S= Z1γ + ε         (19) 

where Z1 is a matrix of selection process determinants. Z1 relevant terms are time-
varying variables but does not contain Z0.4 Otherwise if Z0 were a subset of Z1 
results from MM and G-L regressions coincide. 

To get consistent estimators of the conditional probability of being observed 
given a specific cohort membership we premultiply by matrix A. Then 

AS=AZ1γ + A ε.                                                                          (20) 

An OLS estimator of γ is 

γ
∧

 = [Z’1A’A Z1]-1 Z’1A’A S=  γ + [Z’1A’A Z1]-1 Z’1A’A ε. (21) 

An estimation of the required probabilities and its covariance matrix i: 

_________________________ 
3
 The same result can be obtained if we assume that selection is a purely random process. Given the 

result of the selection rule an application of operator Z0 to S produces the cohort-aggregates vector 
that must be divided by the total number of individuals in each cohort to get the observed 
proportions.  
4 To directly obtain a vector of consistent estimates of the conditional probability of being observed 
given cohort membership a trivial procedure can be used. We premultiply by (Z’0Z0 )-1Z’0 the vector 
of predictions 𝑆̂, i.e. we linearly project  𝑆̂ onto Z0, 
(𝑍′0𝑍0)−1𝑍′0𝑆̂ =  (𝑍′0𝑍0)−1𝑍′0𝑍1(𝑍′1𝑍1)−1𝑍′1𝑆 . With covariance matrix 

𝑣𝑎𝑎 �(𝑍′0𝑍0)−1𝑍′0𝑆̂� =  (𝑍′0𝑍0)−1𝑍′0𝑍′1(𝑍′1𝑍1)−1𝑍′1Ω𝑍1(𝑍′1𝑍1)−1𝑍′1𝑍0(𝑍′0𝑍0)−1. 
A consistent estimation can be obtained by White method. 
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𝐴𝑆̂ = 𝐴𝑍1(𝑍′1𝐴′𝐴𝑍1)
−1
𝑍′1𝐴′𝐴𝐴                                                          (22) 

𝑣𝑣𝑣(𝐴𝑆̂) = 𝐴𝑍1(𝑍′1𝐴′𝐴𝑍1)−1𝑍′1𝐴′𝐴Ω𝐴′𝐴𝑍1(𝑍′1𝐴′𝐴𝑍1)−1𝑍′1𝐴′             (23) 

A consistent estimation of the covariance matrix can be obtained by White 
method.  Then, the additional bias correction regressor to be included in our main 
equation will be for all individuals in each cohort-time the IMR with argument 
equal to Φ-1[(𝑍′0𝑍0)−1𝑍′0𝑆̂].  

An alternative view of this procedure comes from the equivalence between IV 
estimation and estimation with aggregated data. An IV estimation of the initial 
equation using A as instruments matrix leads to the same results. A proof for two-
stage least squares (linear projection of Z1 onto Z0) is straightforward. Our 
procedure respects the RCS spirit and estimates the relevant conditional 
probabilities from cohort-means data. 

All regressions have heteroscedastic disturbances. This fact derives from the 
choice of a linear probability model approach to represent the selection rule. So far 
the assumption of a linear probability specification for the selection rule has been 
maintained in order to establish a simple comparison with Gronau’s procedure. In 
the case we use a probit to model the selection rule we have to consider 
proportions estimation such as, for example, Greene (2003). 

For each t moments equation associated with (20) is: 

𝐸[(𝑠𝑖𝑖 −  𝑍′1𝑖𝑖𝛾𝑡 )𝐴𝑡] = 0                                                                     (24) 

Up to now we have not considered the presence of cohort fixed-effects in the 
selection equation estimation just to preserve simplicity in the comparison. When 
biases arising from right-hand side variables and fixed-effects correlation in the 
selection equation are relevant we use Mundlak’s (1978) modeling device and 
augment the right-hand side variables with time average of cohort values of the 
included variables, Semikyna and Wooldridge (2010). The advantage of this 
approach is that it conserves on degrees of freedom. 
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4 Pseudo Panel Data and Selectivity Bias: A GMMC 
Approach 

In this section we outline a formal GMMC approach to estimate our system. We 
will see that our GMMC estimators are a type of two-step estimators. Firstly, we 
estimate the MM system in (24) and the estimated parameters will allow us to 
estimate the additional regressor in (16); secondly, we estimate the GMMC system 
in (16). As estimating (24) is straightforward in the rest of the section we will 
devote our attention to consider questions relative to the estimation of (16) and to 
provide the covariance matrix of the estimators and an upper bound for the 
covariance-corrected matrix of the estimators due to the presence of the estimated 
additional regressor.  

In cohort form the set of moments equations (24) and (16) can be expressed as 

      𝐸[𝑠𝑐𝑐 − 𝑍′1𝑐𝑐𝛾𝑡] = 0; t=1,.,T, c=1,.,C, (25) 

       𝐸[(∆𝑌𝑐𝑐 −  ∆𝑋′𝑐𝑐𝛽1 − 𝜌∆𝜆𝑐𝑐)∆𝑊𝑐𝑐] = 𝐵𝐵 + 𝑏, (26) 

where ∆𝑊𝑐𝑐 = (∆𝑋′𝑐𝑐, ∆𝜆𝑐𝑐)′. Equation (25) is a system of T cross-section linear 
regressions. For probit specifications of the selection rule (25) would have to be 
modified to accommodate to a system of proportions regressions. In equation (26) 
we have used first-differences of the synthetic panel, one of the alternatives 
suggested by Deaton (1985). Substituting 𝛾𝑐𝑐�  in (26) we get: 

𝐸��∆𝑌𝑐𝑐 −  ∆𝑋′𝑐𝑐𝛽1 − 𝜌∆𝜆𝑐𝑐��∆𝑋𝑐𝑐� = 𝐵𝐵 + 𝑏              (27) 

The GMMC estimator is 

       𝛽̂ = �∑ �∆𝑊′
𝑐ΔW𝑐 + 𝐵′�𝐷𝑐𝐶

𝑐=1 ∑ �∆𝑊′
𝑐ΔW𝑐 + 𝐵�𝐶

𝑐=1 �−1 , 

         [∑ (∆𝑊′
𝑐ΔW𝑐 + 𝐵′)𝐷𝑐𝐶

𝑐=1 ∑ (∆𝑊′
𝑐ΔY𝑐 − 𝑏)𝐶

𝑐=1 ],                          (28) 

where ΔW𝑐 =  (ΔW𝑐2,ΔW𝑐3, … . .ΔW𝑐𝑐)′, ΔY𝑐 =  (ΔY𝑐2,ΔY𝑐3, … . .ΔY𝑐𝑐)′. The 
optimal choice of Dc, Hansen (1982), is any consistent estimator of the inverse of 
the covariance matrix of ∆𝑊′

𝑐ΔW𝑐. The asymptotic distribution of the GMMC 
estimator, for B, b, 𝛥𝛥𝑐 known, can be derived using standard assumptions and 
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GMM theory. The covariance matrix of the GMMC can be found for example in 
Collado (1997). 

Let 

𝑚1𝑐𝑐 = 𝑠𝑐𝑐 − 𝑍′𝑐𝑐𝛾𝑡 , t= 1,.,T 

𝑚2𝑐𝑐 = (∆𝑌𝑐𝑐 −  ∆𝑊′𝑐𝑐𝛽)∆𝑊𝑐𝑐, c=1,.,C, t=2,.,T. 

The sample averages are: 

𝑚�1𝑐𝑐(𝛾𝑡) = 1
𝐶
∑ (𝑠𝑐𝑐 − 𝑍′𝑐𝑐𝛾𝑡)𝐶
𝑐=1  ,                                                       (29) 

𝑚�2𝑐𝑐(𝛾𝑡,𝛽) = 1
𝐶
∑ ((∆𝑌𝑐𝑐 − 𝛽 ∆𝑊′𝑐𝑐)∆𝑊𝑐𝑐)𝐶
𝑐=1 , c=1,.,C, t=2,.,T       (30) 

Let 𝑚(𝜃) =  (𝑚�1𝑐2,𝑚�1𝑐3 … …𝑚�1𝑐𝑐,𝑚�2𝑐𝑐)′; 𝜃 = (𝛾′𝑡 ,𝛽′)′. The system mo-
ments equation can be written in stacked form as m=0. This system corresponds to 
a two-step-GMMC estimation. We have to estimate in the first step T independent 
regressions and then construct the estimated values of IMR. In the second step we 
estimate a measurement errors corrected (T-1) synthetic cohorts regression “a la 
Deaton”. 

To get a consistent estimator of the asymptotic variance of θ� we need the 
following jacobian terms: 

G�𝛽𝛽 = ∇𝛽𝑚�2𝑐𝑐(𝛾𝑡 ,𝛽)                                            (31) 

G�𝛾𝑡𝑐 = ∇𝛾𝑡𝑚�2𝑐𝑐(𝛾𝑡,𝛽), t=1,.,T                                           (32) 

M�𝑐𝑐 = ∇𝛾𝑡𝑚�1𝑐𝑐(𝛾𝑡), t=1,.,T                               (33) 

Let M�𝑐 = �M�𝑐𝑐� a (TxT) diagonal matrix;  G�𝛾𝛾 = �G�𝛾1𝑐, … . . , G�𝛾𝑇𝑐� a (1xT) row 
vector; 0 a (Tx1) column vector of zeros. Then 𝐺� is a (T+1) squared lower 
triangular matrix 

𝐺� = �
M�𝑐 0
G�𝛾𝛾 G�𝛽𝛽

�                                                                         (34) 

Let (a consistent estimation of) 

Ω� = 𝑚𝜃𝑚𝜃´    (35) 



 

www.economics-ejournal.org  14 

A consistent estimator of the covariance matrix of 𝜃� is: 

𝑉𝜃 = 𝐺−1Ω�(𝐺−1)′              (36) 

Our interest, however, is in the covariance matrix of 𝛽̂, the main equation 
parameters estimators. Its theoretical derivation is complex and in our view of little 
help for empirical research. We will give instead, following Deaton (1985) and 
Newey and McFadden (1994), a convenient expression for an upper bound of the 
covariance matrix 𝑉𝛽. The formula is: 

𝑉𝛽 = [MWW − Σ]−1� ΣWW�σµ2 + σ00 + θ´Σθ − 2σ´θ�+ (σ − Σθ)(σ −
Σθ)  ' �[MWW − Σ]−1 + Π'V�Π           (37) 

In equation (37) the first additive term is the covariance matrix for a static 
pseudo panel data model (Deaton 1985:118). The second is the correction matrix 
required for using in the estimation of the pseudo panel data model an estimated 
regressor instead of the “true” regressor in the second-step of the two-step-GMMC 
estimation procedure. Newey and McFadden (1994) establishes that in general the 
estimated regressor causes a bias in the estimated covariance matrix, but the 
problem arises when the estimated regressor downward bias the estimated 
covariance matrix. They give a sufficient condition for the downward bias and 
outline the correction that has to be made for each cross-section through a 
weighted inner product. Let β be (lx1) and γ (kx1) vectors, to construct the inner 
product matrix we make a regression of a set of k variables (estimated coefficient 
of IMR in the second step of the GMMC procedure times the derivative of IMR 
(evaluated at argument value) times the derivative of the normit (evaluated at 
argument value) times the vector of regressors in the selection equation) on the 
complete set of regressors, l, in the main equation. This gives us a (kxl) matrix of 
estimated parameters. For all t, we stack all the (lxk) transpose matrices to form a 
(lxkT) matrix of stacked estimated coefficients. The weighting matrix is a (kTxkT) 
block-diagonal matrix whose main diagonal elements are the cross-section 
covariance matrices in the selection equation. Then for each cross-section, being 
𝑃�𝑡 the (kxl) matrix of estimated coefficients, 𝑉�𝑡 the (kxk) cross-section selection 
equation covariance matrix in (17), the correction term is:   

𝑃′� 𝑡𝑉�𝑡𝑃�𝑡                                                    (38) 
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5 Monte Carlo Simulations of the Testing Procedure 

We run a Monte Carlo experiment to investigate the power of the Gronau and MM 
selection bias tests. First, 2000 individuals in 10 times period was simulated. The 
individuals were split in 10 equal cohorts in each time period. Thus, we follow the 
cohort in all time period and cohort dummies are used to keep track of individuals 
over time (see Vella and Verbeek 2005, and Verbeek and Nijman 1993). Also, we 
simulate covariates and latent selection as: 

Xi(t),t =   Zi(t),t  + ω i(t),t                                                           (39) 

S*i(t),t = 1[ ri(t),t  > 0]                                 (40) 

In equation (39) Zi(t),t consists of 10  cohort-dummies with identical probability 
in each time period; ωi(t),t was generated at random from a normal distribution; and 
r i(t),t was generated at random from a uniform normal distribution N [0,1].   The 
main equation was generated as follows:   

Yi(t),t =  Xi(t),t + ϕi(t),t                                      (41) 

Now, we make several hypotheses about the selection mechanism. 
 

a. Gronau Selection 

λ i(t),t  = ϕ (n i(t),t /N i(t),t )/  Φ (n i(t),t /N i(t),t)                (42) 

 
b. MM  Selection 

Si(t),t = Zi(t),t + ηi(t),t  ; λ i(t),t  = ϕ (Φ-1 [Prob (Si(t),t =1| gi Є Ic)])/ Φ 

 (Φ-1 [Prob (Si(t),t =1| gi Є Ic)])      (43) 

The main equation to estimate is: 
 
Y(t),t = β X(t),t + C(t),t + γ λ(t),t + ψ(t),t                                                  (44) 
 
We test the power of the test based on the null hypothesis that γ equals zero. 

We make 2,000 iterations, 10 cohorts and 10 time periods and discard a 10% of 
individuals at the initial time (t=0). The corresponding results are listed below. 
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Table 1 shows the simulation results using the nominal size of 5% as the 
benchmark. The first file shows the mean of the β without including the inverse 
mills ratio in the regression. The power of reject the hypothesis of γ=0 is an 8% in 
Gronau and 4.5% in MM test.    

Next we discuss the effects of reducing a 10% of the individuals in each time 
period (Table 2). The power of the test without a reduction of individuals is around 
5% in both tests. But when the pseudo panel experiences a reduction of a 10% of 
individuals the power of Gronau test is worse than its power without reduction. 
Yet the power of MM test is better in the former than in the latter case. 

In order to discuss the size of the tests we consider the following selection 
model: 

 
Yi(t),t =  Xi(t),t + ϕi(t),t                                         (45) 
S*i(t),t = 1[r i(t),t + ηi(t),t  > 0]               (46) 
Corr (ϕi(t),t  , ηi(t),t  )  =  ρ                (47) 
 
We have made 2,000 iterations, 10 cohorts, t=10, and reduced a 10% of 

individuals in each period and have used a bivariate normal distribution to 
simulate ηi(t),t  and ϕi(t),t. In order to consider the size of the test we estimate 
 

Table 1: nc=200, C=10, T=10 

 
β Power 

γ = 0 0,9819 
 

Gronau 1,0463 0,086 
MM  0,9585 0,045 

Table 2: C=10, T=10 

No Reduction Reduction of 10% 

 
β Power 

 
β Power 

γ = 0 1,0028 
 

γ = 0 1,0683 
 

Gronau 0,3227 0,048 Gronau 0,3332 0,080 
MM  0,9736 0,043 MM + rt 0,9375 0,040 
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equation (44) and use the nominal size of 5% as the benchmark to reject the 
hypothesis of γ≠0.  The results are shown in Table 3.  

Results show that both tests are significant around 5%. However, MM test 
performs better than Gronau test.  

Finally, in order to consider the monotonicity with respect to time we include a 
time-varying variable in the selection process and discuss the sample selection bias 
using 10,000 iterations, 10 cohorts and a bivariate normal distribution to simulate 
ηi(t),t  and ϕi(t),t , and consider a correlation of the 0.9. The results in Table 4 show a 
poor performance of the Gronau test compared to MM test. In all cases, MM 
detect the sample selection bias. 

Table 3: Tests Size. C=10, T=10 

ρ Gronau MM 

0.5 0.046 0.031 

0.6 0.040 0.026 

0.7 0.032 0.024 

0.8 0.034 0.024 

0.9 0.034 0.020 

Table 4: Tests Size (with Non-Monotonous Variable). C=10, T=10 

Test/Significance 1% 5% 10% 

Gronau 0.9876 0.9408 0.8841 

MM 0.0005 0.0007 0.0010 

6 Empirical Application of the Test: Estimating the Returns 
to Education 

The returns to education has been discussed in deeply around the world. In 
particular the econometric estimation of the Mincer equation, in honor to Mincer 
(1974), let us estimate the return to an additional year of education. In Colombia, 
the returns are almost 15% in the last century, before in the nineties was around 
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8%. A few articles in the Colombian literature discuss the selection problem. In 
particular, in this period only Tenjo, Ribero and Bernat (2005) made selection-bias 
corrections in their cross-section estimations of the returns to education. We run a 
Mincer equation and test for the existence of selection bias.5 The main and 
selection equations system is: 

lwhi(t),t = αi(t) + βo´Ei(t),t + β1´Expi(t),t + β2´Exp2
i(t),t + ρ E(ξi(t),t|si(t),t) + µi(t),t ; 

t = 1,.,T ; i=1,.,N                                       (48) 

Si(t),t = E i(t),t + N i(t),t + ηi(t),t                  (49) 

Where lwhi(t),t is the logarithm of wages per hour; Ei(t),t years of education; 
Expi(t),t a potential experience variable (Agei(t),t – Ei(t),t – 6) and Exp2

i(t),t its square. 
αi(t) is non-observable individual heterogeneity and µi(t),t is the error term. The 
sample-bias correction term ρ E(ξi(t),t| si(t),t) is included in the wage equation 
because we only observe employed individuals. With respect to the selection 
process, we define a labour participation variable, Si(t),t, as a dummy variable that 
takes the value of 1 when the individual participates in the labour market (at work 
or unemployed) and 0 otherwise. We use Ei(t),t and Ni(t),t, the number of household 
individuals (as a proxy of the change in job search costs) as covariates for the 
selection process. 

In terms of the sign of the parameters we expect a positive sign for years of 
education and potential experience. However, due to life cycle we expect a 
negative sign for squared potential experience. 

In Colombia there is no panel survey statistics on household labour supply 
data. Our sample comes from the National Housing Survey (NHS) which consists 
of a time series of independent and representative cross-sections collected from 
1984 to 2000 by the National Agency of Statistics (DANE). Since 2000, the 
DANE has collected information about the labour market through another 
mechanism called Continuous Housing Survey.6 

In each year, the modules of working individuals, personal characteristics, 
work force, and education were linked. The data for variables as schooling years, 

_________________________ 
5 Mora and Muro (2008) discuss the additional returns to diploma in Colombia using Pseudo Panel 
data. 
6  Because of this information before and after 2000 is not comparable. 
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age, labour earnings, household size, and number of working hours, were obtained 
through this link. In this way, the observations are independent cross-sectional 
data where the same individual is only available in one period. Since there are 
different individuals in each period, i range from 1 to N for each t. In this case, we 
define five cohorts with 16 and 44 years old.  The variables for schooling years, 
age, labour earnings, number of working hours, married, and kind of occupation 
were obtained from this procedure. We have 85,540 individuals in the total sample 
consisting of 39,015 women and 46,525 men.  

In Table 5 we have more than 2000 individuals by Cohort and the average 
individuals in Cohort 1 (Young people) are 2561 and the average individuals in 
Cohort 5 (Old people) are 3264 individuals.  

Table 6 shows the returns to education in the period 1996 to 2000 using the 
standard Mincer equation. In pool regression we estimate a Heckman regression 
using the participation in the labour market as a selection variable and years of 
education and number of individuals in the household as covariates of the selection 
process.7 Pooling shows a 17.5 percent of the return to an additional year of 
education. 

In the second column we estimate a pseudo panel Mincer equation using 
Deaton (1985) method. In particular, we correct the measurement errors but we do 
not correct the selection bias. The result shows an overestimate in the rate of return 
to education and experience.  

Table 5: Number of Individuals by Cohort 

Year Cohort 1 Cohort 2 Cohort 3 Cohort 4 Cohort 5 Total 

1996 2048 3535 4161 3853 3547 17144 

1997 2347 3805 4064 4094 3341 17651 

1998 2691 3693 3959 3729 3384 17456 

1999 2706 3558 3670 3668 3055 16657 

2000 3014 3425 3590 3611 2992 16632 

Source: Data from DANE-ECH. 

_________________________ 
7
 In all cross section regressions of the Mincer Equation the inverse Mills ratio was positive and 

statistically significant. 
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Table 6: Mincer Equation in Colombia (1996–2000). 

Variable/Method Pool Deaton Gronau MM 

Years of Education 0.175*** 0.377848*** 0.138194*** 0.1482052*** 

 

(0.006) (7.41e-06) (4.71e-06) (0.011575) 

Potential Experience 0.031*** 0.358849** 0.0091198 0.0382054*** 

 

(0.039) (0.0000197) (9.12e-06) (0.0009938) 

Pot. Exp. squared –0.00003 –0.007319*** 0.0004797*** –0.0002055** 

 

(0.001) (8.84e-07) (2.97e-07) (0.0000207) 

     Inverse Mills Ratio 3.009*** 

 

5.72532*** 4.717903*** 

 

(0.141987) 

 

(0.0001227) (0.1133548) 

Note: Standard error in parenthesis; * p<0.05, ** p<0.01, *** p<0.001 

 
Third column shows the results of the Mincer equation using Gronau’s 

method. We compute the inverse Mills ratio using cohort-proportions in each time 
period and include the inverse Mills ratio in the main equation. We also correct for 
the measurement errors as in Deaton (1985). The results show the return to an 
additional year of education is 13.8 percent. However, the negative sign of the 
potential experience parameter is against theory predictions. This result can be 
attributed to the inconsistence of the IMRG argument in the main equation. 

Finally, the last column of Table 6 shows the estimation of the Mincer 
equation using our method (MM). In each time period we estimate the selection 
process as a regression of the cohort-means of the participants in the labour market 
on years of education and the number of individuals in the household. Following, 
we collect the covariance matrix using the MM procedure in order to analyze the 
selection bias. We use the deviation of the individual data from the cohort to 
correct for measurement error as in Deaton (1985). Our results show a 14.8 percent 
for the return to an additional year of education and a 3.7 percent for the additional 
year of potential experience. All estimated parameters are statistically significant 
and with correct signs. Our method shows an estimated rate of return to education 
comparable with other results for the period for Colombia (Prada 2006, Hernandez 
2010).  
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In order to take into account the possible inconsistency of the estimated 
standard errors due to the two-step GMMC method we make a correction of the 
covariance matrix in the spirit of the Newey and McFadden (1994) suggestion. 
That is, in each time period we compute Phi Matrix as the result of the multivariate 
regression between α�𝑐𝜆𝑐(𝑧𝑐𝛾�𝑐  )𝑧𝑐 on Sc, expc, exp2

c, InvMillsc. Finally, Phi Matrix 
was pre and post multiplied by the first step estimated covariance matrix 
(Remember that the first step estimation includes Ei(t),t and Ni(t),t as covariates in the 
selection equation, Si(t),t). 

7 Conclusions 

In this article, we discussed a testing procedure for sample selection bias in pseudo 
panels. We described a pseudo panel model in which, under convenient expansion 
of the original specification with a selectivity bias correction term, the method 
allows to test for selection bias. We showed that the proposed selection bias 
correction term is proportional to the inverse Mills with argument equal to the 
“normit” of a consistent estimation of the conditional probability of an individual 
is observed given cohort membership.  

The test can be considered a cohort counterpart of Heckman’s selectivity bias 
test for the individual case and, to some extent, generalizes previous existing 
results in the empirical labour literature.  

In particular we propose a two-step-GMMC estimation. This procedure 
implies in order to achieve consistency the estimation in the first step T 
independent regressions and then construct the estimated values of IMR. In the 
second step we estimate a measurement errors corrected (T–1) synthetic cohorts 
regression “a la Deaton”. 

We discussed the power and size of the proposed test using Monte Carlo 
simulations. We made 2,000 iterations, 10 cohorts, t=10 and nc=200. Our 
simulations show that a comparison between two alternative tests, Gronau (1974) 
and ours, gives an 8% in Gronau and 4.5% in MM test. In the case of analysing the 
reduction of a 10% of individuals in each time period the power of Gronau’s is 
worse than without reduction and MM’s power is better in the former than in the 
latter.  Additionally, we used a bivariate normal distribution to simulate ηi(t),t  and 
ϕi(t),t in order to consider the existence of selection bias in the main equation. Our 



 

www.economics-ejournal.org  22 

results show that both tests are significant around 5%. However, MM test performs 
better than Gronau test. Finally, our results show a poor performance of the 
Gronau test compare to MM test when we included a time-varying non-
monotonous with respect to time variable in the selection process.  

Finally, we applied the proposed test and associated estimation to an empirical 
example. To analyse the Mincer returns to education for the Colombian labour 
market using Gronau and MM method as a correction for the selection bias. Our 
results show the existence of selection bias and a clear relevance of the selection 
bias correction term to obtain consistent estimators. In order to consider the 
inconsistency of the standard error due the two steps GMMC we make a correction 
of the covariance matrix computing in each time period the Phi Matrix as the result 
of the multivariate regression. Our results show that the estimated return to an 
additional year of education in the Colombian labour market for the period 1996 
and 2000 is about a 15 percent. 
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