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Abstract: Sample selection bias is common in economic models based on micro data. In the presence of selection 

bias the traditional estimators for pseudo panel data models are inconsistent. This paper discusses a method to 

achieve consistency in static pseudo panels in the presence of selection bias and a simple testing procedure for 

sample selection bias. We describe a pseudo panel model in which under convenient enlargement of the original 

specification with a selectivity bias correction term our procedure allows to test for sample selection bias. We show 

that in the line of Gronau (1974) and Lewis (1974) the proposed selection bias correction term is proportional to the 

inverse Mills ratio with argument equal to the “normit” of a consistent estimation of the observed proportion of 

individuals in each cohort. This finding can be considered a cohort counterpart of Heckman’s selectivity bias 

correction for the individual case and generalizes to some extent previous existing results in the empirical labor 

literature. Monte Carlo analysis shows the test does not reject the null for fixed T at a 5% significance level in finite 

samples and increases its power when utilizing cohort size corrections as suggested by Deaton (1985). As a “side 

effect” we use the enlarged pseudo panel to provide a GMM consistent estimation of the pseudo panel parameters 

under rejection of the null. 
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1. Introduction 

 

Despite the continuous generalization of panel data surveys, most countries still collect microeconomic 

information on the behavior of economic agents by means of repeated independent and representative cross-

sections (RCS). The current pseudo panel analysis starts with the seminal article of Deaton (1985) who establishes 

that individual data can be replaced with cohort data with measurement error. Moffit (1991, 1993) introduces a 

consistent instrumental variable (IV) estimator for pseudo panel models using cohort dummies as instruments. 

Sample selection bias is common in economic models based on micro data. Since Heckman (1976, 1979) 

selectivity bias treatment has been extended to panel data models by, among others, Wooldridge (1995), 

Kyriazidou (1998), Vella y Verbeek (1999), Rochina-Barrachina (1999) and Lee (2001) [see Jensen, Rosholm y 

Verter (2002) for a good survey of the literature]. Discussing sample selection bias in pseudo panels, however, is an 

unfinished task. Traditionally, empirical labor literature utilizes influential articles by Gronau (1974) and Lewis 

(1974), hereafter G-L, and eliminates selectivity bias by means of a correction term proportional to the inverse Mills 

ratio with an argument equal to the inverse normal cumulative distribution function (normit) of the proportion of 

individuals observed in each cohort. Although selectivity analysis with grouped data is prior to Heckman´s 

contribution for the individual case, the connection between them remains unclear.  

This article presents a testing procedure for selectivity bias in pseudo panels. We describe a pseudo panel 

model in which under convenient expansion of the original specification with a selection bias correction term the 

method allows us to use a Wald test of H0: ρ=0 as a test of the null hypothesis of the absence of sample selection 

bias. We show that the proposed selection bias correction term is proportional to the inverse Mills ratio of the normit 

of a consistent estimation of the observed proportion of individuals in each cohort. This finding can be considered a 

cohort counterpart of Heckman’s selectivity bias correction term for the individual case and generalizes to some 

extent previous existing results in empirical labour literature. Monte Carlo analysis shows that the test does not 

reject the null for fixed T at a 5% significance level in finite samples and increases its power when utilizing cohort 

size corrections as suggested by Deaton (1985). As a “side effect” our method enables us to make a consistent 

estimation of the pseudo panel parameters under rejection of the null. 

The article is structured as follows: Section 2 provides a review of the consistent estimation of a cross-

section grouped data model with selectivity bias. Section 3 discusses the consistency for pseudo panel IV 

estimators in presence of sample selection bias. In section 4 we introduce a selectivity bias correction term for 

pseudo panel models. In section 5 we propose a simple test for selectivity bias in pseudo panels and perform a 

Monte Carlo simulation to assess the power of the test. Finally, the conclusions are presented in section 6. 
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2. Selectivity bias in a cross-section model and in a repeated cross-section (RCS) model. 

 

In this section we review some results related with the consistent estimation of a cross-section model with 

individual data and sample selection bias and in turn we analyze the repeated cross-section (RCS) model in the 

presence of selection bias.  

We start with a cross-section model with individual data and sample selection bias. Let the population 

model be 

 

yi* = x´i + ui ; i = 1, …, N,                                                                                                                                          (1) 

si* = z´i + vi;          si =1[si* >0],                                                                                                                                   (2) 

yi = yi*  when  si =1; yi unobserved  otherwise                                                                                                             (3) 

 

Where yi* is the variable of interest, s*i the selection, z explain si, and ui, vi are usual errors.  Usual 

exclusion restrictions hold. As is well known, Heckman (1979), a consistent estimation of the equation of primary 

interest in (1) can be obtained by ordinary least squares (OLS) by adding a selectivity bias correction term in (1). 

This term is 

 

E (ui| xi, si* > 0) ≡ E (ui| xi, si =1) = E (ui| xi, z´i + vi > 0).                                                                                            (4) 

 

The final result under the assumption of joint normality of ui and vi with correlation ρ (or a less restrictive 

assumption as E (ui | vi) = ρ vi) is that the selectivity correction term is proportional to the inverse Mills ratio (IMR) 

with argument z´i γ, i.e. 

 

E (ui| xi, z´i + vi > 0)    Φ (z´i )/  (z´i ),                                                                                                          (5) 

 

Where Φ (.) and  (.) are standard normal pdf and cumulative distribution functions, respectively. Note 

that in the individual case 

 

Prob (si* > 0 )≡ Prob (si = 1)=  (z´i ) 

 

Then under normality assumption 

 

-1 [ (z´i )]=  z´i  = -1 [Prob (si* > 0)] ≡ -1 [Prob (si =1)]. 
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And (5) can be rewritten as 

 

E (ui| xi, si* > 0) ≡ E (ui| xi, si =1)   Φ (-1 [Prob (si =1)])/  (-1 [Prob (si =1)]).                                                     (6) 

 

Hence with individual data the argument of the IMR is the inverse standard normal cumulative distribution 

function or normit function of the probability associated with the observational rule (si*> 0). This is a standard result 

of the statistical literature. 

Let us now continue with a repeated cross-section (RCS) model with sample selection bias. The sample 

model for individual i and time t is 

 

yi(t),t = x´i(t),t + ui(t),t ;    i = 1, …, Nt; t = 1, 2.......T;  yi(t),t  is only observed when si(t),t =1,                                             (7) 

 

where subscript (t) means different individuals are observed in each time period t. To simplify notation we will drop 

subscript (t) hereafter. As we observe different individuals in a RCS model we use cohort dummies as matching 

instruments. Taking expectations in (1) we get the cohort population model 

 

E(yit*|Xit, gi Є Ic)= E(x´it|Xit, gi Є Ic) + E(uit|Xit, gi Є Ic); i= 1,.,Nt; t= 1,.,T ;  c=1, 2….C,                                               (8) 

 

where gi Є Ic denotes that individual i belongs to a specific cohort c. The cohort regression in the absence of 

selection bias (8) can be used as an errors-in-variable estimating equation taking sample cohort-means as 

population cohort-means subject to errors, Deaton (1985). In the presence of selection bias however the relevant 

equation is (7) and taking expectations  

 

E(yit|Zit, sit=1 |gi Є Ic)= E(x´it|Zit, sit=1 |gi Є Ic) + E(uit|Zit, sit=1 |gi Є Ic); i= 1,.,Nt; t= 1,.,T                                            (9) 

 

Expression in (9) highlights two relevant features of the RCS model with sample selection. Firstly, that the 

sample counterpart of the conditional expectations of interest and determinant variables are not simple cohort-

means of observed values but weighted means with conditional probabilities of selected values as weights. 

Secondly, that using (9) as an errors-in-variable estimating equation leads to inconsistent estimates unless E(uit| Zit, 

sit=1 |gi Є Ic) is zero or time invariant. In the case that selection is time invariant FE estimators not only remove fixed 

effects but also eliminate selection biases. It can be noted that in the transit between individual and cohort data the 

emphasis goes from the probability of being observed, in the cross-section model, to the conditional probability of 

being observed given a specific cohort, in the RCS model.  



 5 

A solution to achieve consistency is modeling E(uit| Z´it, sit=1 |gi Є Ic). To cover the main characteristics of 

the panel data literature we must assume that uit is a compound error with two components: individual effect and 

idiosyncratic error. As in Ridder and Moffitt (2007) the sample main equation we consider is a linear individual 

effects regression 

 

Yit = β1Xit + δZi0+ fi+ єit ,                                                                                                                                             (10) 

 

where fi are individual effects; єit idiosyncratic errors; Xit are time-varying variables (tvc) and Zi0 time invariant 

variables (tic). Fixed effects are potentially correlated with Xit, Zi0. Usually Zi0 is a dummy cohort-indicators matrix. 

 

The selection equation is a time-varying selection mechanism, Semykina and Wooldridge (2010), 

 

sit = tZ1it + fi+ εit ,                                                               (11) 

 

where sit is a dichotomous variable that takes 1, 0 values (1 when individual i is observed, 0 otherwise); Z1it is a 

matrix of determinants of the selection process. Z1it relevant terms are time-varying variables but does not exclude 

time-invariant covariates. Yit is only observed when sit =1. Due to the time-varying assumption the fixed effects in 

(11) are unidentified in the cross-section but can be approximated, Semykina and Wooldridge (2010), by Mundlak’s 

(1978) modeling procedure. Taking expectations in (11) for fixed t gives 

 

E (si| gi Є Ic) = 1*[Prob (si =1| gi Є Ic)] + 0*[Prob (si =0| si =1, gi Є Ic)] = Prob (si =1| gi Є Ic).                  (12) 

 

This expression, as we will see in the next section, form the basis to use the selection equation as a relevant 

element to estimate a bias correction term for the main equation.   

 

 

3. Identification and selection-bias correction term modeling. 

 

As stated before cohort variables are used in a RCS model as matching instruments. To estimate the 

system of equations (10) and (11), or their equivalent cohort system, we need a set of identifying restrictions. 

Although we allow for two sources of selection biases we assume the only nonzero time-varying expectation arises 

from the idiosyncratic errors.  Our approach is in the line of Gronau (1985) and encompasses Moscarini and Vella 

(2002). As in Gronau´s work there is a time-varying source of selectivity bias that comes from the idiosyncratic 

terms; however, we take into account tvc variables, different from time and non-monotonous with respect to time, 
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could play an important role in determining the selection process. As in Moscarini and Vella´s research there is a 

time-invariant source of selectivity bias that comes from individual effects and therefore can be eliminated through 

FE estimators. 

 

Assumption 1. 

1.a (Z1i, si) are observables; (yi, Xi) are observed when si = 11. 

1.b (ui, vi) independent from Z1i and E[ui| Z1i] = E[vi| Z1i] = 0. 

1.c vi is distributed as N (0,1). 

1.d E[ui|vi]= ρvi . 

1.e E(λct| λct)= λc. 

1.f E(ect| λct)= E(λct| ηct)=0. 

 

Assumption 1.d holds for instance when we assume the idiosyncratic errors of both equations are jointly 

bivariate normally distributed. 

Under assumption 1.d, a linear projection of uit onto vit is 

 

uit = ρvit + ηit , 

 

where ηit is independent of vit. The relevant bias correction term in equation (9) becomes 

 

E(uit|Zit, sit=1|gi Є Ic sit)= E (ρvit + ηit |Zit, sit=1|gi Є Ic) = ρ E (vit |Zit, sit=1|gi Є Ic) =  ρ E (vit | sit=1|gi Є Ic) .                 (13) 

 

If we denote αct = Prob(sit=1 |gi Є Ic), the time-varying conditional probability that an individual is observed 

given this individual is a member of a specific cohort, a standard statistic result we have reviewed above is that the 

expectation term is equal to the IMR with argument the normit of αct. A consistent estimation of this probability can 

be obtained from the selection equation. Substituting (13) in (9) gives 

 

E(yit|Zit, sit=1 |gi Є Ic)= E(x´it|Zit, sit=1 |gi Є Ic) 1+ ρ λct(αct); i= 1,.,Nt; t= 1,.,T                                                             (14) 

 

where λct(.) is the IMR. Then in the presence of selection bias due to a time-varying selection mechanism to achieve 

consistency in the estimation of (10) we have to augment the specification with an additional regressor, λct. The 

value of this cohort-time regressor is fixed for all observed individuals in cohort c and time t. 

                         
1 Remember that variables included in X could be always observed. 
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We have to note that a test for the presence of selection bias will involve testing the null hypothesis of =0 

in (14), that is Ho: =0. As usual the test can be viewed as an omitted-variable test in (14). 

The estimating augmented main equation is 

 

Yit = β1Xit + δZi0+ ρ λct + fi+ єit .                                                                                                                                  (15) 

 

If we could observe λct an IV estimation would give a consistent estimation of the parameters of the model. 

As λct depends on unknown parameters this direct procedure is unviable. In the next section we will present a 

generalized method of moments corrected (GMMC) estimator. Equation (15) is in the line of the seminal 

contribution of G-L. The Gronau suggestion of correcting for selection bias in the cohort equation with an additional 

term equal to the IMR with argument the normit of the observed proportions of the individuals in each cohort 

(proportion of 1 in each cohort) implies that the consistent estimation of the Prob(sit=1 |gi Є Ic) can be obtained 

through a linear specification (a linear probability model) of the selection equation in which the time-varying 

selection mechanism only depends on cohort dummies, as we will see later on.  

Deaton (1985) shows that an errors-in-variables pseudo panel model can be a good approximation to the 

population model. It implies that IV moments equation derived from (15) must be modified to account for the 

presence of measurement errors. This suggest a generalized method of moments corrected (GMMC) system. 

Formally, moments equation associated with (15) is 

 

𝐸[(𝑌𝑖𝑡 −  𝑋′𝑖𝑡𝛽1 − 𝑍′0𝑖𝛿 − 𝜌𝜆𝑐𝑡)ℎ(𝑍0𝑖, 𝑍2𝑖𝑡)] = 𝐵𝛽 + 𝑏                                                                             (16) 

 

where 𝑍2𝑖𝑡  are time-varying instrumental variables; h(.) is a known function usually a set of time and cohort-time 

interactions although any other time-varying variable is not discarded; β = (β1’ δ’ ρ)’; B, b depend on the covariance 

matrix of the measurement errors. For known λct moments equation in (16) has been extensively studied in the 

literature, Deaton (1985), Verbeek and Nijman (1992, 1993), Moffitt (1993), Verbeek (1996), Collado (1997), 

McKenzie (2004), Devereux (2003), Ridder and Moffitt (2007). Properties of moment estimators are well known in 

general, Hansen (1982). 

We will now proceed to the discussion of the way of modeling the argument of the IMR bias correction term 

in the main equation. 

  In G-L the argument of the IMR is the normit of the proportion of 1 in each cohort. This term is cohort-time 

specific. G-L suggestion has been often used in the empirical labour literature, see for example Blundell et al. 

(1998). Our suggestion (MM) is to use as argument of the IMR the normit of a consistent estimation of the 

conditional probability that an individual is observed given a specific cohort membership. Our approach is equivalent 

to consider relevant the distinction between the observed conditional probability (real proportion of 1 in each cohort-
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time) and a consistent estimation of this conditional probability that takes into account their observed determinants 

(consistent estimation obtained through a selection rule equation). Many arguments can be given to support the 

idea that improving the specification of the selection equation will lead to better estimates of the equation of interest. 

To say the least in the empirical labour literature is usual to assume that variables such as age, education, 

household characteristics, among others, play an important role among the determinants of the participation rate 

and therefore must be included in the specification of the selection equation.2  

Under the assumption of a time-varying selection equation, G-L and MM can be expressed in formal terms 

as the result of an OLS estimation of two different individual data regressions for each cross-section. 

G-L suggestion can be interpreted as a cross-section regression that in matrix expression is 

 

S= Z0α+ ε ,                                      (17) 

  

where S{si} is a Nt column vector that contains a selection variable (it takes the value 1 when an individual is 

observed and 0 otherwise); Z0 is a (Nt x C) dummy cohort indicators matrix; α is a (C x 1) parameter vector and ε a 

column vector of error terms; Nt is the cross-section sample size. An OLS estimator of α 

 




 = (Z’0 Z0)-1Z’0 S = AS,                          (18) 

 

gives us a column (Cx1) vector of proportions of 1 in each cohort, 


{ac}. Matrix A= (Z’0 Z0)-1Z’0 is a cohort-means 

operator.3A trivial feature of equation (17) is that is fully determined (R2=1) so their estimations are not subject to 

errors. In G-L the observed proportions ac are “true” values of the conditional probability of being observed given a 

specific cohort membership. 

MM regression is a reduced-form equation 

 

   S= Z1+ ε                   (19) 

 

                         
2 Needless to say that the equivalence between G-L and MM can be achieved through a thorough definition of cohorts so that 
each cohort only contains homogeneous individuals in terms of the complete set of determinants of the participation rate. This 
argument is theoretically unbeatable but empirically weak because cohorts are usually defined in terms of a small set of time-
invariant variables just to preserve the desired size. 
3 The same result can be obtained if we assume that selection is a purely random process. Given the result of the selection rule an 
application of operator Z0 to S produces the cohort-aggregates vector that must be divided by the total number of individuals in each cohort to 
get the observed proportions.  
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where Z1 is a matrix of selection process determinants. Z1 relevant terms are time-varying variables but does not 

contain Z0 .4Otherwise if Z0 were a subset of Z1 results from MM and G-L regressions coincide. 

To get consistent estimators of the conditional probability of being observed given a specific cohort 

membership we premultiply by matrix A. Then 

 

AS=AZ1 + A ε                                                                                                  (20) 

 

An OLS estimator of  is 

 




 = [Z’1A’A Z1]-1 Z’1A’A S=   + [Z’1A’A Z1]-1 Z’1A’A ε                                   (21) 

 

An estimation of the required probabilities and its covariance matrix is 

 

𝐴𝑆̂ = 𝐴𝑍1(𝑍′
1𝐴′𝐴𝑍1)

−1
𝑍′1𝐴′𝐴𝑆                                                                                                                           (22) 

𝑣𝑎𝑟(𝐴𝑆̂) = 𝐴𝑍1(𝑍′
1𝐴′𝐴𝑍1)

−1
𝑍′1𝐴′𝐴Ω𝐴′𝐴𝑍1(𝑍′

1𝐴′𝐴𝑍1)
−1

𝑍′1𝐴′                                                                            (23) 

 

A consistent estimation of the covariance matrix can be obtained by White method.  Then, the additional 

bias correction regressor to be included in our main equation will be for all individuals in each cohort-time the IMR 

with argument equal to -1[(𝑍′0𝑍0)−1𝑍′0𝑆̂].  

An alternative view of this procedure comes from the equivalence between IV estimation and estimation 

with aggregated data. An IV estimation of the initial equation using A as instruments matrix leads to the same 

results. A proof for two-stage least squares (linear projection of Z1 onto Z0) is straightforward. Our procedure 

respects the RCS spirit and estimate the relevant conditional probabilities from cohort-means data. 

All regressions have heteroscedastic disturbances. This fact derives from the choice of a linear probability 

model approach to represent the selection rule. So far the assumption of a linear probability specification for the 

selection rule has been maintained in order to establish a simple comparison with Gronau’s procedure. In the case 

we use a probit to model the selection rule we have to consider proportions estimation such as, for example, 

Greene (2003). 

                         
4 To directly obtain a vector of consistent estimates of the conditional probability of being observed given cohort membership a trivial 

procedure can be used. We premultiply by (Z’0Z0 )-1Z’0 the vector of predictions 𝑆̂, i.e. we linearly project  𝑆̂ onto Z0, 

 (𝑍′0𝑍0)−1𝑍′0𝑆̂ =  (𝑍′0𝑍0)−1𝑍′0𝑍1(𝑍′1𝑍1)−1𝑍′1𝑆 . 
With covariance matrix 

𝑣𝑎𝑟 [(𝑍′0𝑍0)−1𝑍′0𝑆̂] =  (𝑍′0𝑍0)−1𝑍′0𝑍′1(𝑍′1𝑍1)−1𝑍′1Ω𝑍1(𝑍′1𝑍1)−1𝑍′1𝑍0(𝑍′0𝑍0)−1. 
 
A consistent estimation can be obtained by White method. 
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For each t moments equation associated with (20) is 

 

𝐸[(𝑠𝑖𝑡 − 𝑍′1𝑖𝑡𝛾𝑡 )𝐴𝑡] = 0                                                                                                                                   (24) 

 

Up to now we have not considered the presence of cohort fixed-effects in the selection equation estimation 

just to preserve simplicity in the comparison. When biases arising from right-hand side variables and fixed-effects 

correlation in the selection equation are relevant we use Mundlak’s (1978) modeling device and augment the right-

hand side variables with time average of cohort values of the included variables, Semikyna and Wooldridge (2010). 

The advantage of this approach is that it conserves on degrees of freedom. 

 

4. Pseudo panel data and selectivity bias: A GMMC approach. 

 

In this section we outline a formal GMMC approach to estimate our system. We will see that our GMMC 

estimators are a type of two-step estimators. Firstly, we estimate the MM system in (24) and the estimated 

parameters will allow us to estimate the additional regressor in (16); secondly, we estimate the GMMC system in 

(16). As estimating (24) is straightforward in the rest of the section we will devote our attention to consider questions 

relative to the estimation of (16) and to provide the covariance matrix of the estimators and an upper bound for the 

covariance-corrected matrix of the estimators due to the presence of the estimated additional regressor.  

In cohort form the set of moments equations (24) and (16) can be expressed as 

 

𝐸[𝑠𝑐𝑡 − 𝑍′1𝑐𝑡𝛾𝑡] = 0; t=1, 2….T, c=1, 2….C,                                                                                        (25) 

𝐸[(∆𝑌𝑐𝑡 − ∆𝑋′𝑐𝑡𝛽1 − 𝜌∆𝜆𝑐𝑡)∆𝑊𝑐𝑡] = 𝐵𝛽 + 𝑏  ,                                                                                            (26) 

 

where ∆𝑊𝑐𝑡 = (∆𝑋′𝑐𝑡, ∆𝜆𝑐𝑡)′ . Equation (25) is a system of T cross-section linear regressions. For probit 

specifications of the selection rule (25) would have to be modified to accommodate to a system of proportions 

regressions. In equation (26) we have used first-differences of the synthetic panel, one of the alternatives 

suggested by Deaton (1985). Substituting 𝛾𝑐𝑡̂ in (26) we get 

 

𝐸[(∆𝑌𝑐𝑡 −  ∆𝑋′𝑐𝑡𝛽1 − 𝜌∆𝜆𝑐𝑡̂)∆𝑋𝑐𝑡] = 𝐵𝛽 + 𝑏 .                                                                                              (27) 

 

The GMMC estimator is 
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𝛽̂ = [∑(∆𝑊′
𝑐ΔW𝑐 + 𝐵′)𝐷𝑐

𝐶

𝑐=1

∑(∆𝑊′
𝑐ΔW𝑐 + 𝐵)

𝐶

𝑐=1

]

−1

 

[∑ (∆𝑊′
𝑐ΔW𝑐 + 𝐵′)𝐷𝑐

𝐶
𝑐=1 ∑ (∆𝑊′

𝑐ΔY𝑐 − 𝑏)𝐶
𝑐=1 ],                                                                                          (28) 

 

where ΔW𝑐 =  (ΔW𝑐2, ΔW𝑐3, … . . ΔW𝑐𝑇)′, ΔY𝑐 =  (ΔY𝑐2, ΔY𝑐3, … . . ΔY𝑐𝑇)′. The optimal choice of Dc, Hansen 

(1982), is any consistent estimator of the inverse of the covariance matrix of ∆𝑊′
𝑐ΔW𝑐 . The asymptotic 

distribution of the GMMC estimator, for B, b, ΔW𝑐 known, can be derived using standard assumptions and GMM 

theory. The covariance matrix of the GMMC can be found for example in Collado (1997). 

Let 

 

𝑚1𝑐𝑡 = 𝑠𝑐𝑡 − 𝑍′𝑐𝑡𝛾𝑡 , t= 1,……T 

𝑚2𝑐𝑡 = (∆𝑌𝑐𝑡 −  ∆𝑊′𝑐𝑡𝛽)∆𝑊𝑐𝑡, c=1,2,…C, t=2,3,…T 

 

The sample averages are 

 

𝑚̅1𝑐𝑡(𝛾𝑡) =
1

𝐶
∑ (𝑠𝑐𝑡 − 𝑍′

𝑐𝑡𝛾𝑡)𝐶
𝑐=1  , t= 1,……T                                                                                                   (29) 

𝑚̅2𝑐𝑡(𝛾𝑡, 𝛽) =
1

𝐶
∑ ((∆𝑌𝑐𝑡 − 𝛽 ∆𝑊′𝑐𝑡)∆𝑊𝑐𝑡)𝐶

𝑐=1 , c=1,2,…C, t=2,3,…T                                                            (30) 

 

Let  𝑚(𝜃) =  (𝑚̅1𝑐2, 𝑚̅1𝑐3 … … 𝑚̅1𝑐𝑇, 𝑚̅2𝑐𝑡)′; 𝜃 = (𝛾′𝑡, 𝛽′)′. The system moments equation can be 

written in stacked form as m=0. This system correspond to a two-step-GMMC estimation. We have to estimate in 

the first step T independent regressions and then construct the estimated values of IMR. In the second step we 

estimate a measurement errors corrected (T-1) synthetic cohorts regression “a la Deaton”. 

To get a consistent estimator of the asymptotic variance of θ̂ we need the following jacobian terms, 

 

Ĝ𝛽𝑐 = ∇𝛽𝑚̅2𝑐𝑡(𝛾𝑡, 𝛽)                                                  (31) 

Ĝ𝛾𝑡𝑐 = ∇𝛾𝑡
𝑚̅2𝑐𝑡(𝛾𝑡, 𝛽), t=1,2……T                                                (32) 

M̂𝑐𝑡 = ∇𝛾𝑡
𝑚̅1𝑐𝑡(𝛾𝑡), t=1,2…….T                                     (33) 

 

Let M̂𝑐 = {M̂𝑐𝑡} a (TxT) diagonal matrix;  Ĝ𝛾𝑐 = (Ĝ𝛾1𝑐 , … . . , Ĝ𝛾𝑇𝑐) a (1xT) row vector; 0 a (Tx1) column vector of 

zeros. Then 𝐺 is a (T+1) squared lower triangular matrix 
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𝐺 = [
M̂𝑐 0

Ĝ𝛾𝑐 Ĝ𝛽𝑐

]                                                                                                                                                      (34) 

 

Let (a consistent estimation of) 

 

Ω̂ = 𝑚𝜃𝑚𝜃´                                                                  (35) 

 

A consistent estimator of the covariance matrix of 𝜃 is 

 

𝑉𝜃 = 𝐺−1Ω̂(𝐺−1)′                                                                          (36) 

 

Our interest, however, is in the covariance matrix of 𝛽̂, the main equation parameters estimators. Its 

theoretical derivation is complex and in our view of little help for empirical research. We will give instead, following 

Deaton (1985) and Newey and McFadden (1994), a convenient expression for an upper bound of the covariance 

matrix 𝑉𝛽. The formula is 

 

𝑉𝛽 = [MWW − Σ]−1[ ΣWW(σμ
2 + σ00 + θ´Σθ − 2σ´θ) + (σ − Σθ)(σ − Σθ)  ' ][MWW − Σ]−1 + Π'V̂Π          (37) 

 

In equation (37) the first additive term is the covariance matrix for a static pseudo panel data model 

(Deaton 1985:118). The second is the correction matrix required for using in the estimation of the pseudo panel 

data model an estimated regressor instead of the “true” regressor in the second-step of the two-step-GMMC 

estimation procedure. Newey and McFadden (1994) establishes that in general the estimated regressor causes a 

bias in the estimated covariance matrix, but the problem arises when the estimated regressor downward bias the 

estimated covariance matrix. They give a sufficient condition for the downward bias and outline the correction that 

has to be made for each cross-section through a weighted inner product. Let β be (lx1) and γ (kx1) vectors, to 

construct the inner product matrix we make a regression of a set of k variables (estimated coefficient of IMR in the 

second step of the GMMC procedure times the derivative of IMR (evaluated at argument value) times the derivative 

of the normit (evaluated at argument value) times the vector of regressors in the selection equation) on the 

complete set of regressors, l, in the main equation. This gives us a (kxl) matrix of estimated parameters. For all t, 

we stack all the (lxk) transpose matrices to form a (lxkT) matrix of stacked estimated coefficients. The weighting 

matrix is a (kTxkT) block-diagonal matrix whose main diagonal elements are the cross-section covariance matrices 

in the selection equation. Then for each cross-section, being 𝑃̂𝑡 the (kxl) matrix of estimated coefficients, 𝑉̂𝑡 the 

(kxk) cross-section selection equation covariance matrix in (17), the correction term is   
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𝑃′̂𝑡𝑉̂𝑡𝑃̂𝑡                                                            (38) 

 

 

 

5.- Monte Carlo Simulations of the Testing Procedure 

 

We run a Monte Carlo experiment to investigate the power of the Gronau and MM selection bias tests. First, 

2000 individuals in 10 times period was simulated. The individuals were split in 10 equal cohorts in each time 

period. Thus, we follow the cohort in all time period and cohort dummies are used to keep track of individuals over 

time [see Vella and Verbeek (2005), Girma (2001), and Verbeek and Nijman (1993)]. Also, we simulate covariates 

and latent selection as, 

 

Xi(t),t =   Zi(t),t  +  i(t),t                                                                                           (37) 

S*i(t),t = 1[ ri(t),t  > 0]                                                                  (38) 

 

In equation (37) Zi(t),t consists of 10  dummies of cohorts with identical probability in each time period; i(t),t 

was generated at random from a normal distribution; and r i(t),t was generated at random from a uniform normal 

distribution N [0,1].   The main equation was generated as follows,   

 

Yi(t),t =  Xi(t),t + i(t),t                                            (39) 

                                                                              

Now, we make several hypotheses about the selection mechanism, 

 

a. Gronau Selection 

 i(t),t  = Φ (n i(t),t /N i(t),t )/   (n i(t),t /N i(t),t)                                      (40) 

 

b. MM  Selection 

Si(t),t = Zi(t),t + i(t),t  ;  i(t),t  = Φ (-1 [Prob (S i(t),t =1| gi Ic)])/  (-1 [Prob (Si i(t),t =1| gi Ic)])                                (41) 

 

The main equation to estimate is, 

 

( ), ( ), ( ) ( ), ( ),´ ´i t t i t t i t i t t i t tY X C                (42) 
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We test the power of the test based on the null hypothesis that  equals zero. We make 2,000 iterations, 

10 cohorts and 10 time periods and discard a 10% of individuals at the initial time (t=0). The corresponding results 

are listed below: 

 

Table 1: nc=200, C=10, T=10. 

 

β Power 

=0 0,9819 
 

Gronau 1,0463 0,0860 

MM  0,9585 0,0450 

 

Table 1, shows the simulation results using the nominal size of 5% as the benchmark. The first file shows 

the mean of the β without including the inverse mills ratio in the regression. The power of reject the hypothesis of 

=0 is an 8% in Gronau and 4.5% in MM test.    

Next we discuss the effects of reducing a 10% of the individuals in each period versus don’t reduce the 

number of individuals in each time period, 

  

Table 2: C=10, T=10 

No Reduction Reduction of 10% 

 

β Power 

 

β Power 

=0 1,0028 
 

=0 1,0683 
 

Gronau 0,3227 0,0480 Gronau 0,3332 0,0800 

MM  0,9736 0,0430 MM + rt 0,9375 0,0400 

 

The power of the test without a reduction of individuals is around 5% in both tests. But when the pseudo panel 

experiences a reduction of a 10% of individuals the power of Gronau test is worse than its power without reduction. 

Yet the power of MM test is better in the former than in the latter case. 

In order to discuss the size of the tests we consider the following selection model, 

 

S*i(t),t = 1[r i(t),t + i(t),t  > 0]                                      (43) 

Yi(t),t =  Xi(t),t + i(t),t                                          (44) 

Corr (i(t),t , i(t),t ) =                   (45) 
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We have made 2,000 iterations, 10 cohorts, t=10, and reduced a 10% of individuals in each period and have used a 

bivariate normal distribution to simulate i(t),t  and i(t),t. In order to consider the size of the test we estimate the 

equation (42) and use the nominal size of 5% as the benchmark to reject the hypothesis of ≠0.  The results are in 

Table 3 below. 

 

Table 3 

 Gronau MM 

0.5 0.046 0.031 

0.6 0.040 0.026 

0.7 0.032 0.024 

0.8 0.034 0.024 

0.9 0.034 0.020 

 

 

Results show that both tests are significant around 5%. However, MM test performs better than Gronau test.  

Finally, in order to consider the monotonicity with respect to time we include a time-varying variable in the 

selection process and discuss the sample selection bias using 10,000 iterations, 10 cohorts and a bivariate normal 

distribution to simulate i(t),t  and i(t),t. and consider a correlation of the 0.9. The results are, 

 

Table 4 

Test/Significance 1% 5% 10% 

Gronau 0.9876 0.9408 0.8841 

MM 0.0005 0.0007 0.0010 

 

Results in table 4 show a poor performance of the Gronau test compared to MM test. In all cases, MM detect the 

sample selection bias. 

 

6. Empirical application of the test: Estimating the returns to education 

 

The return to education has been discussed in deeply around the world. In particular the econometric estimation of 

the Mincer equation, in honor to Mincer (1962), let us estimate the return to an additional year of education. In 

Colombia, the returns are almost 15% in the last century, before in the nineties was around 8%. A few articles in the 

Colombian literature discuss the selection problem. In particular, in this period only Tenjo and Bernat (2002) made 
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corrections of the returns to education by selection bias in cross-sections. We run a Mincer equation and test the 

existence of selection bias.5 The main and selection equations system is, 

 

lwhi(t),t = i(t) + o´Ei(t),t + 1´Expi(t),t + 2´Exp2
i(t),t + E(i(t),t|si(t),t) + i(t),t ; t = 1,….,T ;i=1,…,N    (46)       

        

Si(t),t = E i(t),t + N i(t),t + i(t),t           (47)  

 

Where lwhi(t),t is a logarithm of the wages by hour. Ei(t),t are years of education. Exp i(t),t is a potential 

experience (Age(t),t – Ei(t),t – 6) and squared of potential experience, Exp2
i(t),t. i(t) is non-observable individual 

heterogeneity and i(t),t is the error in each period and individual. The term  E(i(t),t | s i(t),t) implies  the existence of 

selection biases in the wage equation due we observe only employment individuals. In order to considerer the 

selection process, we define the labor participation, Si(t),t, as a dummy variable that take value of 1 when the 

individual participate in the labor market (work or unemployed) and 0 in other case and use years of education, E 

i(t),t, and the number of individuals N i(t),t, at home (as proxy of the change in the cost of the labour search) as co 

variables for the selection process. 

 In terms of the sign of the parameters we expect a positive sign for years of education and potential 

experience. However, due to life of cycle we expect a negative sign for squared potential experience. 

In Colombia there is no panel survey statistics on household labor supply data. Our sample comes from 

the National Housing Survey (NHS) which consists of a time series of independent and representative cross-

sections collected from 1984 to 2000 by the National Agency of Statistics (DANE). Since 2000, the DANE has 

collected information about the labor market through another mechanism called Continuous Housing Survey6.  

In each year, the modules of working individuals, personal characteristics, work force, and education were 

linked. The data for variables as schooling years, age, labor earnings, household size, and number of working 

hours, were obtained through this link. In this way, the observations are independent cross-sectional series where 

individuals are only available in each period. Since there are different individuals in each period, i range from 1 to N 

for each t. In this case, we define five cohorts with 16 and 44 years old.  The variables for schooling years, age, 

labor earnings, number of working hours, married, and kind of occupation were obtained from this procedure. We 

have 85,540 individuals in the total sample consisting of 39,015 women and 46,525 men.  

 

 

 

 

                         
5 Mora and Muro (2008) discuss the additional returns to diploma in Colombia using Pseudo Panel data. 
6 Because of this information before and after 2000 is not comparable. 
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Table 5. Number of individuals by Cohort 

Year Cohort 1 Cohort 2 Cohort 3 Cohort 4 Cohort 5 Total 

1996 2048 3535 4161 3853 3547 17144 

1997 2347 3805 4064 4094 3341 17651 

1998 2691 3693 3959 3729 3384 17456 

1999 2706 3558 3670 3668 3055 16657 

2000 3014 3425 3590 3611 2992 16632 

Source: Data from DANE-ECH. 

 

In table 5 we have more than 2000 individuals by Cohort and the average individuals in Cohort 1 (Young people) 

are 2561 and the average individuals in Cohort 5 (Old people) are 3264 individuals.  

 

Table 6. Mincer equation in Colombia (1996-2000). 

Variable/Method Pool Deaton Gronau MM 

Years of Education 0.175*** 0.3778488*** 0.138194*** 0.1482052*** 

 

(0.006) (7.41e-06) (4.71e-06) (0.011575) 

Potential Experience 0.031*** 0.3588496** 0.0091198 0.0382054*** 

 

(0.039) (0.0000197) (9.12e-06) (0.0009938) 

Potential Experience2 -0.00003 -0.0073193*** 0.0004797*** -0.0002055** 

 

(0.001) (8.84e-07) (2.97e-07) (0.0000207) 

     
Inverse Mills Ratio 3.009*** 

 

5.72532*** 4.717903*** 

 

(0.141987) 

 

(0.0001227) (0.1133548) 

Note: Standard error in parenthesis; * p<0.05, ** p<0.01, *** p<0.001 

 

Table 6 above show the returns to education in the period 1996 to 2000 using the standard Mincer equation. In pool 

regression we estimate a Heckman regression using the participation in the labor market as a selection variable and 

years of education and number of individuals in the household as covariates of the selection process.7 Pooling show 

a 17.5 percent of the return to additional year of education. 

In the second column we estimate a pseudo panel Mincer equation using Deaton (1985) method. In 

particular, we correct the measurement errors but we don’t correct for the selection bias. The result shows an 

overestimate in the return of education and experience.  

                         
7 In all cross sections regressions of the Mincer Equation the Inverse Mills was positive and statistically significant.  
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Third column, show the results of the Mincer equation using Gronau method. In particular, we compute the 

Mills Ratio using proportions of the cohort in each time period and include the Mills ratio in the main equation; The 

corrections of the measurement errors as in Deaton (1986). Results show a 13.8 percent of the return to additional 

year of education. However, the sign of the potential experience is different from the theory; that is, a negative sign. 

This results, is due to the inconsistence of the IMRG argument in the principal equation. 

Finally, the table 6 shows the estimation of the Mincer equation using our method (MM). In each time 

period we estimate the selection process as the regression using the mean by cohorts of the participating in the 

labor market over years of education and the number of individuals in the household. Following, we collect the 

covariance matrix using the MM procedure in order to analize the selection bias. We use the deviation of the 

individual data from the cohort in order to correct measurement error as in Deaton (1985). Our results show a 14.8 

percent of the return to additional year of education and 3.7 percent of the additional year of potential experience. 

All signs of the co-variables as in the theory and all co-variables show a statistical significance. Our method shows 

the returns comparable with other results for the period for Colombia [Prada (2006), Hernandez (2010)].  

In order to consider the inconsistency of the standard error due the two steps GMM we make a correction 

of the covariance matrix in the spirit of the Newey – McFadden (1994). That is, in each time period we compute Phi 

Matrix as the result of the multivariate regression between ( )c cc c cz z  on Sc, expc, exp2
c, InvMillsc. Finally, 

Phi Matrix was pre and post multiply by the covariance matrix in the first step (First step include E i(t),t and N i(t),t S co 

variables of the selection process). 

 

7. Conclusions 

 

In this article, we discussed a simple testing procedure for sample selection bias in pseudo panels. We 

described a pseudo panel model in which, under convenient expansion of the original specification with a selectivity 

bias correction term, the method allows to test for selection bias. We showed that the proposed selection bias 

correction term is proportional to Mills inverse ratio with an argument equal to the “normit” of a consistent estimation 

of the conditional probability of an individual is observed given cohort membership.  

The test can be considered a cohort counterpart of Heckman’s selectivity bias test for the individual case 

and, to some extent, generalizes previous existing results in the empirical labor literature.  

In particular we propose an two-step-GMMC estimation. This procedure implies in order to achieve 

consistency the estimation in the first step T independent regressions and then construct the estimated values of 

IMR. In the second step we estimate a measurement errors corrected (T-1) synthetic cohorts regression “a la 

Deaton”. 



 19 

We discussed the power and size of the proposed test using Monte Carlo simulations. We made 2,000 

iterations, 10 cohorts, t=10 and nc = 200. Our simulations show that a comparison between two alternative tests, 

Gronau (1974) and ours, gives an 8% in Gronau and 4.5% in MM test. In the case of analysing the reduction of a 

10% of individuals in each time period the power of Gronau’s is worse than without reduction and MM’s is better in 

the former than in the latter.  Additionally, we used a bivariate normal distribution to simulate i(t),t  and i(t),t in order 

to consider the existence of selection bias in the main equation. Our results show that both tests are significant 

around 5%. However, MM test perform better to Gronau test. Finally, our results show a poor performance of the 

Gronau test compare to MM test when we included a time-varying non-monotonous with respect to time variable in 

the selection process.  

Finally, we applied the proposed test and associated estimation to an empirical example. To analyse the 

Mincer returns to education for the Colombian labour market using Gronau and MM method as a correction of the 

selection bias. Our results show the existence of selection bias and a clear relevance of the test to obtain consistent 

estimators. In order to consider the inconsistency of the standard error due the two steps GMMC we make a 

correction of the covariance matrix computing in each time period the Phi Matrix as the result of the multivariate 

regression. Our results shows a 15 percent of the return to additional year of education in the Colombian labor 

market for the period 1996 and 2000. 
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