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Abstract

The distributions of income and wealth in countries across the world are found
to possess some robust and stable features independent of the specific eco-
nomic, social and political conditions of the countries. We discuss a few
physics-inspired multi-agent dynamic models along with their microeconomic
counterparts, that can produce the statistical features of the distributions ob-
served in reality. A number of exact analytical methods and solutions are also
provided.
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1 Introduction

Even from everyday experience, one can understand that almost with-
out any exception income and wealth in a society are unequally dis-
tributed among its people and from time immemorial, this inequality
has been a constant source of irritation in all societies. There are
several non-trivial issues and questions related to this obseravtion. In
fact, the issue of inequality in terms of income and wealth has been
perhaps the most fiercely debated one in economics. Economists and
philosophers have spent much time on the normative aspects of this
problem (Sen, 1999; Foucault, 2003; Scruton, 1985; Rawls, 1971).
The direct and indirect effects of inequality on the society have also
been studied extensively. In particular, the effects of inequality on the
growth of the economy (Aghion et al, 1999; Barrow, 1994; Benabou,
1994; Forbes, 2000) or on the political-economic scenario (Alesina and
Rodrik, 1992; Benabou, 2000; Alesina and Perotti, 1993; Blau and
Blau, 1982) have attracted major attention. Relatively less emphasis
had been put on the sources of the problem itself. But there remain
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very important questions that beg to be answered. How are income
and wealth distributed? What are the forms of the distributions?
Are they universal or do they depend upon the specific conditions
in the individual country? And the most important question is, if
inequality is universal, as some of its gross features obviously are,
then what is the reason for such universality? More than a hundred
years back, this problem caught attention of Pareto and he found that
wealth distribution follows a power law decay for the richer section of
the society (Pareto, 1897). Much later Champernowne also consid-
ered this problem systematically and he came up with a probabilistic
theory to justify Pareto’s claim (Champernowne, 1953). Separately,
Gibrat worked on the same problem and he proposed a law of pro-
portionate development (Gibrat, 1931). It was subsequently found in
numerous studies that the distributions of income and wealth indeed
possess some globally stable and robust features (see e.g., Yakovenko
and Rosser, 2009 for a review). In general, the bulk of the distribution
of both income and wealth seems to fit both the log-normal and the
gamma distributions reasonably well. Economists usually prefer the
log-normal distribution (Montroll and Shlesinger, 1982; Gini, 1921)
whereas statisticians (Hogg et al, 2007) and more recently physicists
(Yakovenko and Rosser, 2009; Chatterjee et al, 2005; Chatterjee and
Chakrabarti, 2007), tend to rely more on the gamma distribution.
And the upper end of the distribution, that is the tail of the distri-
bution, is agreed to be described well by a power law as was found
by Pareto. Although the exact nature of such distributions are yet
to be finalized, there is a general agreement on the observation that
income and wealth distributions show regularities independent of the
country-specific conditions and these observed regularities in patterns
may be indicative of a natural law of economics.

Here, we survey some multi-agent dynamic models inspired by the
physics of energy distribution in many-body thermodynamic systems.
Specifically, we intend to discuss a very simple microeconomic model
with a large number of agents and consider the asset transfer equa-
tions among the agents due to trading in such an economy. It will be
shown that this type of asset transfer among the agents in an econ-
omy closely resembles the process of energy transfer due to collisions
among particles in a thermodynamic system like an ideal gas. The
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steady state distribution for such a system is an exponential one, as
was found by Gibbs a hundred years back (see e.g., Yakovenko and
Rosser, 2009). We then see that several modified versions of the same
model produce gamma function like behavior for the distribution of
money among the agents in the economy. A further modification of
the model produces a power law for the upper or tail end of the distri-
bution of money, as has been found empirically. Next, we discuss the
analytical aspects of the models and provide some exact results and
derivations of the same. So far this is the only known class of mod-
els which, starting from microeconomics of utility maximization and
solving for the resultant dynamical equations in the line of rigorously
established statistical physics, can reproduce quite reliably the major
features of both of the income and wealth distributions in economies.

This paper is organized as follows. In section 2, we review the data
gathered on income and wealth distributions. In section 3, we consider
a simple microeconomic framework as our basic model. In the next
section, we discuss a number of different modifications of the model
focusing on different economic behaviorial assumptions that lead to a
number of intriguing results. In section 5, we review some analytical
results of the models considered.

2 A short review of data

The distributions of income and wealth have long been subject to
detailed empirical analysis and tests. To put the result briefly, these
studies (Yakovenko and Rosser, 2009; Chatterjee et al, 2005; Chakrabarti
et al, 2006) so far indicate that

m®exp(—m/T) for m < m,,
m~(1+Y) for m > m,,

Pl ~ { )
where P denotes the number density of people with income or wealth
m and «, v denote exponents and T denotes a scaling factor. The
power law in income and wealth distribution (for m > m.) is named
after Pareto and the exponent v is called the Pareto exponent. The
crossover point (m.) is extracted from the crossover of the Gamma
(or log-normal) distribution to the power law tail. The existence of
both features in the same distribution was possibly first demonstrated
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by Montroll and Shlesinger (1982) who observed that while the top
2-3 % of the population (in terms of income) followed a power law
with Pareto exponent v ~ 1.63, the rest followed a lognormal distri-
bution. That study led economists to fit the region below m,. to a
log-normal form, log P(m) o< —(logm)?. This form has indeed been
seen in several studies (see e.g., Souma, 2000; Di Matteo et al, 2004;
Clementi and Gallegati, 2005). But there are strong empirical evi-
dences that the Gamma distribution form Eqn. (1) fits better with
the data, (see e.g., the remarkable fit with the Gibbs distribution in
Silva and Yakovenko, 2005 and also Dragulescu and Yakovenko, 2001,
Dragulescu and Yakovenko, 2001a). There are many studies conclud-
ing that the tail is described well by a power law (see e.g., Souma,
2000; Dragulescu and Yakovenko, 2001; Dragulescu and Yakovenko,
2001a; Aoyama et al, 2000). Interestingly, the tail of the distribution
of income of companies also follows a power law (see e.g., Okuyama
et al, 1999; Axtell, 2001).

While there is no dearth of empirical analysis on the income dis-
tribution, relatively few studies have considered the distribution of
wealth due to the lack of an easily available data source. However,
Dragulescu and Yakovenko (2001a), Levy and Solomon (1997), Coelho
et al (2004), Sinha (2006) have studied wealth distributions exten-
sively. Hegyi et al (2007) studied the wealth distribution in Hungarian
medieval society. Similar studies are done on the wealth distribution
of ancient Egyptian societies (14-th century BC) (Abul-Magd, 2002)
as well. The general feature observed in these limited empirical studies
of wealth distribution is that of a power law behavior for the wealthi-
est 5 — 10% of the population, and gamma or log-normal distribution
for the rest of the population.

To sum up, numerous investigations during the last ten years re-
vealed that the tail of the income distribution indeed follows a power
law with the value of the Pareto exponent v generally varying be-
tween 1 and 3 (Di Matteo et al, 2004; Clementi and Gallegati, 2005;
Dragulescu and Yakovenko, 2001a; Levy and Solomon, 1997; Sinha,
2006; Oliveira et al, 1999; Aoyama et al, 2003, Clementi and galle-
gati, 2005a). The rest of the low income population, follow a dif-
ferent distribution which is debated to be either gamma (Dragulescu
and Yakovenko, 2001; Levy and Solomon, 1997; Aoyama et al, 2003;
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Chakrabarti and Marjit, 1995; Ispolatov et al, 1998; Dragulescu and
Yakovenko, 2000) or log-normal (Di Matteo et al, 2004; Clementi and
Gallegati, 2005; Clementi and Gallegati, 2005a).

The striking similarities observed in the income distributions for dif-
ferent countries indicate that probably the same process governs the
distributions of assets in different economies though these economies
are superficially different. There is a huge literature on modelling the
economies in analogy with large systems of interacting particles, by
physicists. From that perspective, the economy is often viewed as a
thermodynamic system in which the distribution of income among the
agents is readily identified with the distribution of energy among the
particles in a gas. In particular, a class of kinetic exchange models
have provided a simple mechanism for understanding the unequal dis-
tribution of assets. These models have been successful to capture the
key factors in economic interactions that results in different economies
with different socio-political structures converging to similar forms
of unequal distribution of resources (see Chatterjee et al, 2005 and
Chakrabarti et al, 2006, which consists of a collection of large number
of technical papers in this field).

3 The model

We intend to discuss a minimal model to analyze the effects of stochas-
tic trading processes on the asset holding in the steady state of an
economy. Chakrabarti and Chakrabarti (2009) considered an N-agent
exchange economy. Each of the agents produces a single perishable
commodity which is different from all other commodities produced.
Money is treated as a non-perishable commodity which facilitates
transactions. All commodities alongwith money can enter the util-
ity function of any agent as arguments. These agents care for their
future consumptions and hence they care about their savings in the
current period as well. Initially, all of these agents are endowed with
an equal amount of money which is assumed to be unity. As will be
shown, the steady state distribution of money is independent of the
initial amount endowment. At each time step, two agents are cho-
sen at random to carry out transactions among themselves following
the utility maximization principle. The utility functions are of Cobb-
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Dauglas type. We also assume that the preference structure of the
agents are time-dependent that is the parameters of the utility func-
tion vary over time (Lux, 2005; Silver et al, 2002). Below, we consider
a typical transaction that leads to the dynamics of money among the
agents.

Suppose agent 1 produces ()7 amount of commodity 1 only and
agent 2 produces ()9 amount of commodity 2 only and the amounts of
money in their possession at time ¢ are my(t) and mq(t) respectively.
Since neither of the two agents possess the commodity produced by
the other agent, both of them will be willing to trade with each other
and buy the other good by selling a fraction of their own productions
as well as with the money that they hold. Hence, at each time step
there would be a net transfer of money from one agent to the other due
to trade. Our focus is on how the amounts money held by the agents
change over time due to the repetition of such a trading process. For
notational convenience, we denote m;(t + 1) as m; and m;(t) as M;
(for i = 1,2).

Utility functions are defined as follows. For agent 1, Uy(x1, x9,m1) =
]t xe*mi™ and for agent 2, Us(y1, Y2, ma) = Y| ys>my™ where the ar-
guments in both of the utility functions are consumption of the first
(i.e., 1 and y;) and second good (i.e., x2 and y2) and amount of
money in their possession respectively. For simplicity, we assume that
the sum of the powers is normalized to 1 i.e., a1 + as + «, = 1. Let
the commodity prices to be determined in the market be denoted by
p1 and ps. Now, we can define the budget constraints as follows. For
agent 1 the budget constraint is p1x1 + poxs + my < M7 + p1(Q1 and
similarly, for agent 2 the constraint is p1y; + pays + ma < My + paQs.
In this set-up, we get the market clearing price vector (p1,p2) as p; =
(/o) (My 4+ M) /Q; for i = 1, 2 (see Chakrabarti and Chakrabarti,
2009).

By substituting the demand functions of x;, y; and p; for : = 1, 2
in the money demand functions, we get the most important equation
of money exchange in this model. We make a restrictive assumption
that aq in the utility function can vary randomly over time with a,
remaining constant. It readily follows that «s also varies randomly
over time with the restriction that the sum of «; and a» is a constant
(1-a). In the money demand equations derived from the above-
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mentioned problem, we substitute a,, by A and ay /(a1 + ag) by € to
get the money evolution equations as

mo(t+1) = Ama(t) + (1 —€)(1 — X)(m(t) + ma(t))
(2)

where m;(t) = M; and m;(t+1) = m;. For a fixed value of A, if a; is a
random variable with uniform distribution over the domain [0, 1 — ],
then e is also uniformly distributed over the domain [0,1]. For the
limiting value of v, in the utility function (i.e., a;;, — 0 which implies
A — 0), we get the money transfer equation describing the random
sharing of money without savings (see Chakrabarti and Chakrabarti,
2009 for derivation and a discussion in details).

A noteworthy feature of this model is that the exchange equations
are not sensitive to the level of production that is even if for some
reason the level of production alters (due to production shock) the
form of the transfer equations will remain the same provided the form
of the utility function remains the same. Also, the model captures the
possibility of coupling in the evolution of assets (money). This set of
equations forms the basis of our subsequent analysis.

4 Stochastic models

As is shown above, the results of the economic activities (produc-
tion, trade and consumption) is represented by a pair of asset transfer
equations (see Eqn. (2)). What we basically do is to study the steady
state behavior of some modifications of this pair of equations. In the
following models, one considers a closed economic system where to-
tal money M and total number of agents N is fixed. It is assumed
that the system is conservative and no migration occurs. Each agent
i posesses money m;(t) at time t. In any trading, a pair of agents
i and j exchange their money (Chakrabarti and Marjit, 1995; Ispo-
latov et al, 1998; Dragulescu and Yakovenko, 2000; Chakraborti and
Chakrabarti, 2000; Chakrabarti and Chakrabarti, 2009). such that
their total money is (locally) conserved and none end up with nega-
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tive money (m;(t) > 0, i.e., debt not allowed):

m;(t+ 1) = my(t) + Am; m;(t+1) =m;(t) — Am (3)
following local conservation:

m;(t) +m;(t) = m(t + 1) +m;(t 4 1); (4)

time (¢) changes by one unit after each trading.

4.1 Model A: Random sharing of money

The simplest model considers random sharing of the total money be-
tween the trading partners. Assuming A — 0 in Eqn. (2), we get

my(t+1) = (1= e)my(t) +m; (1)
(5)

for the ¢-th and the j-th agent, where € is a random fraction uniformly
distributed between 0 and 1. This is a set of very basic equations of
money transfer among the agents. Interestingly, the same set of equa-
tions represents transfer of energy among particles due to collisions in
an ideal gas except that there all m;’s (money) in Eqn. (5) are sub-
stituted by the colliding particles’ energies. Note that money remains
conserved in this model. While deriving the probability density func-
tion, we must account for all possible divisions of the total amount of
money i.e., m;(t) +m;(t). Clearly all trading actions must satisfy the
condition that

P(m;)P(m;) = P(elm; +m;]) P((1 — €)[m; + m;])

for all a, 0 < a < 1. However, if we consider the distinct possibility
that the entire amount of money accrues to one individual only and
the other becomes pauper, we can solve the model very easily. Using
that particular kind of trading, we get

P(m;)P(m;) = P(m; +m;)P(0). (6)
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Clearly the steady state (t — oo) distribution of money is a Gibbs
(exponential) distribution:

P(m) = P(0) exp(—m/T); T = M/N. (7)

Hence, no matter how uniform or justified the initial distribution is,
the eventual steady state correspond to the exponential distribution
where most of the people have got very little money. This steady state
result is seen to be very robust. Several variations of the mode of
trading, and of the ‘trading network’ (on which the agents can be put
at the nodes and each agent trade with its ‘neighbors’ only), whether
compact, fractal or small-world like (Oliveira et al, 1999) leaves the
distribution unchanged. There are still other studies where variations
like random sharing of an amount 2msy only (not of my + ms) when
my1 > my (trading at the level of the relatively poorer agent in the
trade), lead even to a drastic situation: all the money in the market
drifts to one agent and the rest become truely pauper (Hayes, 2002;
Chakraborti, 2002).

4.2 Model B: With constant \

We now consider Eqn. (2) with constant A for the i-th and j-th agents:
mi(t +1) = Xm;(t) + (1 = A)(mi(t) + m;(t))

my(t+ 1) = Mg () + (1 =€) (1= A)(ma(t) + m; (1),

Note that A\ acts as a savings factor in this model, where each trader
at time ¢ saves a fraction A of its money my(t) (for k =i, j) and trades
randomly with the rest (see Chakraborti and Chakrabarti, 2000).
The market (non-interacting at A = 1) becomes ‘interacting’ for any
non-vanishing A\(< 1). For fixed A (same for all agents), the steady
state distribution P(m) of money is exponentially decaying on both
sides of the mode of the distribution i.e., the most-probable amount of
money per agent. The mode also shifts away from m = 0 (for A = 0)
to M/N as A — 1 (Fig. 1). This self-organizing feature of the market,
induced by sheer self-interest of saving by each agent without any
global perspective, is very significant since the fraction of people below
a particular poverty line decrease as the saving fraction A\ increases
and most people end up with some finite, non-zero fraction of the
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Figure 1:
Steady state money distribution P(m) (y-axis) is plotted against money m (x-axis) for
the model with uniform savings. 4+, x, * and [J denotes distributions with A = 0, 0.3,
0.6 and 0.9 respectively. All data sets shown are for average money per agent M /N =1
and N = 100.

average money in the market (Chakraborti and Chakrabarti, 2000).
Although this fixed saving propensity does not give yet the Pareto-
like power-law distribution, the Markovian nature of the scattering or
trading processes (see Eqn. (6)) is effectively lost. Indirectly through
A, the agents get to know (start interacting with) each other and the
system co-operatively self-organises towards a stable form with a non-
vanishing most-probable amount of money-holding (see Fig. 1).

Angle (Lux, 2005; Angle, 1986; Angle, 2006) proposed an early
version of the above model several years back in sociology journals.
Angle’s ‘Inequality Process’ is described by the following equations:

mi(t+1) = my(t) + Dywm;(t) — (1 — Dy)wmy(t)
mj(t+1) = m;(t) + (1 — Dy)wm;(t) — Dywm;(t)
(8)

where w is a fixed fraction and D; takes value 0 or 1 randomly. The
numerical simulation results of Angle’s model fit well to Gamma dis-
tributions.

In the model with uniform savings, the distribution of the mon-
etary assets shows a self organizing feature. A peaked distribution
with a most-probable value indicates an economic scale. Empirical
findings in homogeneous groups of individuals as in waged income of
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factory labourers in UK and USA (Willis and Mimkes, 2004) and data
from population survey in USA among students of different school and
colleges support this observation (Angle, 2006).

4.3 Model C: With distributed )\

In reality, people face different constraints resulting in different pat-
terns of saving or at a more basic level, their attitudes towards savings
may not be the same i.e., the parameters of their utility functions may
differ from one person to another. This in turn implies that the saving
parameter A is very heterogeneous. To imitate this situation, we allow
A to be widely distributed within the population (Chatterjee et al,
2003; Chakrabarti and Chatterjee, 2004; Chatterjee et al, 2004). The
evolution of money in such a trading can be written as:

my(t+1) = Amy(0) + (1= ) [(1 = Amy(t) + (1 — Ay (1)),
(9)

The trading rules are same as before, except that
Am =e(1 —Xj)m;(t) — (1 — X)) (1 — e)m;(t) (10)

here; where \; and A; are the saving propensities of agents ¢ and
j. The agents have fixed (over time) saving propensities, distributed
independently, randomly and uniformly (white) within an interval 0 to
1: agent i saves a random fraction \; (0 < \; < 1) and this \; value is
quenched for each agent (\; are independent of trading or ¢). Studies
show that for uniformly distributed saving propensities, p(\) = 1 for
0 < A < 1, one gets eventually P(m) ~ m*) with v = 1 (see
Fig. 2). The eventual deviation from the power law in Q(m) in the
inset of Fig. 2 is due to the exponential cutoff contributed by the rare
statistics for high m value.

A direct analytical derivation of the pareto law found above, is
provided in section 5.3. It is seen that the variation in € plays no
role in it. The key factor is the distribution of the savings propen-
sity A. Refering to section 3, we can define the utility functions as
follows. For agent 1, Uy(x1,x9,my) = x'x5?*m{™ and for agent 2,

Us(y1, Y2, m2) = ylﬂ 1y2ﬁ?m§m. Again for simplicity, we assume that the
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Figure 2:
Steady state money distribution P(m) for the distributed A model with 0 < A\ < 1 for a
system of N = 1000 agents with the average money per agent M /N = 1. A power-law is
observed with 1 +v = 2.

sums of the powers are normalized to 1 i.e., a1 + as + o, = 1 and
01+ (o + B, = 1. We make a crucial assumption that o, ~ 3,, and
Qs B — 1. Also, we assume that oy = ay ~ 5y = (. Then by doing
the same exercise as in section 3 and denoting «,, and (3,, by A; and
Ao respectively, we can approximate the money evolution equations in
the following form,

mi(t+1) = Agma(t) + % (1= A)ma () + (1 — Ag)ma(d))

mg(t + 1) = )\QmQ(t) + % ((1 - /\1)m1(t) + (1 - )\2)7712(?5)) .

(11)

Note that € is constant here (equals to 1/2) and A is the variable.
The above set of equations also produce the Pareto distribution in the
steady state (see sections 5.2 and 5.3 for analytical derivations of the
same).

4.4 Model D: Taxation and redistribution

This model was studied by Dragulescu and Yakovenko (2001) and
Guala (2009). We return to Eqn. (5) which captures the process of
random sharing of money. In this model trading process takes place
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in two steps. In the first step, we assume that prior to trade a fixed
fraction 7 of money is taxed from both of them. Random sharing
occurs with the rest of the money. In the second step, the total amount
of money taxed is distributed equally among all the agents in the
economy.

mi(t+1/2) = e(l —7)(mi(t) +m;(t)
m;(t+1/2) = (1 —€)(1—7)(mi(t) +my(1))
(12)

For all £,

(mi(t) +mj(t)
¥ .

This model also gives rise to gamma-like features in the steady state
distribution. But it has a pecularity in that it shows transition from
exponential to gamma function as 7 goes up and then after a threshold,
it returns to an exponential for higher values 7. Guala (2009) shows
that the optimal tax rate is about 0.325 where optimality refers to
equality among the agents.

mk(t—i— 1) :mk(t—I— 1/2)+T

(13)

4.5 Model E: Risk aversion and insurance

Chakrabarti and Chakrabarti (2009) proposed this model with a dif-
ferent interpretation. In this model, the money transfer process takes
place in two steps. The process is again governed by Eqn. (5). We
assume that the agents are risk-averse. Hence, prior to trade they
reach an agreement that whoever will be the winner, shall transfer
a fraction f of his excess of money to the loser. This is akin to an
insurance where the agents sacrifice higher gains to avoid losses. In
the first step, the agents trade in an absolutely random fashion. This
step follows from Eqn. (2) above if we consider that A\ — 0. Hence,

mi(t +1/2) = elmi(t) + m;(1)]

m;j(t +1/2) = (1 = e)[mi(t) +m;(t)].

The agents agree to split the ezcess amount of money. Hence the agent
with more money, transfers a fraction f of the excess to the agent with
less money. It is reasonable to assume that 0 < f < 0.5. If m;(t +
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1/2) > m;(t + 1/2), excess of money, 6 = m;(t +1/2) —m;(t +1/2).
Hence,

m;(t+ 1) =m;(t+ 1/2) + (f9).

This process is repeated at each time step until the system reaches
a steady state and the distribution p(m) of money among the agents
in the steady state are studied. Substituting for §, m;(t + 1/2) and
m;(t +1/2) in the above equation, we get the reduced equations

mi(t +1) = g[mi(t) +m;(t)]
m(t+1) = (1 —g)[mi(t) +m;(t)].
(14)

The expression of ¢ in the above equationsis g = f+(1—2f)e. It may
be noted that ¢ is a linear transformation of an uniformly distributed
variable €. Hence, ¢ is also uniformly distributed and its domain is
[f, 1 — f]. With rising values of f, this model shows a transition from
pure exponential (for f = 0) to a A distribution (for f = 0.5) in money
holding. Gamma like distributions emerge for values of f between the
two extremes.

There are other useful stochastic models which are also able to
generate exponential or gamma function like probability density func-
tions for the distribution of money. Studies of these models indicate
the general form of the steady state distributions obtained here. How-
ever, this type of models have no theoretical support from economics.
One can see for example Scalas et al, 2006; Garibaldi et al, 2007 and
Kar-Gupta, 2006 for a detailed discussion on this type of models.

5 Analytical studies

There have been a number of attempts to study the uniform savings
model (Model B, Sec. 4.2) analytically (see e.g., Das and yarlagadda,
2003), but no closed form expression for the steady state distribution
P(m) has yet been arrived at. The exact distributions for the model
with taxation (Model D) and the model with risk averse agents (Model
E) is also unknown whereas the model with distributed savings (Model
C) has been solved in several ways (Chatterjee et al, 2005a; Chatterjee
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et al, 2005b; Mohanty, 2006; Repetowicz et al, 2005; Richmond et
al, 2005). Below, we discuss a very simple method of obtaining the
moments of the distributions upto any order without knowing the
actual distribution.

The mathematical structure of the discrete and continuous (both
in time and space) versions of the kinetic exchange equations under
strict and not-so-strict conservation laws are well-studied. The ma-
jor findings are the precise analysis of the Boltzmann-type equations
resulting from the binary collision models (Markowich, 2007), links
between the steady state distributions and a number of particular
asymptotes (Markowich, 2007; Toscani and Brugna, 2009), possible
extensions to incorporate multiple interacting species, generation of
bimodal distribution of income/opinion formation, effects of taxes etc
(During et al, 2008; Toscani, 2009). However, we stick to the de-
scriptive part of the ideal gas like markets only. Below follows some
non-rigorous but useful technical results.

5.1 Moments of the distribution

We denote ezpectation or average of a variable x by E(x) and the
central moment of order n > 1 (u,) of a variable z as

E(x — B(z)") = E(Y_ < ’; ) 2 B(—z)").

=0

For n = 2, E(x — E(z)") corresponds to the variance of x and is
denoted by V(z). Since the systems are conservative and the initial
endowments were unity for all agents, it is obvious that E(m;) would
be unity. So we can write the n-th moment of the distribution of
money without subscript as

Bl = 1) = B3 () w10 (15)

=0

We assume that m; and m; are independent variables. Using the
money-transfer equation in Eqn. (15), one can find out p,, iteratively
for any n (i.e., if the moments upto (n—1)-th order are known then it is
possible to find the n-th moment by the above equation). For example,
we find out the second moment of the steady state distribution of
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model B in section 4.2 by assuming that the first moment is set to
unity i.e., the average money M/N = 1. Note that for the i-th agent,
the time evolution of money is

mi(t +1) = dm;(t) + e(1 — X)[mi(t) +m;(t)].
By taking expectations on both sides we get E(m) = 1. Also, in the

steady state, V(m;) = E(2?) — [E(x)]? where z = Am; +¢€(1 — ) (m; +
m;). Using the fact that E(x) =1, we get

V(m;) = N E(m?)+(1=\)?E(*m;i+m;])*)+2X(1=\) E(e) E(m;[m;+m;])—1.
Using the symmetry in agent indices ¢ and j one gets E(e*[m;+m;|*) =

[V(e) + 1/4][2V (m) + 4]. Since V(e) = 1/12 (as € is uniformly dis-
tributed), we get the following equation after rearranging terms

V(m) = N[V(m)+1] + %(1 — NV (m)+2]+ A1 =N [V(m)+2] —1.

Simplifying the above expression we get the result for A # 1,

(1-X)
V(m) = m

Chakrabarti and Chakrabarti (2009) also discusses the second moment
of the distribution of the model E.

Patriarca et al (2004) claimed through heuristic arguments (based
on numerical results) that the distribution of model B is a close ap-
proximate form of the Gamma distribution

P(m) = Cm® exp|—m/T] (16)

where T' = 1/(a+1) and C = (a+1)*"/T'(a+1), T being the Gamma
function whose argument « is related to the savings factor A\ as:

3\
1—A
which implies T = (1 — A\)/(1 + 2)) and it may be noted that in the
case considered here (with M/N = 1), T happens to be equal to the

variance of the distribution itself. The same value of the parame-
ter is obtained through moment calculation above (Chakrabarti and

o =

(17)
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chakrabarti, 2009). Also, when compared with Eqn. (1), m. — oo.
The qualitative argument forwarded here Patriarca et al (2004) is
that, as A\ increases, effectively the agents (particles) retain more of
its money (energy) in any trading (scattering). This can be taken as
implying that with increasing A, the effective dimensionality increases
and temperature of the scattering process changes. This result has
also been supported by numerical results in Bhattacharya et al (2005).
However, Repetowicz et al (2005) and Richmond et al (2005) analyzed
the moments, and found that moments upto the third order agree with
those obtained from the form of the Eqn. (16), and discrepancies start
from fourth order onwards. Hence, the actual form of the distribution
for this model still remains to be found out.

It is seen that the values of the parameters of the distribution de-
rived by the above-mentioned technique (without any distributional
assumption), are identical to those found by Patriarca et al (2004).
Although this technique enables one to derive the exact values of the
moments upto any order, it has an obvoius drawback that it can not
be applied to the models where one does not get any representative
equation. For example, this technique does not apply to model D (sec.
4.4).

We review now some of the analytical results on the steady state
distribution P(m) of money resulting from the equations Eqn. (9)
representing the trading and money dynamics (Model C, Sec. 4.3) in
the distributed savings case.

5.2 Distribution of money difference

In the process defined by Eqn. (9), the total money (m; + m;) of the
pair of agents ¢ and j remains constant, while the difference Am;;
evolves as

A+ A
(Amij)ipr = (Mg —my)e1 = ( 5 j) (Amyj),
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Figure 3:

Steady state money distribution P(m) against m in a numerical simulation of a market
with N = 200, following equations Eqn. (9) with e = 1/2. The dotted line corresponds to
m~(1+): y = 1. The average money per agent M/N = 1.

Numerically, as shown in Fig. 2, we observe that the steady state
money distribution in the market becomes a power law, following such
tradings when the saving factor \; of the agents remain constant over
time but varies from agent to agent widely. As shown in the numerical
simulation results for P(m) in Fig. 3, the law, as well as the exponent,
remains unchanged even when e = 1/2 for every trading (Chatterjee et
al, 2004). Clearly, the third term in Eqn. (18) is zero for € = 1/2. Even
in the case where ¢ — 1, the third term in the above equation becomes
unimportant for the critical behavior. For simplicity, we concentrate
on this case, where the above evolution equation for Am,;; can be
written in a more simplified form as

(Amij>t+1 = S\ij<Amz’j>t + 5\zg(mz + mj)t, (19)

where S\ij = %()\Z + ;) and Xij = %()\Z — ;). As such, 0 < A < 1and
—L<i<l

The steady state probability distribution D for the modulus A =
|Am| of the mutual money difference between any two agents in the
market can be obtained from Eqn. (19) in the following way provided
A is very much larger than the average money per agent = M/N.
This is because, using Eqn. (19), large A can appear at t + 1, say,
from ‘scattering’ from any situation at ¢ for which the right hand
side of Eqn. (19) is large. The possibilities are (at t) m; large (rare)
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and m; not large, where the right hand side of Eqn. (19) becomes
~ (Nij + Aij)(Aij)e; or my large (rare) and m; not large (making the
right hand side of Eqn. (19) becomes =~ (A;; — Aij)(Ay);); or when m;
and m; are both large, which is a much rarer situation than the first

two and hence is negligible. Consequently for large A, the distribution
D(A) satisfies

D(A) = / A D(A') (5(A — (A + X)A) + 5(A — (A= MAY)

() 0)

where the 0 functions take care of the A values permitted by Eqn. (19)
and we have used the symmetry of the ) distribution and the relation
Aij + S\ij = J\;, and have suppressed labels i, j. Here (...) denote
average over \ distribution in the market, and 0 denotes the d-function.
Taking now a uniform random distribution of the saving factor A,
p(A) = 1for 0 < A < 1, and assuming D(A) ~ A~0+) for large A,
we get

1
1:2/ AN =2(1+v) (21)
0

giving an unique value of v = 1. This also indicates that the money
distribution P(m) in the market also follows a similar power law vari-
ation, P(m) ~ m~U*") and v = 1. Distribution of A from numerical
simulations also agree with this result.

Chatterjee et al (2005) and Chatterjee et al (2005a) analysed the
master equation for the kinetic exchange process and found its solution
for a special case. For a pioneering study of the kinetic equations

for the two-body scattering process and a more general solution, see
Repetowicz et al (2005) and Richmond et al (2005).

5.3 Average money at any saving propensity and the distri-
bution

Patriarca et al (2005) and Patriarca et al (2006) studied the relation-
ship between a particular saving factor A and the average money held
by an agent characterized by that savings factor and these numeri-
cal studies revealed that the product of the average money and the
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unsaved fraction remains constant i.e.,
(m(A)(1=X)=C (22)

where C' is a constant; here (x) denotes ensemble average over x for
a particular value of \. Mohanty (2006) justifies this result rigorously
using a mean-field type approach. It is assumed that the distribution
of money of a single agent over time is stationary, which means that
the time averaged value of money of any agent remains unchanged
independent of the initial value of money. Assuming that the i-th
agent interacts with all agents over time and taking the expectation
of Eqn. (9), one can write

() = Audma) + ) [ (1= ) me) + (5 S0 = )| - (23)

Jj=1

The last term on the right can be replaced by the average over the
agents (denoted by a constant C') and since € is assumed to be dis-
tributed randomly and uniformly in [0, 1], so that (¢) = 1/2, Eqn. (23)
reduces to

Since the right side is free of any agent index, it suggests that this
relation is true for any arbitrary agent, i.e., (m;)(1 — \;) = constant,
where ); is the saving factor of the ith agent (as in Eqn. (22)) and
what follows is:

d\ x —. (24)

Here, m represents (m;) defined above. An agent with a particular
saving propensity factor A therefore ends up with a characteristic av-
erage money m given by Eqn. (22) such that one can in general relate
the distributions of the two:

P(m) dm = p(X\) dA. (25)
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This, together with Eqn. (22) and Eqn. (23) gives (Mohanty, 2006)

P(m) = p(/\);i:; x p(ln;%)7 (26)

giving P(m) ~ m~2 for large m for uniform distribution of savings
factor A, i.e, v = 1; and v = 1 + 6 for p(A) = (1 — A)°. This study
therefore explains the origin of the universal (v = 1) as well as the
non-universal (v = 1 4 ) Pareto exponent values in the distributed
savings model.

6 Summary and discussion

Income and wealth distributions across the population in many coun-
tries are found to possess some robust characteristics. As has been
discussed in section 2, it is empirically found that the bulk (about
90%) of the population fits a gamma like distribution: after an initial
steep rise in probability with income/wealth, an exponential decay is
seen in the number of persons with income/wealth. There are consid-
erable deviations from exponential decay in the high income/wealth
range and the income and wealth data in that range (for the top 5-
10% of the population in any country) fit well to Pareto distribution
(power law) with the value of the exponent ranging between 1 and 3.

As has been discussed in section 3, the simple exercise of utility
maximization (with a well-known utility function) in a bilateral trad-
ing framework gives rise to a pair of money exchange equations. The
system depicted by this set of equations is conserved and the cou-
pling behaviour is captured by the same set of equations. This has led
to a completely new, statistical formulation of the models of market
economies. The dynamics of money in such a model, reveals interest-
ing features about the steady state distribution of money among the
interacting agents. Self-organisation is a key emerging feature of these
kinetic exchange models when saving factors are introduced. In the
model with uniform savings (see Sec. 4.2), the Gamma-like distribu-
tion of money shows stable distribution with a most-probable value
indicative of an economic scale dependent on the saving propensity, A.
Empirical observations in homogeneous groups of individuals supports
this theoretical prediction (see e.g., Willis and Mimkes, 2004; Angle,
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2006). The moments of the distribution can be found (see Sec. 5)
very easily.

Next, the saving propensity is assumed to vary from agent to agent
(see Sec. 4.3). The emergence of a power law tail in money-holding is
apparent in cases where the saving factor does not change with trad-
ings or time ¢ for the same agent (i.e., where each trader has a different
characteristic saving propensity). The money exchange equations can
be cast into a master equation, and the solution to the steady state
money distribution giving the Pareto law with v = 1 have been derived
using several approaches (see Sec. 5). Then we discuss two different
models focusing on different economic institutions that can also give
rise to the same gamma function-like behavior for the distribution of
assets in the steady state. The first one considers taxation (see Sec.
4.4) whereas the second one considers insurance against losses (see Sec.
4.5). The moments of the resulting distributions of the last model can
be found upto any order (see Sec. 5). The possibilities of emergence
of self organizations in markets, evolution of the steady state distri-
butions, emergence of Gamma-like distribution for the bulk and the
power law tail, are seen to be captured well by this class of market
models.

It has been debated for long whether these models are represent-
ing the income distributions or wealth distributions or simply, the
distribution of a conserved asset called money. Given that we have
considered this class of models in the framework of general equilibrium
theory, we opt for the last interpretation. Clearly, money is treated
as a commodity here which has no storage cost. An important role of
money in this model is that it is an asset which transfers purchasing
power in future (see section 3). For the sake of clarity, it may be men-
tioned that the distributions derived so far, are concerned with money
only (which may be interpreted as an asset). Strictly speaking, there
is no income (wage earned from labor) in these models and neither is
there any wealth accumulation (no capital stock). The reason is that
the production side is completely ignored in these models. This may be
considered as a future direction of research to consider a model of pro-
duction and to derive income/wealth distribution directly from that
framework. However, the essential nature of both income and wealth
and their distributions are captured very well by this class of models.
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In short, in this class of models money (asset) works as a proxy for
income/wealth. Since the distributions derived for money compares
extremely well with the empirical data of income/wealth, we believe
that these models provide important insights for income/wealth dis-
tributions as well.

This class of models has also been critisized for assuming that the
law of conservation holds. Gallegati et al (2006) notes that “in in-
dustrialized capitalist economies, income is most definitely not con-
served”. While this observation is certainly true that income and
wealth in an economy grows over time, it does not contradict the
models stated above. The growth of income and wealth over time, is
by definition a time-series observation whereas the models presented
here tries to explain cross-section observations (data taken at a single
instance or within a very short period of time). The main arguement
in favour of the ideal gas like models is that billions of small transac-
tions that take places in a very short span of time can generate the
essential stochastic features of the kinetic exchange models and the
resultant distributions concerned.

Though the models considered above (Sec. 4) follow from estab-
lished principles of the utility maximization paradigm (Sec. 3) and the
analysis of their kinetics (Sec. 5) have a rigorous foundation based on
hundred years’ old statistical physics, they are not matured enough
yet to be put to use in practice directly. Nevertheless, they present
a workable and tractable approach for analysing a statistically large
economy. They illuminate the statistical effects of a number of mecha-
nisms and institutions of the economy and reproduce the distributions
of assets seen in reality quite reliably; as such they may provide a new
foundation of macroeconomics (Lux and Westerhoff, 2009). In future,
policy making may also benefit from such detailed understanding of
the mechanisms by which distributions of income and wealth emerge
out of collective exchanges (Hogan, 2005).
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