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1. Statistical equilibrium and implicit microfoundations

Macroeconomic phenomena are partly determined by the aggregated outcome of

the microeconomic decisions of the individuals that comprise the economy. It therefore

makes sense to seek macroeconomic theories that have microfoundations as essential

elements. But what kind of microfoundations?

A traditional approach to this question explains macroeconomic phenomena in terms

of microfoundations that consist of (i) a precise theory of individual choice and (ii) a

complete specification of the relevant information that defines the contexts in which

choices are made (e.g., see Kydland and Prescott (1982) for a canonical example).

So the microfoundations normally take the form of inter-temporal optimization of an

objective function (a mechanism of choice) given individual endowments, preferences

and technology (a range of situations). Macroeconomic fluctuations in output, employ-

ment, investment and consumption are then explained in terms of exogenous technology

shocks. The microfoundations are explicit because the choice mechanism (optimization)

is fully specified and functions as an essential explanatory factor.

The explicit microfoundations approach encounters some logical difficulties when the

decisions of many individuals are aggregated (e.g., see Rivzi (1994) and Gaffeo et al.

(2007)). So the device of a ‘representative agent’ is normally employed to map a very

large inhomogeneous population to a very small set of homogeneous individuals. The

idea is that the law of large numbers applies to a large population so that individual

variances shrink to zero upon aggregation. So the means of variables, associated with

the representative agent, can function as ‘sufficient statistics’ for the population as a

whole. But in many situations individual variances do not ‘wash out’ in the aggregate so

the representative agent will misrepresent the aggregate consequences of the microfoun-

dations (e.g., see Aoki and Yoshikawa (2007) and Farjoun and Machover (1989), Ch.

1). Quoting Kirman (1992), ‘there is no plausible formal justification for the assump-

tion that the aggregate of individuals, even maximizers, acts itself like an individual

maximizer’.
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But here I would like to focus on a more fundamental concern: Is the precise mech-

anism of individual choice an important causal factor in the determination of macroe-

conomic phenomena? The explicit microfoundations approach answers ‘yes’. Alterna-

tively, if the answer is ‘no’ then the traditional approach, at the very least, contributes

a redundant explanatory factor to the construction of macroeconomic theories.

Farjoun and Machover (1989), in their path-breaking work on Political Economy,

‘Laws of Chaos’, make a simple but important methodological point. They observe that

an economy is a dynamic system composed of millions of people in which ‘the actions of

any two firms or consumers are in general almost independent of each other, although

each depends to a very considerable extent on the sum total of the actions of all the

rest’ (Farjoun and Machover (1989), p.39); in other words, a market economy has a huge

number of degrees of freedom (DOF) with weak micro-level coordination. They argue

that the appropriate equilibrium concept for such a system is a statistical equilibrium

in which the macro-level regularities take the form of probability distributions. Let’s

explore their thesis for a moment.

The economy of the United States has a civilian labor force of approximately 155

million individuals.1 The kinds of economic activities performed by these individuals

spans the whole range of human experience and subsumes a great variety of tasks, skills,

situations, enjoyments and motives. An enormous variety of both mundane and novel

decision-making contexts are routinely presented to the individuals that constitute the

economy. The space of possible configurations of this system is of course astronomically

large.

Local economic decisions are globally coordinated primarily through the ‘invisible

hand’ of supply and demand dynamics in markets distributed in time and space. The

economy gropes this way and that, from one configuration to another, generally in a

‘bottom-up’ manner, adapting continually to new economic circumstances. The exis-

tence of this type of emergent coordination does not significantly reduce the DOF since

there is no top-down plan or ‘Walrasian auctioneer’ to synchronize the local behavior.

Systems that have a huge number of DOF and weak micro-level coordination (‘messy’

systems) behave very differently to systems with a small number of DOF and strong

1According to the US Bureau of Labor Statistics (2008).
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micro-level coordination (‘neat’ systems). This is reflected in the different kinds of

equilibrium they can exhibit.

The state-space of a system is the set of all possible configurations of the DOF. A

particular configuration is a ‘point’ in state space. In general we find that many neat

systems, if they enter equilibrium, tend toward a point or trajectory in state-space. A

canonical example is a set of weighing scales. Place some weights on each arm and the

scales will tend toward an equilibrium point in which the internal forces balance and

the system is at rest. This is a simple kind of deterministic equilibrium, in which the

equilibrium configuration is a subset of state-space. The classical mechanics concept

of equilibrium was a founding metaphor of the 19th Century marginal revolution in

economics (e.g., see Mirowski (1989)). And it appears in a more developed form in 20th

Century neoclassical general equilibrium models (e.g., Debreu (1959)).

But most messy systems, if they enter equilibrium, do not tend toward a subset of

state-space. So in the physical sciences the tools of statistical, not classical, mechanics

are used to study messy systems. A canonical example is an ideal gas in a container.

The internal forces never balance. Instead, at the micro-level, there is ceaseless motion

and change, a process that effectively samples the whole state-space in a random fashion.

Yet at the macro-level a certain kind of regularity does emerge. The probability that a

randomly selected gas particle will have a certain energy is constant over time (in this

case, the probability distribution is Boltzmann-Gibbs). In this simple kind of statistical

equilibrium the equilibrium configuration is not a ‘point’ or subset of state-space but

a probability distribution over an aggregate transform of the state-space (in this case,

the number of atoms with a given energy level).

Since an economy is more like a messy than a neat system we should expect any

empirical regularities to be better captured by the concept of a statistical, rather than

a deterministic, equilibrium. Essentially this is Farjoun and Machover’s point.

The importance of statistical equilibrium in economics has been emphasized by other

authors, notably Steindl (1965), and more recently Aoki (1996, 2002) and Foley (1994).2

2In the Econophysics literature the work of Dragulescu and Yakovenko (2000), although relying on a
highly simplified definition of money and monetary exchange, is nonetheless an instructive and beautiful
example of the power of statistical mechanical approaches to understanding macroeconomic distribu-
tions.
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Nonetheless, thinking that the relation between micro and macro in statistical mechanics

is related to the analogous problem in economics remains the ‘less trodden path’. One

reason, perhaps, is that it calls into question the need for explicit microfoundations.

A counter-intuitive property of statistical mechanics is that macro-level regularities

are in an important sense relatively independent of the precise mechanisms that govern

the micro-level interactions. So the adoption of macro-level statistical equilibrium as an

explanatory principle has a concomitant implication for microfoundations. For example,

classical statistical mechanics represents the molecules of a gas as idealized, perfectly

elastic billiard balls, which is a gross oversimplification of a molecule’s structure and how

it interacts with other molecules. Yet statistical mechanics can deduce empirically valid

macro-phenomena. Khinchin (1949), who pioneered the development of mathematical

foundations for the field, writes:

Those general laws of mechanics which are used in statistical mechanics

are necessary for any motions of material particles, no matter what are

the forces causing such motions. It is a complete abstraction from the

nature of these forces, that gives to statistical mechanics its specific

features and contributes to its deductions all the necessary flexibility.

... the specific character of the systems studied in statistical mechanics

consists mainly in the enormous number of degrees of freedom which

these systems possess. Methodologically this means that the standpoint

of statistical mechanics is determined not by the mechanical nature, but

by the particle structure of matter. It almost seems as if the purpose of

statistical mechanics is to observe how far reaching are the deductions

made on the basis of the atomic structure of matter, irrespective of the

nature of these atoms and the laws of their interaction. (Eng. trans.

Dover, 1949, pp. 8–9, emphasis added).

So, analogously, the method by which individuals choose (the ‘mechanical’ nature of

individuals) is not as important as the fact that a huge number of individuals are

choosing with respect to each other but are weakly coordinated (the ‘particle’ nature

of individuals). The approach of implicit microfoundations adopts this methodological

‘rule of thumb’.
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Given the aim is to determine ‘how far reaching are the deductions made on the

basis’ of the particle nature of individuals while abstracting from the mechanics of

individual rationality, it makes sense, at least initially, to ‘bend the stick’ as far as

possible in the direction of implicit microfoundations. But how do we abstract from the

‘mechanics’ of individual rationality and represent individuals as ‘particles’?

Sometimes it is possible to predict choice behavior in controlled experimental set-

tings or in situations where conventions or rules play an important role. But in general

the everyday creativity of market participants who aim to satisfy their goals in open-

ended and mutually constructed economic situations is unpredictable. For example,

Aoki (2002) writes, ‘Even if agents inter-temporally maximize their respective objective

functions, their environments or constraints all differ and are always subject to idiosyn-

cratic shocks. Our alternative approach emphasizes that an outcome of interactions of

a large number of agents facing such incessant idiosyncratic shocks cannot be described

by a response of the representative agent and calls for a model of stochastic processes’.

The unpredictability of choice behavior suggests representing the choice mechanism as

a random process. So the implicit approach represents economic agents not as ‘white

box’ sources of predictable optimizing behavior but instead as ‘black box’ sources of

unpredictable noise; that is, they are particles that choose in a random manner sub-

ject to objective constraints (e.g., a budget constraint). The single representative agent

with well-defined choice behavior has been replaced by a huge number of heterogeneous

agents with random choice behavior. This is the simplest possible starting point for

implicit microfoundations and provides a null hypothesis against which claims of the

importance of explicit microfoundations can be measured. For example, as a starting

point, randomness can be modeled as selection from a uniform distribution, in accor-

dance with Bernoulli’s Principle of Insufficient Reason that states that in the absence

of knowledge to the contrary assume all outcomes are equally likely. The aim is ‘to

explain more by saying less’, or at least start by saying less and see how far that takes

us (c.f. Farmer et al. (2005)).

The principle that many market outcomes are determined more by the objective

social structure than the particulars of individual rationality is not new. For example,

Gode and Sunder (1993) show that the results of an economics experiment are broadly
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similar when classroom students are replaced with ‘zero-intelligence’, random agents;

Farmer et al. (2005) show that the assumption of ‘zero-intelligence’ agents can explain

many of the statistical features of double-auction trading data from the London Stock

Exchange; and Wright (2008) shows that ‘zero-intelligence’ agents in a simple com-

modity economy can instantiate supply and demand dynamics that approach efficient

allocation of resources and equilibrium prices (see also Cottrell et al. (2009)).

A natural objection at this point is the observation that economic agents do not

act according to random rules. They often think very carefully before acting. Surely

it is necessary, therefore, to model individual rationality, even when considering macro-

level phenomena? But the objection elides the distinction between epistemology and

ontology, a picture with reality. A ‘black box’ probabilistic model of individual agency

does not imply that choice mechanisms are in fact random, only that, when placed in

the range of situations routinely presented by a dynamic, large-scale economy, they are

operationally equivalent, at the aggregate level, to an ensemble of random process. So

the precise detail of the choice mechanism is not a decisive factor in the determination

of macro-level outcomes.

Randomness in a theory can be viewed as an unmodeled residual, like assuming

a constant in physical theories (e.g. the constant of gravitation). Residuals should

eventually be eliminated and replaced by a more encompassing theory (e.g. a theory

that explains the value of the gravitational constant). But the ‘rule of thumb’ of implicit

microfoundations says something different: eliminating randomness won’t necessarily

yield a better explanatory or predictive theory since the randomness represents an

essential property of ‘messy’ systems. We should expect rapidly diminishing explanatory

returns from increasingly explicit microfoundations.

Any methodological suggestions need testing. The next section provides an example

of a parsimonious, agent-based macroeconomic model with implicit microfoundations.

The computational model facilitates a quick, experimental exploration of the conse-

quences of adopting implicit microfoundations. On execution it rapidly self-organizes

into a statistical equilibrium with properties that replicate many of the reported empir-

ical distributions of developed capitalist economies.
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2. An example of implicit microfoundations

The ‘social relations of production’ (Marx 1954) define roles that people fulfill

when engaged in productive activity. A defining feature of a capitalist economy is

the employee-employer relation. A small class of capitalists employ a large class of

workers organized in firms. The capitalist owners are the residual claimants of firm

income and receive profits, whereas workers are hired, or rented, and receive wages.

In reality some individuals receive both profit and wage income (and other kinds of

income). Nonetheless the vast majority of the working population rely on wage income.

This close correlation between the personal and the functional distribution of income

is the foundation of the the two major economic classes of capitalist society. Hence we

adopt the simplifying assumption that an agent is either an employee or an employer.

The social relations of production both enable and constrain the kinds of economic

interactions between individuals. These social constraints are distinct from any natural

or technical constraints, such as those due to scarcities or current production techniques.

So this model entirely abstracts from natural and technical constraints and instead con-

centrates on the relationship between economic actors mediated by monetary exchange.

The model ontology is therefore quite sparse, consisting solely of individuals and money.

The aim is to concentrate as far as possible on the economic consequences of the social

relations of production alone rather than particular and perhaps transitory economic

mechanisms, such as particular markets, commodity types and industries.3

Consider N economic agents labelled 1, . . . , N . Each agent i owns a non-negative

amount of money, mi. The total money in the economy is a finite constant M =
∑N

i=1 mi.

Each agent has an integer employer index, 0 ≤ ei ≤ N and ei 6= i, which denotes

the agent’s employer. If ei = 0 the agent is not employed; otherwise if ei = j then agent

j is the employer of agent i.

Each agent has a wage level, wi ≥ 0, which represents the last wage payment received

from an employer. Each agent has a wage expectation, ηi ≥ 0, which represents the wage

payment it expects to receive from an employer.

3This model extends previous work described in reference (Wright 2005b), in particular by simpifying
the computational rules and introducing a labor market and endogenous wage rate.
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The state of each agent is fully specified by the tuple (mi, ei, wi, ηi).

At any time the economy supports an ‘effective demand’, 0 ≤ D ≤ M , which

represents the total monies available for the purchase of goods and services.

The static state of the whole economy is fully specified by the set of tuples S =

{(mi, ei, wi, ηi) : 1 ≤ i ≤ N} and effective demand D.

The evolution of the state of the economy, Si → Si+1, is determined by a set of five

simple rules, which are repeatedly applied at each simulation step.

2.1. The labor market. The labor market assigns workers to firms at different

wage levels. Assume that: unemployed agents seek employment; their wage expectations

tend to decrease during the period of unemployment; employed agents tend to join new

employers if the pay is better or remain if they receive a pay rise; cash-rich employers

tend to demand more labor resources than poorer employers; and demand for labor

tends to increase wage expectations. These informal assumptions are expressed more

precisely by the following rule.

Hiring rule: If agent a is not an employer, ∀x : ex 6= a, then:

(1) Wealthier employers have a higher probability of matching with potential hires

in the job market. Form the set of potential employers, H = {x : ex = 0 ∧
x 6= a, 1 ≤ x ≤ N}. Select a potential employer, h ∈ H, with probability

P (h) = mh/
∑

i∈H mi, which weighs potential employers by their wealth.

(2) Demand for labor tends to increase wage expectations. Select the negotiated

wage offer, w, from the interval [ηa, 2ηa] according to a uniform distribution

(unless w exceeds the potential employer’s wealth, wh, in which case set w =

wh). If w > ηa (i.e., the wage offer exceeds the wage expectation) then firm h

hires a. Set

(a) the employer index ea to h and

(b) the new wage expectation ηa to the accepted offer w.

(3) Lack of demand for labor tends to decrease wage expectations. Otherwise if a

remains unemployed, ea = 0, then randomly select a new wage expectation,

η′a, from the interval [0, ηa] according to a uniform distribution (i.e., ηa is set

to η′a).
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Wage expectations are initially subjective and arbitrary but they change in response

to the conditions in the labor market. Unemployment tends to lower the wage expec-

tation by 50% whereas getting hired or rehired tends to raise the wage expectation by

50%. The expectation delta is a minor parameter that controls the rate of change of

wage expectations.

The hiring rule allows all those not employed to potentially hire employees. A small

firm is born when an unemployed agent with sufficient cash hires another unemployed

agent.

A major simplifying assumption is that every firm has a single capitalist owner who

does not reallocate their capital during the lifetime of the firm.

2.2. Effective demand. Assume that: the total amount spent by an individual

agent is bounded by their current cash holdings; the expenditure contributes to the

total effective demand in the economy; and workers purchase consumption goods and

capitalists also purchase capital goods. So effective demand can be interpreted to consist

of both personal consumption and investment.

Effective demand rule:4 All agents spend a proportion of their income on goods

and services.

(1) Randomly select an expenditure amount, m, from the interval [0, ma] according

to a uniform distribution.

(2) Transfer m to effective demand D (hence, ma is reduced by m and D is in-

creased by m).

In other words, agents spend randomly given their budget constraint.

2.3. Interaction between firms and the effective demand. Assume that ev-

ery member of a firm, both employees and employer, performs work that potentially

adds value to firm output. Clearly there are multiple and particular reasons why a

worker adds more or less value, including the capital of the firm. But the value that is

added must be bound by the effective demand.

Firm revenue rule: All members of a firm perform activities that generate income.

If agent a is not unemployed, ea 6= 0 ∨ ∃x : ex = a, then:

4Following Lin (2008) I simplify this rule compared to Wright (2005b).

10



(1) Randomly select an amount of revenue m from the interval [0, D] according to

a uniform distribution (D is reduced by m).

(2) If agent a is an employee, ea 6= 0, then transfer m to the employer ea (hence

mea is increased by m).

(3) If agent a is an employer, ∃x : ex = a, then transfer m to a (hence ma is

increased by m).

A firm with more employees will on average receive a share of the effective demand

on more occasions than a firm with fewer employees. The income represents the value

of many different kinds of products and services sold in arbitrary amounts to arbitrary

numbers of buyers.

2.4. Wage payments and employee firing. The employer pays wages from its

cash reserves. If a wage cannot be paid then the employee is fired. Firing may therefore

occur in bulk if the firm is cash starved. A firm ceases trading when all its employees

are fired.

Wage payment and firing rule: Employers pay wages. An employee is fired if

the employer cannot afford to pay their wage. If agent a is an employer, ∃x : ex = a,

then form the set of employees E = {x : ex = a, 1 ≤ x ≤ N}. For each b ∈ E:

(1) If employer a has sufficient funds then transfer wage payment ηb to employee

b. Set the employee’s wage level to the wage payment, wb = ηb.

(2) If employer a has insufficient funds then employee b is fired (eb is set to 0). Set

the fired employee’s wage expectation to the wage level, ηb = wb.

An employee is hired at a specific pay level on entry to the firm (the ‘wage contract’)

represented by the wage expectation. But if the agent is fired before they get paid then

the wage expectation reverts to the agent’s previous wage level. The expectation was

never met.

2.5. Historical time. Each ‘month’ every agent has a chance to act.

One month rule: Select N agents with replacement from the set S to form the

set of active agents A. For each a ∈ A apply the:

(1) Hiring rule.

(2) Effective demand rule.

(3) Firm income rule.
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(4) Wage payment and firing rule.

Since N agents are selected with replacement then some agents may act more than

once and others not at all, which introduces an additional source of noise.5

The one month rule generates a variety of events. Agents can get hired, fired,

switch jobs, or get pay raises. They may form start-ups. Firms grow and shrink in size.

Workers generate revenue for the firms that employ them. The revenue is bound by

the effective demand, which is a function of the stochastic spending patterns of other

agents. Firms pay out wages, or cease trading if they cannot afford to do so. And so

forth.

The five rules constitute a ‘closed social architecture model’ (CSA). It has two major

parameters, the population size, N , and the total money stock, M . The Mathematica

6.0 code that implements the model is included in the appendix.

3. Graphical analysis

Parameters M and N appear to function as scaling parameters that do not affect

the relative dynamics, except when finite size effects occur at approximately N < 50.

The state of each agent must be seeded. At initialization all agents are unemployed

with a money endowment of 10. All wage expectations and levels are also set to 10.

This is an arbitrary choice. Later, in section 3.12, we show that the seeds do not affect

the results. In all reported results, N = 1000 and M = 10000.

The simulation rapidly converges to a state of statistical equilibrium. Once this

state is reached we collect statistics for 100 years. Since the results are not sensitive to

initial conditions we examine the results from a single execution. All functional fits are

based on a simple least-mean-squared error. So the analysis should be considered only

preliminary and indicative.

3.1. Economic classes. In capitalist economies the capitalist class is numerically

small whereas the working class, that is those who rely predominately on wage income,

constitute the vast majority of the population. After each year we count the number

of workers, capitalists and unemployed. Figure 1 plots the result. Class sizes are

approximately normally distributed. The normal distributions summarize a dynamic

5Lin (2008) justifiably complains that this choice is unrealistic and lacks a strong economic justification.
I agree that it is important to remove this feature from the model. I stick with it for now since I find
it produces a superior firm size distribution.
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(a) Frequency plot of number of workers, µ =
646.2 (64.6% of the population) and σ = 34.9.
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(b) Frequency plot of number of capitalists,
µ = 169.3 (16.9% of the population) and σ =
15.5.
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(c) Frequency plot of number of unemployed,
µ = 184.5 (18.5% of the population) and σ =
31.3.

Figure 1. Frequency plots of class sizes (bin size of 5). The smooth

curves are normal distributions P (x) ∝ 1
σ
√

2π
e−(x−µ)2/(2σ2).

process that supports social mobility, where agents move between classes during their

imputed lifetimes, occurring within a stable partition of the population into two main

classes – a small employing class and a larger employed class. The CSA model therefore

self-organizes into a realistic partition of the working population into a minority of

employers and a majority of employees.

The unemployment rate is higher than is usually reported in modern economies, but

real measures of unemployment typically under-report actual unemployment, whereas

here all non-employed actors are considered unemployed; in addition there is no concept

of self-employment in the model.

3.2. Firm sizes. After each month we count the number of employees in each

firm. Figure 2 plots the result, which is consistent with either the Zipf (power-law)

distribution or the lognormal distribution. There are many small firms and a small
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(a) The smooth curve is a Pareto distribution

P (x) ∝ x−(α+1) with exponent α = 0.98. The
special case α = 1 is the Zipf distribution.
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(b) Frequency plot in log-log scale. The
straight line is the same Pareto distribution.
The dashed line is a lognormal distribution

P (x) ∝ (1/σ)e−((ln x−µ)2/2σ2). with µ = −0.7
and σ = 1.4.

Figure 2. Frequency plots of firm sizes measured by number of employ-
ees (bin size of 1).

number of very large firms. A similar results is obtained if firm sizes are measured over

a much shorted period, such as 15 years.

Gibrat (1931) proposed that firm sizes follow a lognormal distribution. Early em-

pirical studies supported this hypothesis (e.g., Hart and Prais (1956), Simon and Bonini

(1958)). Axtell (2001) analyzed US Census Bureau data for US firms trading between

1988 and 1997 and found that the firm size distribution is Zipf, and this relationship

persisted from year to year despite the continual birth and demise of firms and other

major economic changes. Gaffeo et al. (2003) found that the size distribution of firms

in the G7 group over the period 1987-2000 also followed a power-law, but only in lim-

ited cases was the power-law actually Zipf. Fujiwara et al. (2004) found that the Zipf

law characterized the size distribution of about 260,000 large firms from 45 European

countries during the years 1992–2001.

Lognormal distributions can generate tails that appear to follow a power-law. So

a statistical, rather than graphical analysis, is needed to distinguish between power-

law and lognormal fits. The CSA model is therefore consistent with the empirical

distribution of firm sizes relative to this uncertainty.

The largest US firm in 1997 had approximately 106 employees from a total reported

workforce of about 107 individuals (Axtell 2001). Therefore, the largest firm size should

not exceed about 1
10th of the total workforce. Figure 2 shows that, with low but non-

zero probability, a single firm can employ nearly 40% of the workforce, representing a
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Figure 3. Frequency plot of number of firm demises per month (bin
size of 1). The smooth curve is the lognormal distribution P (x) ∝
(1/σ)e−((ln x−µ)2/2σ2). with µ = 3.9 and σ = −6.4.

monopolization of a significant proportion of the economy by a single firm, a clearly

unrealistic occurrence. A possible reason for the over-monopolization of the economy

is the assumption that firms have a single capitalist owner, which conflates capital

concentration with firm ownership.

3.3. Firm demises. When a firm fires all its employees it ‘dies’. We measure the

number of firm demises per month. Figure 3 plots the result. The results are consistent

with a lognormal distribution. Cook and Ormerod (2003) report that the distribution

of US firm demises per year during the period 1989 to 1997 is closely approximated

by a lognormal distribution. The CSA model is therefore consistent with the empirical

distribution of firm sizes.

The average number of firms in the US during the period 1989 to 1997 was 5.73

million, of which on average 611,000 died each year (Cook and Ormerod 2003). So

roughly 10% of firms die each year. In the simulation on average 52 firms die each

month and therefore approximately 630 firms die each year, a figure in excess of the 170

firms that exist on average. So although the distribution of firm demises is consistent

with empirical data, the rate at which firms are born and die is much higher than in

reality.

3.4. Firm lifespans. When a firm dies we measure the number of months it

traded. Figure 4 plots the result, which is consistent with an exponential distribu-

tion in which the majority of firms have a short lifespan and a minority a long lifespan.

Gatti et al. (2004) analyzed the age at bankruptcy of about 6 million European firms
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Figure 4. Frequency plot of firm lifespans measured in months (bin
size of 2).

-6 -4 -2 2 4 6

1000

2000

3000

4000

(a) The smooth curve is the Laplace distribu-

tion P (x) ∝ e−λ|x| with λ = 1.3.

-4 -2 0 2 4 6

10

100

1000

10
4

(b) Frequency plot in log scale. The straight
line is the same Laplace distribution.

Figure 5. Frequency plots of log of firm growth ln(st/st−1) measured
by number of employees (bin size of 0.25).

from 1992 to 2001 and found that the distribution is exponential. Fujiwara (2003) ana-

lyzed data on about 16,000 Japanese firms in 1997 and found similar results. The CSA

model is therefore consistent with the empirical distribution of firm lifespans.

3.5. Firm growth. After each year we measure the current size, st, of each firm

that is trading at the end of the year. Size is defined by the number of employees. The

log growth rate is then ln(st/st−1) (if a firm ceased trading in year t or t − 1 then no

growth rate is recorded). Figure 5 plots the result, which is consistent with a Laplace

(double exponential) distribution.

Stanley et al. (1996) and Amaral et al. (1997) analyzed the log growth rates of

publicly traded US manufacturing firms in the period 1974 – 93 and found that growth
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Figure 6. Frequency plots of log of firm growth ln(st/st−1) measured
by value of sales (bin size of 0.5).

rates, when aggregated across all sectors, appear to robustly follow a Laplace form

with some deviation from the Laplace at high and low growth rates resulting in slightly

‘fatter wings’ (Lee et al. 1998, Amaral et al. 2001). Bottazzi and Secchi (2003) replicate

these findings and report a Laplace growth distribution for Italian manufacturing firms

during the period 1989–96. This holds true whether growth rates are measured by sales

or number of employees.

Figure 6 plots the result when size is defined by sales revenue. The result is con-

sistent with a Subbotin, not an exponential, distribution. The Gaussian and Laplace

distributions are special cases of the Subbotin distribution. Teitelbaum and Axtell

(2005) re-examined Stanley et al.’s data and concluded that in several cases a Subbotin

distribution provided the better fit. Also Fu et al. (2005) conclude that empirical firm

growth distributions are ‘fatter tailed’ than the Laplace and propose a new distribution

that has Laplace-like behavior in the center but with substantially heavier tails. The

CSA model is therefore consistent with the empirical data on firm growth distributions

relative to the uncertainty in the analysis of the empirical data.

3.6. Rates of profit. At the end of every year we calculate the profit rate for each

firm trading at the close of the year. The profit rate of firm i is pi = 100(ri/bi − 1)

where ri is total revenue received and bi is total wages paid during the year. Figure 7

plots the result. The distribution is highly right-skewed with a power-law tail.
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(a) Frequency plot of firm profit rates. The
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Figure 7. Frequency plot of firm profit rates (bin size of 25). The
smooth curve is a mixture of normal variates with means and variances
distributed according to a power law.

I previously deduced a functional form for this profit-rate distribution (Wright 2004,

2005b). Briefly, assume that during a small period of time the revenue generated by each

employee of firm i is an independent and identically distributed (iid) random variable.

Then by the Central Limit Theorem the firm’s revenue, Ri, is distributed according to

a normal distribution. Assume that each individual wage payment to each employee is

also iid. Then the firm’s wage bill, Wi, is also normal. The mean and variance of both

Ri and Wi depend on the size of the firm. Larger firms tend to have high revenues and

costs that exhibit low variance, whereas smaller firms tend to have low revenues and

costs that exhibit high variance. Assume that the size of firms, measured by number

of employees, is distributed according to a power-law. So the economy-wide ratio of

revenue to costs, Ri/Wi for all i, is a mixture of ratios of normal variates with means

and variances distributed according to a power-law.

This argument yields a 6-parameter mixture distribution, P : µ1, σ1, µ2, σ2, α, N ,

where µ1 is the mean per-capita revenue and σ2
1 the variance, µ2 is the mean wage and

σ2
2 the variance, α is the Pareto exponent of the firm size distribution, and N is the
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number of economic agents. The pdf of mixture P is 1/100f(1 + x/100) where

f(x) =

∫ N

2

exp
[

−6(
sµ2

1

σ2
1

+
(s−1)µ2

2

σ2
2

)
]

2πΘ3/2(x)
(
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Θ(x) +
√
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[
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√
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ds
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√

sσ2
1

√

(s − 1)σ2
2
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1 + (s − 1)x2σ2

2

Ψ(x) = (s − 1)s(µ2σ
2
1 + xµ1σ

2
2)

We can calculate the 6 parameters directly from the simulation. Figure 7 plots P :

5.0, 18, 3.0, 9.8, 0.98, 1000 against the simulation data and demonstrates an excellent fit.

Mixture distribution P therefore includes instances with heavy tails.

The CSA model therefore predicts that empirical profit rates are distributed ac-

cording to mixture distribution P. This prediction has yet to be tested. The success

of the prediction of course depends to what extent the highly simplified assumptions of

the model do not abstract from some other essential determinants of the profit rate.

Gibrat (1931) proposed a lognormal distribution for profits. Farjoun and Machover

(1989) proposed that the capital-weighted profit-rate is approximated by a gamma dis-

tribution by analogy with the distribution of kinetic energy in a gas at equilibrium. Wells

(2008) studied UK company accounts data and found that profit rates have power-law

tails. The empirical distributions are therefore not consistent with a gamma distribu-

tion. Gibrat’s hypothesis is tentatively verified for some definitions of the profit rate but

difficulties remain when fitting the tail of the distribution. The lognormal distribution

also fails to fit the tail of the distribution generated by the CSA model.

3.7. GDP. Gross Domestic Product (GDP) measures the value of gross production

at current prices, including consumption and gross investment. At the close of each year

we measure the total firm income, X, received during that year (i.e., all income received
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Figure 9. Frequency plot of log of GDP growth rates ln(Xt/Xt−1) mea-
sured over 3 simulations (bin size of 0.05). The smooth curve is the

normal distribution P (x) ∝ 1
σ
√

2π
e−(x−µ)2/(2σ2) with µ = −0.03 and

σ = 0.06.

during the application of the firm revenue rule). Figure 8 plots the distribution of ln(X).

It is consistent with a normal distribution.

Lee et al. (1998) analyze GDP data of 152 countries during the period 1950–1992

and find that the log of detrended GDP for all countries at all times is consistent with

a normal distribution. The CSA model is therefore consistent with the empirical data.

3.8. GDP growth. At the close of year t we calculate the GDP, Xt. The log

growth rate of GDP is then ln(Xt/Xt−1). Figure 9 plots the result, which is consistent

with a normal distribution.

Lee et al. (1998) and Canning et al. (1998) analyze the detrended GDP of 152 coun-

tries during the period 1950–52 and find that the distribution of GDP log growth rates

is consistent with a Laplace distribution. The CSA model therefore fails to replicate

the empirical data in this case, which indicates its incompleteness.
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Figure 10. Frequency plot of duration of recessions measured in years
over 3 simulation runs (bin size of 1).

3.9. Duration of recessions. A recession begins when Xt/Xt−1 < 1 and ends

when Xt+k/Xt+k−1 ≥ 1. The duration of the recession is then k years. Figure 10 plots

the distribution of the duration of recessions, which follows an exponential law.

Wright (2005a), reinterpreting empirical data presented Ormerod and Mounfield

(2001), concludes that for 17 Western economies over the period 1871–1994 the distri-

bution of the duration of recessions follows an exponential law . Recessions tend not

to last longer than 6 years, the majority of recessions last 1 year, and for the US the

longest recession has been only 4 years (Ormerod 2002).

Ausloos et al. (2004) subsequently analyzed a more comprehensive set of GDP data

and concluded that overall the durations more closely follow a power-law, not an expo-

nential law. In the light of this more extensive data set we must conclude that the CSA

model only approximately replicates the empirical distribution.

3.10. Income inequality. At the end of every year we calculate the total income

received by each agent during the year. Both wage and firm income are counted as

income. So we make no distinction between the income received by a firm and the

income received by the capitalist owner. Figure 11 plots the result. The lower regime,

corresponding to wage income, is consistent with a lognormal distribution; the higher

regime, corresponding to profit income, is consistent with a Pareto distribution. But

the lognormal distribution gives a good fit for all income ranges. Deciding between a

power-law or lognormal fit for the tail of the data requires statistical, not graphical,

analysis.
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(a) The complete income distribution plotted
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(b) The complete income distribution
plotted in log-log scale. The smooth
curve is the lognormal distribution

P (x) ∝ (1/σ)e−((ln x−µ)2/2σ2). with µ = 3.9
and σ = 1.3. The dashed straight line is
the Pareto distribution P (x) ∝ x−(α+1) with
α = 1.5.
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(c) The lower regime of the income distribu-
tion. The smooth curve is the lognormal dis-
tribution.
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(d) The higher regime of the income distri-
bution plotted in log-log scale. The straight
dashed line is the Pareto distribution.

Figure 11. Frequency plots of the distribution of income measured by
monies received over the duration of a year (bin size of 5).

Empirical studies of the distribution of personal income in capitalist societies are

relatively consistent. The higher, profit-income regime is normally fitted to a Pareto (or

power) distribution (e.g., Levy and Solomon (1997), Matteo et al. (2003), Dragulescu

(2003), Nirei and Souma (2003a,b), Souma (2000)), whereas the lower, wage-income,

regime, which represents the vast majority of the population, is normally fitted to a

lognormal distribution (e.g., Souma (2000), Montroll and Shlesinger (1983), Badger

(1980)), but recently some researchers (e.g., Nirei and Souma (2003b), Dragulescu

(2003), Dragulescu and Yakovenko (2003)) report that an exponential (Boltzmann-

Gibbs) distribution better describes the lower regime. The existence of two income
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regimes is a direct consequence of the two major sources of income in capitalist soci-

eties, that is wages and profits, and the overall income distribution appears to be a

mixture of two qualitatively different distributions (Silva and Yakovenko 2005).

The functional form of the income distribution is stable over many years, although

the parameters seem to fluctuate within narrow bounds. For example, for property-

income, the power-law, P (x) ∝ x−(α+1), has a value α = 1.3 for the UK in 1970 (Levy

and Solomon n.d.), α = [1.1, 1.3] for Australia between 1993 and 1997 (Matteo et al.

2003), α = 1.7 for US in 1998 (Dragulescu 2003), on average α = 1.0 for post-war

Japan (Nirei and Souma 2003a), and α = [0.5, 1.5] for US and Japan between 1960 and

1999 (Nirei and Souma 2003b). In sum, the income distribution is asymptotically a

power-law with shape parameter α ≈ 1.0, and this regime normally characterizes the

top 1% to 5% of incomes.

The CSA model is therefore consistent with the empirical data on income distribu-

tion.

In the Eeconophysics literature the power-law tail of income distribution is explained

as the result of an underlying stochastic multiplicative process, often thought to model

the geometric growth of capital invested in financial markets (e.g., Nirei and Souma

(2003b,a), Reed (2003, 2001), Levy and Solomon (n.d., 1997), Bouchaud and Mezard

(2000)). The importance of financial markets in determining capital flows and hence

capitalist income is undeniable. But the model developed here shows that a power-law

can arise solely from the fact that capitalist owners extract profit from firms (i.e., take

the role of residual claimant), even in the absence of financial markets. Capitalist in-

come, in this model, is not derived from investment in portfolios that provide a return,

but is composed of the sum of values added via the employment of productive work-

ers. In this sense, capitalist income is ‘additive’, not ‘multiplicative’. But workers are

grouped in firms that follow a power-law of size. Hence, the power-law of capitalist

income may derive from a power-law in the network structure of the wage-capital rela-

tion. But given the simplicity of firm ownership in this model it is perhaps too early to

conclude anything definite.

3.11. Wealth inequality. At the end of every year we calculate the total money

held by each actor. In this model money holdings are a measure of wealth since assets
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(a) The complete wealth distribution plotted
as a complementary cumulative distribution
function (ccdf) in log-log scale. The transition
from the Boltzmann-Gibbs to Pareto regime
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(b) The complete wealth distribution plotted
in log-log scale. The smooth curve is the ex-
ponential distribution P (x) ∝ e−λx with λ =
0.12. The dashed straight line is the Pareto dis-
tribution P (x) ∝ x−(α+1) with α = 1.2. Note
the long tail due to the existence of wealthy
capitalists.
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(c) The lower regime of the wealth distribution
plotted in log scale. The straight line is the
exponential (Boltzmann-Gibbs) distribution.
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(d) The higher regime of the wealth distri-
bution plotted in log-log scale. The dashed
straight line the Pareto distribution.

Figure 12. Frequency plots of the distribution of wealth measured by
money holdings at the end of the year (bin size of 5).

and liabilities are not represented. Figure 12 plots the result. The lower regime of the

wealth distribution is characterized by an exponential (or Boltzmann-Gibbs) distribu-

tion whereas the higher regime is characterized by a Pareto distribution. The transition

between regimes occurs approximately in the middle of the ccdf.

Empirical data on wealth is difficult to find (Yakovenko 2008). Individuals’ access

to cash, such as deposits in bank accounts, is not public information. Levy and Solomon

(1997) report that in 1996 the top 1% of individuals in the US owned 40% of the total

wealth. Yakovenko (2008) reports that the net wealth of all UK individuals, estimated

by the UK tax agency, has a lower exponential regime and a higher Pareto regime (with
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µ = 0.6 and σ = 0.03.

exponent α = 1.9). The CSA model is therefore consistent with the small amount of

data that is available.

3.12. Shares in national income. GDP is the sum of revenues received by firms

during a single year. Firms pay the total wage bill, W , from this revenue. Hence the

total value of domestic output is divided into a share that workers receive as wages,

Xw = W
X , and the remainder that capitalists receive as profit, Xp = 1−Xw. At the end

of each year we measure Xw. Figure 13 plots the result. The wage share is normally

distributed about a mean of 0.6 (i.e., on average 60% of GDP is allocated as wages).

National income accounts allow wage and profit shares to be calculated, which reveal

some characteristic features. Shares in national income have remained fairly stable

during the twentieth century, despite undergoing yearly fluctuations. For example, for

the US, UK and Japan, spanning a period of over 100 years, the wage share is between

0.6 to 0.75 of GDP, although it occasionally can be as low as 0.5 (Foley and Michl 1999);

other authors place the wage share nearer to 1/2, for example on average 0.54 between

1929 and 1941 for the USA (Kalecki 1954) and similar in chapters 3 and 8 of Farjoun

and Machover (1989). The constancy of income shares of capital and labor is sometimes

referred to as ‘Bowley’s Law’ after the statistician who first noted the regularity (Fischer

(1999), p.294).

Ignoring differences of definition, and for the purposes of a rough and ready com-

parison, the CSA model generates a wage share that is consistent with the empirical

data.
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Figure 14. Mean wage share given different seeds for the wage expec-
tation. The wage shares are measured for 100 years after statistical
equilibrium is reached. Each sample point is computed from a single run
of the model with N = 100, M = 1000 and an initial wage expectation
ranging from 0.5 to 20 in steps of 0.5. The error bars represent standard
deviation. Mean wage shares are clustered around 0.61 with a std. dev.
of 0.02.

To what extent is this result sensitive to the seed values for the wage expectation?

Figure 14 plots the result of varying the initial wage expectation on the wage share in

statistical equilibrium. Although not a proof the results indicate that the initial seed

values have no effect.6 Wage negotiations are private and uncoordinated yet constrained

by the total money stock and the demand for labor. So subjective wage expectations

quickly get calibrated by the ‘sum total of the actions of all the rest’.

In the CSA model no distinction is made between employer accounts and firm ac-

counts. So an employer’s contribution to effective demand is interpreted as a mixture of

personal consumption and capital investment in the firm. The ‘effective demand rule’

states that firms allocate a proportion of their income to non-wage costs according to a

uniform distribution. The proportion is therefore on average one half. This happens to

generate a reasonable wage share. So although the CSA model replicates something like

Bowley’s law it does not explain it. To do so requires further extensions to the model,

in particular a theory of capital investment.

6The results also indicate, as expected, that the population size, N , and money stock, M , do not affect
the equilibrium wage share. An economy with N = 1000 and M = 10000 generates the same wage
share as an economy with N = 100 and M = 1000.
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4. Conclusion

A large market economy has a huge number of degrees of freedom with weak micro-

level coordination. In such circumstances the ‘particle’ nature of individuals more

strongly determines macro-level outcomes compared to their ‘mechanical’ nature. A

broad range of macroeconomic phenomena can therefore be explained without recourse

to detailed assumptions about individual rationality.

The ‘closed social architecture’ model is a particular example of this methodological

approach. It replicates many of the reported macroeconomic distributions of capitalist

economies, such as (i) the Laplace distribution of firm growth, (ii) the power-law distri-

bution of firm sizes, (iii) the lognormal distribution of firm demises, (iv) the exponential

distribution of firm lifespans, (v) the normal distribution of the log of detrended GDP,

(vi) the exponential distribution of the duration of recessions, (vii) the lognormal-Pareto

distribution of income, (viii) the exponential-Pareto distribution of wealth, and (ix) sta-

ble but fluctuating shares in national income. The model also predicts a functional form

for the empirical distribution of the industrial profit rate.

The results are strong evidence in favor of the proposition that implicit, rather than

explicit, microfoundations better capture the essential relationships between the micro

and macro levels of the economy. The exploration of stochastic-based macroeconomic

models featuring implicit microfoundations therefore presents us with an opportunity

to develop more parsimonious theories with greater explanatory power.
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Appendix: Mathematica code

NewAgent[agentIndex_Integer, money_Real, employerIndex_Integer, wage_Real, wageDemand_Real, employeeIndices_List]
:= {agentIndex, money, employerIndex, wage, wageDemand, employeeIndices}

NewAgent[agentIndex_Integer, money_Real] := NewAgent[agentIndex, money, 0, 0.0, 0.0, {}]

{agentAgentIndex, agentMoney, agentEmployerIndex, agentWage, agentWageDemand, agentEmployeeIndices} = Range[6];

IsEmployer[agent_List] := Length[agent[[agentEmployeeIndices]]] > 0

IsEmployee[agent_List] := agent[[agentEmployerIndex]] != 0

NewEconomy[numAgents_Integer, initialMoneyEndowment_Real] := NewEconomy[numAgents, initialMoneyEndowment,
initialMoneyEndowment]

NewEconomy[numAgents_Integer, initialMoneyEndowment_Real, initialExpectation_Real] :=
Module[{economy = {}},
Do[
economy = Append[economy, NewAgent[i, initialMoneyEndowment, 0, initialExpectation, initialExpectation, {}]];,
{i, numAgents}

];
economy = Append[{economy}, 0.0];
economy

]

{economyAgents, economyEffectiveDemand} = Range[2];

CouldEmployMe = Function[x, ! IsEmployee[x]];

SelectEmployer[economy_List, agentIndex_Integer] :=
Module[ {potentialEmployerIndices, weights, NotMe, x}, NotMe = Function[x, x[[agentAgentIndex]] != agentIndex];
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potentialEmployerIndices = Map[
#[[agentAgentIndex]] &,
Select[economy[[economyAgents]], CouldEmployMe[#] && NotMe[#] && #[[agentMoney]] > 0.0 &]

];
weights = Map[economy[[economyAgents]][[#]][[agentMoney]] &, potentialEmployerIndices];
If[Length[weights] > 0,
RandomChoice[weights -> potentialEmployerIndices],
0

]
]

JoinFirm[economy_List, agentIndex_Integer, employerIndex_Integer] :=
Module[ {nextEconomy = economy, employees},
nextEconomy[[economyAgents, agentIndex, agentEmployerIndex]] = employerIndex;
employees = nextEconomy[[economyAgents]][[employerIndex]][[agentEmployeeIndices]];
nextEconomy[[economyAgents, employerIndex, agentEmployeeIndices]] = Append[employees, agentIndex];
nextEconomy

]

LeaveFirm[economy_List, agentIndex_Integer, employerIndex_Integer] :=
Module[ {nextEconomy = economy, employees},
nextEconomy[[economyAgents, agentIndex, agentEmployerIndex]] = 0;
employees = nextEconomy[[economyAgents]][[employerIndex]][[agentEmployeeIndices]];
nextEconomy[[economyAgents, employerIndex, agentEmployeeIndices]] = DeleteCases[employees, agentIndex];
nextEconomy

]

HiringRule[economy_List, agentIndex_Integer] :=
Module[{nextEconomy = economy, agent = economy[[economyAgents]][[agentIndex]], potentialEmployerIndex,

wageOffer, wageDemand},
If[! IsEmployer[agent],

potentialEmployerIndex = SelectEmployer[nextEconomy, agentIndex];
If[potentialEmployerIndex != 0,

wageDemand = nextEconomy[[economyAgents]][[agentIndex]][[agentWageDemand]];
wageOffer = Min[RandomReal[{wageDemand, wageDemand*2.0}],
nextEconomy[[economyAgents]][[potentialEmployerIndex]][[agentMoney]]];
If[wageOffer > wageDemand,

If[IsEmployee[agent],
nextEconomy = LeaveFirm[nextEconomy, agentIndex, agent[[agentEmployerIndex]]];

];
nextEconomy = JoinFirm[nextEconomy, agentIndex, potentialEmployerIndex];
nextEconomy[[economyAgents, agentIndex, agentWageDemand]] = wageOffer;

];
agent = nextEconomy[[economyAgents]][[agentIndex]];
If[!IsEmployee[agent],

nextEconomy[[economyAgents, agentIndex, agentWageDemand]] = RandomReal[]*
nextEconomy[[economyAgents]][[agentIndex]][[agentWageDemand]];

];
];

];
nextEconomy

]

PayWage[economy_List, employerIndex_Integer, employeeIndex_Integer, wagePayment_Real] :=
Module[{nextEconomy = economy},
nextEconomy[[economyAgents, employerIndex, agentMoney]] -= wagePayment;
nextEconomy[[economyAgents, employeeIndex, agentMoney]] += wagePayment;
nextEconomy

]

EffectiveDemandRule[economy_List, agentIndex_Integer] :=
Module[ {nextEconomy = economy, agent = economy[[economyAgents]][[agentIndex]], expenditure},
expenditure = RandomReal[]*agent[[agentMoney]];
nextEconomy[[economyAgents, agentIndex, agentMoney]] -= expenditure;
nextEconomy[[economyEffectiveDemand]] += expenditure;
nextEconomy

]

FirmIncomeRule[economy_List, agentIndex_Integer] :=
Module[{nextEconomy = economy, agent = economy[[economyAgents]][[agentIndex]], income, recipientAgentIndex},
If[IsEmployee[agent] || IsEmployer[agent],

income = RandomReal[]*nextEconomy[[economyEffectiveDemand]];
nextEconomy[[economyEffectiveDemand]] -= income;
If[IsEmployee[agent],

recipientAgentIndex = agent[[agentEmployerIndex]];,
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recipientAgentIndex = agentIndex;
];
nextEconomy[[economyAgents, recipientAgentIndex, agentMoney]] += income;

];
nextEconomy

];

WagePaymentAndFiringRule[economy_List, agentIndex_Integer] :=
Module[{nextEconomy = economy, agent = economy[[economyAgents]][[agentIndex]], employeeIndices, i, wagePayment},
If[IsEmployer[agent],

employeeIndices = agent[[agentEmployeeIndices]];
For[i = 1, i <= Length[employeeIndices], i++,

wagePayment = nextEconomy[[economyAgents]][[employeeIndices[[i]]]][[agentWageDemand]];
If[wagePayment <= nextEconomy[[economyAgents]][[agentIndex]][[agentMoney]],

nextEconomy = PayWage[nextEconomy, agentIndex, employeeIndices[[i]], wagePayment];
nextEconomy[[economyAgents, agentIndex, agentWage]] = wagePayment;,
nextEconomy = LeaveFirm[nextEconomy, employeeIndices[[i]], agentIndex];
nextEconomy[[economyAgents, employeeIndices[[i]], agentWageDemand]] =

nextEconomy[[economyAgents]][[employeeIndices[[i]]]][[agentWage]];
];

];
];
nextEconomy

]

ProcessAgentRule[economy_List, agentIndex_Integer] :=
Module[{nextEconomy = economy, rules = {HiringRule, EffectiveDemandRule, FirmIncomeRule,

WagePaymentAndFiringRule}, i},
For[i = 1, i <= Length[rules], i++,

nextEconomy = rules[[i]] @@ {nextEconomy, agentIndex};
];
nextEconomy

]

OneMonthRule[economy_List] :=
Module[ {nextEconomy = economy, numAgents = Length[economy[[economyAgents]]], agentProcessList},
agentProcessList = RandomChoice[Range[numAgents], numAgents];
Fold[ProcessAgentRule, nextEconomy, agentProcessList]

]

OneYearRule[economyTrajectory_List] :=
Module[ {nextEconomyTrajectory = economyTrajectory, year = {}, currentState = Last[economyTrajectory]},
Do[

year = Append[year, OneMonthRule[currentState]];
currentState = Last[year];,
{12}

];
nextEconomyTrajectory = Join[nextEconomyTrajectory, year];
nextEconomyTrajectory

]

EvaluateModel[economyTrajectory_List, numYears_Integer] :=
Module[{nextEconomyTrajectory = economyTrajectory},
Do[

nextEconomyTrajectory = OneYearRule[nextEconomyTrajectory];,
{numYears}

];
nextEconomyTrajectory

]

EvaluateModel[numAgents_Integer, initialMoneyEndowment_Real, numYears_Integer] :=
Module[{economy = NewEconomy[numAgents, initialMoneyEndowment], economyTrajectory},
economyTrajectory = {economy};
economyTrajectory = EvaluateModel[economyTrajectory, numYears]

]

(* Run *)
(* Output is a trajectory of simulation states *)
trajectory = EvaluateModel[ 500, 10.0, 500 ]
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