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ABSTRACT:

This work presents a simple, scalar model for predicting a nonlinear shear stress response of a viscoelastic fluid in Large Ampli-
tude Oscillatory Shear (LAOS) experiments. The model is constructed by replacing the viscosity in the well-known Maxwell
model by a shear rate dependent viscosity function. By assuming the empirical Cox-Merz rule to be valid, this shear rate depen-
dent viscosity function is specified based on the Maxwell expression for the complex viscosity. We thus construct a particular
case of the White-Metzner constitutive equation. Numerical solutions as well as an asymptoticanalytical solution of the model
are presented. The results, analyzed for higher harmonic content by Fourier transform, are compared to experimental data of
a viscoelastic solution of wormlike micelles based on cetyltrimethylammonium bromide. Good agreement is found for low

frequencies, where viscous properties dominate.
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1 INTRODUCTION

Nonlinear viscoelasticity plays a crucial role for the me-
chanical behavior of complexfluids (e.g. polymer melts,
polymer solutions, and dispersions) under many pro-
cessing and application conditions. The use of Large
Amplitude Oscillatory Shear (LAOS) experiments,
where a sample is subjected to a sinusoidal shear de-
formation y(t) = y, sin(wt) has become a common tech-
nique to probe nonlinear viscoelasticity of materials
[1-6]. Its main advantage is the possibility to investi-
gatetheeffect of both characteristicdynamicvariables,
the Deborah number De and the Weissenberg number
Wi using the same test with the most common rheo-
logical equipment, a rotational rheometer. The Debo-
rah number De = A/7, is defined as the ratio of a char-
acteristic relaxation time of a material A and a charac-
teristictime of observation 7, which foroscillatory flow
is the inverse of the angular frequency 7, = 1/w. This De
measures to which degree elastic effects influence the
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overall mechanical response. The Weissenberg number
Wi = A/, is the ratio of A and a characteristic time of
the deformation 7. For steady shear 7;is the inverse of
the shear rate 7, = 1/y whereas for oscillatory shear
14=1/y,=1/(wy,) [7], where y , denotes the shear rate
amplitude. The Weissenberg number can be interpret-
ed as a dimensionless shear rate, indicating the influ-
ence of nonlinear behavior. Further advantages of us-
ing LAOS to probe nonlinear viscoelasticity include the
omission of sudden signal jumps in the strain input, as
instepexperiments,andtheability to probelarge strain
rates without edge failure [8].

Recenteffortsin constitutive modeling of LAOS be-
havior have led to approximate solutions that provide
material functions for a couple of nonlinear models.
Whereas some of these are truncated expansionsinthe
shear rate amplitude (corotational Maxwell [9]), or in
the shearstrainamplitude (Giesekus [10] and Pom-Pom
[11]). Others are asymptotic solutions, such as the mol-
ecular stress function model [12, 13] and a thixotropic

1


mailto:manfred.wilhelm@kit.edu

G = const.
Vs

Y(t) = 7, sin(ot)

VEVsF Y (1) = oy, cos(ot)

Ya Ll" n(yq)
|

Figure 1: Phenomenological model consisting of a linear
spring and a nonlinear dashpot in series. The introduction of
a nonlinear dashpot is a simple way to introduce nonlinearity
into the Maxwell model.

Jefferson model [8]. For the corotational Maxwell mod-
el also an exact solution [14] is available. Although an-
alytical solutions are generally preferred because ma-
terial functions can be calculated explicitly, arriving at
these solutions usuallyinvolves careful tedium. In most
cases, only truncated power series expanded in strain
amplitudeorshearrateamplitude can be obtained. Fur-
thermore, the work needed to determine the next or-
der, that s, to add the next harmonic, increases dispro-
portionately. Though this work does yield the next har-
monic, itcanyield littleimprovementinthe shearstress
overall.

Exact analytical solutions are available for the
scalarformulation of the Prandl element [15], which de-
scribes ayield stress fluid and also the tensorial corota-
tional Maxwell model [14]. However, the discontinu-
ities in the Prandl model limit its use for describing os-
cillatory shear behavior beyond yield. The corotational
Maxwell model [9] might indeed be the simplest ten-
sorial model, which can predict nonlinear shear stress
response for LAOS flow. Its nonlinearity stems from the
corotational derivative of the stress tensor but the ten-
sor calculus needed to understand this model is often
beyond the general knowledge of LAOS users, especial-
ly those not proficient in fluid dynamics. Additionally,
the exact solution [14] istoo cumbersome, as it involves
twoinfinite series, each containing one Bessel function.

Therefore, this work presents a simple scalar, one
dimensional LAOS model, with specific interest to-
wards the storage and the loss modulus G’ and G” and
therelative intensity of the third harmonic/, , with their
respective strain amplitude y, and angular frequency
w dependencies. The storage and loss moduli beyond
the linear viscoelastic regime are defined based on the
cosine and sine terms of the fundamental harmonic o,
as G’ = cos §,and G” = sin §,. Furthermore, we focus on
the intrinsic nonlinearity Q, = lim ., 134/, [16, 17],
which is derived from I, , in the limit of small strain am-
plitudes. Several alternative frameworks to quantify
nonlinear behavior in LAOS exist [6, 9, 18], including in-
trinsic parameters [19, 20] as well as local wave form
descriptors[21,22]. We have chosen to use the third har-
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monicintensity and the intrinsic nonlinearity to dimin-
ish the number of observable parameters. We also re-
strict ourselves to these magnitude related measures
because they can be obtained quickly and reliably, they
do not depend on the strain input reference (sine or co-
sine)andtherefore, do not require further data process-
ing such as phase correction, which is necessary for ex-
ample for analyses based on higher harmonic phases
[4, 23] or Chebishev coefficients [19]. The model is in-
tentionally scalar for simplicity, consequently only
shear forces are considered and normal forces are not
addressed. To construct this model, the constant vis-
cosity of the dashpot in the common Maxwell model
will be replaced by a shear rate dependent viscosity
function. Thisresultsin aspecial case of the White-Met-
zner model [24].

2 MODIFICATION OF THE MAXWELL MODEL
2.1 DIFFERENTIAL EQUATION

Starting from the scalar Maxwell model, which is a lin-
ear combination of a Hookean spring and a Newtonian
dashpot [25, 26], the simplest way to generate nonlin-
ear behavioristointroduce only one nonlinear building
blockinthe model. Consequently we have to replace ei-
ther the spring’s modulus or the dashpot’s viscosity by
a nonlinear function. Since the viscosity is known to be
very much shear rate dependent for many complex flu-
ids [25—27], typical changes can be of the order of one
ortwodecades, we have chosentodescribethedashpot
by a nonlinear function n(y ). Previous work by Zachara-
tos and Kontou focused on modeling of strain-stress
curves and start-up of steady shear behavior using a
nonlinear phenomenological model based on the stan-
dard solid model (a spring parallel with a Maxwell ele-
ment) [28]. They used an Eyring type nonlinear dashpot
[29] as wellas a nonlinear spring which followed a pow-
erlaw.LAOS flow, however,was not modeled. Similarly,
but based on the Maxwell model, Monsia calculated
stress build up for a step strain experiment with a mod-
el consisting of a generalized spring, described by a
powerlawinstrain,and generalized dashpot, described
by a power law in shear rate [30]. Since our aim is to
keep the model as simple as possible, nonlinearity of
the spring will be not considered. Although nonlinear-
ities in the elastic behavior are well known and can be
considered by finite extensible spring models [31], we
think their effect is negligible in comparison to the sub-
stantial nonlinearity in the viscous behavior.

To set up the differential equation for the serial
combination of the linear spring with a nonlinear dash-
pot as depicted in Figure 1, the same procedure as for
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the Maxwell model is used. Both elements, spring and
dashpot, experience the same shear stress o and the
sumoftheindividual strainsinthe springand the dash-
pot, ys and vy, equals the total strain y. The sum of the
individual shear rates equals the total shear rate.

7, =0, D)
7:)/5+yd (2)

Assuming linear behavior of the spring y; can be re-
placed by 0" /G using Hooke’s law, for the dashpot shear
rate, y 4= o/n(y 4) will be used. This leads to the first or-
der ordinary differential equation (Equation 5), which
isthescalarexpressionfortheshearstress of the White-
Metzner model [24]. Recently, a multimode version of
this model has been successfully applied to model the
nonlinear viscoelasticity of a silicone oil at Deborah
numbers smaller than one [32]. In the current work, we
strive for an even simpler description, test the applica-
bility of a single mode model and also extend the inves-
tigated De number range to the elastically dominated
regime (De > 1).

y=Tt 2
G ) @
T=q- U(’j’d)

2.2 CHOICE OF THE SHEAR RATE DEPENDENT
VISCOSITY FUNCTION

When specifying the shear rate dependent viscosity
function of a polymer, two major features are impor-
tant: a finite zero shear viscosity n, and the power law
index of the shear thinning. Many empirical viscosity
functions have been proposed which capture these two
features[29], well known examples are the Carreau-Ya-
suda [33] and the Cross model [34]. In the here present-
edwork, atwo parameterviscosity function will be used
that can be derived from the Maxwell-Model using the
Cox-Merz rule [35]. This empirical rule states that for
simple viscoelastic materials the angular frequency de-
pendent complex shear viscosity in a small amplitude
oscillatory test equals the shear rate dependent viscos-
ity in a steady shear experiment |n*(w)| = n(y), where w
is expressed in units of rad/s and y in 1/s Snukers and

© Appl. Rheol. 26 (2016) 53809 | DOI: 10.3933/ApplRheol-26-53809

Vlassopoulos have recently reported applicability of
this rule for a variety of polymer melts including linear
and branched polymers as well as blends of linear poly-
mers of the same chemistry [36]. Although the Cox-
Merzrule generally lacks a physical explanation, itis ap-
plied frequently in both, academic and industrial re-
search. Its main application is to easily determine the
steady shearviscosity function fromthe results of small
amplitude oscillatory shear (SAOS) experiments. This is
advantageous because the SAOS experiment generally
is more robust and more reproducible than the steady
shear experiment. Once the Cox-Merz relationship has
been verified for a particular system, high shear rate
viscosities can be conveniently obtained from SAOS
tests which avoid the sample failure and slip artifacts
that usually restrict capillary rheometer experiments.
Additionally, in comparison with using a capillary
rheometer, less sample is needed. Furthermore, if time
temperature superposition is applicable, even higher
shear rates are accessible because of the increased
range of angular frequencies that can be probed. De-
tailed discussion on the merits of this rule can be found
in other references [25, 36]. In the Maxwell model, the
storageandloss moduliG’and G” arefrequency-depen-
dent functions following Equation 6. The magnitude of
complex shear viscosity is connected to G’ and G” by
Equation 7 [29]. Inserting Equation 6 into Equation 7
and simplifying yields the final expression in Equa-
tion 7. Applying the Cox-Merzrule, [p*(w)| is replaced by
n(y)andthe angularfrequency dependence is changed
toashearrate dependence, which resultsin Equation 8.

G'w) =Gt
1 w

G"(w)=G Aw
1+A,2 2
w (6)
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Figure 2: The frequency dependencies of the storage and loss
moduli for the presented model are identical to the Maxwell
model. Furthermore, in contrast to the Maxwell model, the
Cox-Merz rule |n*(w)| = n(y) is incorporated for G = 10 Pa and
A=1s.

Thus the zero shear viscosity in Equation 8 is 1, = GA
and the square root term causes shear thinning behav-
ior for high shear rates. The form of Equation 8 is a par-
ticular case of the Carreau model (Equation g, [33]) with
c=o0andn., =o0.

Mo — N
—c)/2 + TIOO

n(y)=—2 "

Substituting Equation 8 into Equation 5 results in a dif-
ferential equation according to Equation 10. The specif-
ic choice of n(y) keeps the number of parameters for
the whole model minimal using only a single elastic
modulus G and a single relaxation time A.

=G Ty
A (10)

In the presented model, the relaxation time A defines
the balance between elastic and viscous behavior for a
fixed excitation frequency and the nonlinearity in the
viscosity function at the same time. The modulus G lin-
early varies the overall stress magnitude of the re-
sponse, thus providing a scale for G’and G”. In Figure 2
a plot of the storage and loss moduli as well as the
steady shear and the complex viscosity functions for
the modified Maxwell model (Equation 5) are shown.
The classic Maxwell model predicts a constant viscosity
for steady shear, whereas the complex viscosity is a
function of w. By incorporating the Cox-Merz rule with
the specificchoice of the shear rate dependent viscosity
(Equation 8), Maxwellian behavior for the linear oscil-
latory case is combined with shear thinning in steady
shear.Such amodification of the Maxwell model allows
onetopredict nonlinear effectsin steady shearand also
in oscillatory shear for arbitrary strain amplitudes.
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3  NUMERICAL AND EXPERIMENTAL
METHODS

3.1 NUMERICAL SOLUTION OF THE DIFFERENTIAL
EQUATION

The modelrepresented by Equation1owas solved using
a custom-written code in MATLAB (version R2014a,
MathWorks, 3 Apple Hill Drive, Natick, MA 01760-2098,
USA), which employed a 4" order Runge-Kutta scheme
[37]-Foreveryoscillation cycle, 512 points equally spaced
intime were calculated, whichisatypical sampling rate
in an experiment. For a set of G and A the initial value
problem was solved for varying strain amplitudes y, at
a fixed angular frequency w thus varying Wi = wy,A,
while keeping De = Awfixed. For every strain amplitude,
55 oscillation cycles were calculated from which the
first 5o were discarded to eliminate the influence of
start-up. Cycles 51to 55 were Fourier-transformed using
MATLAB and G’, G”, and I/, were calculated from the
spectra. Typical signal-to-noise ratios in the spectra
were of the order of 1078 to 1077. Weissenberg number
dependent calculations were repeated for various De.

3.2 EXPERIMENTAL PROCEDURES

LAOS experiments were performed on a 0.15 M aqueous
solution of cetyltrimethylammonium bromide (CTAB,
obtained from Sigma Aldrich), containing potassium
bromide (1.5 M, obtained from Sigma Aldrich) following
the recipe of Lequeux et al. [38]. At a concentration of
0.15 M, CTAB forms wormlike micelles long enough to
entangle, resulting in viscoelastic behavior [10, 38, 39].
Complete dissolution of CTAB and KBr was ensured by
stirringthesampleat4o °Cfor48 hours.Linearfrequen-
cy dependent measurements, flow curve measure-
ments and LAOS experiments were performed using an
ARES-G2 strain controlled rheometer (TA Instruments),
equipped with a torsional, concentric cylinder geome-
try (r,=18.6 mm and r, = 20 mm) and a Peltier temper-
ature control system. The measurement temperature
was T = 35 °C. For the LAOS tests, the sample was sub-
jected to a sinusoidal excitation y = y,sin(wt). The oscil-
lating stress signals were recorded using the commer-
cial rheometer software TRIOS (version 3.3.0.4055, TA
Instruments, 159 Lukens Drive, New Castle, DE 19720,
USA). Data was analyzed using the same MATLAB code
that was employed for the analysis of the numerical so-
lutions. Repeated measurements were analyzed using
the automatic Fourier transform in the TRIOS software
after confirmation that both analysis routines give
identical results.

In our experiments, the dominant nonlinear effect
is shear thinning at high shear rates for steady shear
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Figure 3: Waveforms from a numerical solution of the model using G = 10 Pa, A =15, w = 1rad/s, De =1, represented as elastic

(a) and viscous (b) Lissajous figures.

flow and intercycle shear thinning for LAOS flow as ev-
ident in the decrease of G’and G” (Equations 11 and 12)
with increasing strain amplitude for all investigated
frequencies. In addition to this sample nonlinearity, in-
stabilitiesin the flow field can occur at high shear rates.
Wormlike micelles systems are known to form shear
bands which has been observed by NMR velocity imag-
ing [40, 41] and light scattering techniques [42]. Acom-
monly observed rheological signature of shear banding
in WLM solutions is a stress plateau in the flow curve
that can stretch over an order of magnitude in shear
rate [43, 44]. Helgeson et al. [45] have observed this
shear banding instability by particle imaging velocime-
try and gap resolved neutron scattering for a 16.7 wt%
CTAB sample at 32 °C. The banding in their sample was
connected to an isotropic-nematic transition. Shear
banding has also been observed for a 22 wt% CTAB so-
lution at 32 °Ciin oscillatory shear [10]. Typical Wi num-
bers for the onset of shear banding in those studies
were 0.7 [44] or 0.47 [10].

In our LAOS experiments, however, the extended
stress plateau characteristic for shear banding was not
observed in the measured strain amplitude range (usu-
allyo.1<y,<10; buty,<2forw=50and10orad/s) even
though Wi =y =y 0.265 s reached values of up to 28.
Inthe flow curve measurements, the maximum Wiwas
16 (y = 60 1/s) and the Cox-Merz rule could be applied.
Gurnon and Wagner showed that the Cox-Merz rule
fails for shear banding samples [10]. In absence of the
stress plateau that is associated with shear banding
and the validity of the Cox-Merz rule, we expect that
our sample, which has a much smaller CTAB concentra-
tion (4.43 wt%) than the samples in the studies refer-
enced above, does not shear band. Furthermore, shear
banding is normally accompanied by a transient shear
stress decay when the sample is sheared at rates in the
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shear thinning region. The time scale of this transient
effect is usually at least two decades larger than the
Maxwell relaxation time A [43]. The absence of these
longtransientsinourexperimentsfurthercorroborates
that the determined intrinsic nonlinearities are not in-
fluenced by shear banding.

4 MODEL CALCULATIONS
4.1 NONLINEAR WAVEFORMS

The numerical solution of the presented model gives an
oscillatory stress signal o(t) for an applied oscillatory
strain input of y(t) = y,sinwt. The relaxation modulus G
linearly determines the stress scale of the results and
was arbitrarily set to10 Pain all calculations. Exemplary
results of the waveforms for G=10Pa,A =15, w =1rad/s
areshowninFigure3forfourdifferentstrainamplitudes.
Only the steady state solutions, after all transients have
decayed, are shown. The elastic (o versus v, Figure 3 a)
and viscous (o~ versus y, Figure 3 b) Lissajous plots for a
linear response at y, = 0.011 show an ellipse. In this case,
De equals one and therefore the phase angle is exactly
45°, thus elastic and viscous behavior are balanced. At
largeramplitudes, deviations fromtheelliptical formare
visible. For v, = 1.33 in Figure 3a, the loop area exceeds
the area of the loop at y, = 0.011. This means that the vis-
cous contribution exceeds the elastic part (G” > G’). The
loop area equals the dissipated energy per unit volume
in a cycle [4, 46, 47]. In the stress versus shear rate rep-
resentation, the waveform for y, = 6 is reminiscent of
the typical, sigmoidal, nonlinear waveform of a polymer
melt reported by Dealy et al. [48] and Tee and Dealy [49].
Fory, = 23.7 pronounced nonlinear effects occur. At such
high shear rates (¥ pax = Yow = 23.7 1/s) the dashpot is
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Figure 4: Symbols show G’, G” and I, from a numerical solu-
tion of the model (Equation 12) using G = 10 Pa and w = 1
rad/s. (a) limiting case: A = 1s and De = 1, (b) viscous case: A =
o.1s and De = 0.1, (c) elastic case: A = 10 s and De = 10. Solid
lines are asymptotic analytical solutions (Equation 16) for the
present model (Equation 12). They are exact for small enough
deformation amplitudes only, see the appendix for a detailed
derivation. The dashed line indicates a region where I, is lin-
ear iny,. Note also the coinciding local maximum in G” for
De = 10. Such a maximum is often observed in measurements
of filled elastomers [55].

strongly shearthinning withinthe oscillation cycle (com-
pare the shear rate dependent viscosity in Figure 2). This
results in behavior reminiscent of an elastoplastic body
[50]. An elastoplastic material shows elastic response as
longasthestressis belowtheyield stress,a material spe-
cific model parameter. Above the yield stress, plastic
flow is exhibited, that means the stress is independent
of the shear rate. In the Lissajous representation, the
waveformthenresembles a parallelogram.Inthe elasto-
plastic model, the transition from elastic behavior to
flow is discontinuous. At sufficiently large strain ampli-
tudes, our model reproduces similar behavior, albeit in
our case, the transition is smooth (see y, = 6.0 and y, =
23.7in Figure 3a).

4.2 FOURIER ANALYSIS

After exploring the waveforms qualitatively, quantita-
tive measures for strain amplitude (or Wi = wy,) depen-
dent calculations are presented. Generally, for an arbi-
trary periodic stress signal, G’ and G” are computed by
Equations 11and 12 from the first harmonic stress ampli-
tude o, and the phase angle §, which is referenced to the
sinusoidal strain input. Since in the modified Maxwell
model (Equation 10) the storage and loss moduli, G’and
G”becomey,dependent,they can be described by Equa-
tion 6 only in the limit of sufficiently small y,.

© Appl. Rheol. 26 (2016) 53809 | DOI: 10.3933/ApplRheol-26-53809

G'(v,)="rcoss
Yo (1)

G"(y,)="Lrsins
Yo (12)

Figure 4 displays the y, dependence of G’, G’,and I, , for
G =10 Pa at De = 0.1, 1, and 10. Variations in De can be
achieved by altering the relaxation time or the angular
frequency. Altering the relaxation time is equivalent to
comparing different materials at the same frequency
or, if time temperature superposition is valid, the same
material at different temperatures and the same fre-
quency. For the same viscoelastic material (constant 1)
changing the frequency leads to a change of the bal-
ance of viscous and elastic response. In Figure 4a for
small y,, G’ equals G”, which is consistent with Max-
wellian behavior at De = 1. With increasing y,, the re-
sponse becomes increasingly nonlinear: Both G’and G”
start decreasing, but G’ does so more drastically. A de-
creasing G’ is primarily a signature of nonlinearity and
in our model it is a consequence of the shear thinning
dashpot, as the shear thinning leads to an overall de-
creasing stress amplitude. This decrease in G’cannot be
interpreted as a weakening of the spring in the modi-
fied Maxwell model, since the spring is explicitly linear.
This demonstrates how G’and G” lose their original in-
terpretationsin LAOS. Nevertheless they are still useful
descriptors. The relative intensity of the third harmonic
displays a power law behavior I/, « y,? for sufficiently
small y, (see for example y, < 0.4 in Figure 4a). This re-
gion is termed the intrinsic LAOS range [16, 17, 51] or
MAOS (Medium Amplitude Oscillatory Shear [6]). Even-
tually, 1, levels off at value of 1/3, which is the maxi-
mum /;, when the waveform approaches a rectangle
wave [52]. A rectangle waveform is produced by plastic
behavior or in other words a shear thinning viscosity
that follows a power law with an exponent of - 1 [46,
53].Hence, atthese highvalues ofy, (and therefore high
shear rate amplitudes), the effect of the incorporated
spring is evident only at times around y/y, =10r -1 cor-
responding to y/y, = 0 and the system displays plastic
behavior for most of the cycle.

Along with the numerical results, asymptotic ana-
lytical solutions are plotted as solid linesin Figure 4. The
differential equation (Equation 10) has been partially
solved by assumingthe nonlinear stress representation
(Equation 13) according to Pearson an Rochefort [2] in
orderto obtain the first nonlinear terms that scale with
vo3 or y 3, that is, the first terms that describe the devi-
ation of G’ and G” from their plateau values. Further-
more an asymptoticexpressionfor/,, (Equation14) was
derived, resembling the one in Giacomin et al. [54]. It is
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expressed in terms of G’,,, and G”,,,, coefficients from
Equation 13, where n counts the order of the expansion
in v, and m counts the harmonic number. The coeffi-
cients for n =1,3 and m =1, 3 as well as the details of
the solution can be found in the Appendix.

o(t)=32 3 1[G ()sin(mwt)+ G, (w)cos(mat)]
n,odd m,odd (1 3)

Al et

" \/(G,n ’YO + G’31 72 + )2 + (G”n yoG"_w ’Yi + )2

(14)

The asymptotic solutions, shown as lines in Figure 4,
confirm the numerical results for small deviations from
the linear viscoelastic regime. However, already for
Yo > 1(for De = 1), the asymptotic predictions fall below
the numerical results, because only the 3" order term in
voisincluded. Additionally,G’and G”eventually become
negative for increasing y,, which is unphysical and not
shown in the log-log plots, and I, exhibits an apparent
maximum around vy, = 2.3. The comparison to the nu-
merical results shows that both effects are artifacts
caused by the truncation. This demonstrates the limita-
tion of the truncated expansion in Equation 13. To de-
scribe the numerical results in the full range that is plot-
ted in Figure 4 many higher terms would be required in
Equation 14.

After dealing with the special case of De =1, the
representative cases of predominantly viscous (De =
o.1)and predominantly elastic behavior (De =10) shown
in Figures 4b and 4c are addressed. De was varied by
choosing A accordingly, while keeping w constant. For
De = 0.1 (Figure 4b) in the linear regime, G” is 10 times
higherthan G’and in the nonlinear regime both G’ and
G” decrease. When compared to the case of De = 1the
overall decrease of nonlinearity is evident in the de-
crease of the modulioccurring at largery,,. Similarly, al-
though it has the same qualitative behaviorasin Figure
4a, Iy, shows smaller values, indicating that the transi-
tion from linear to nonlinear behavior occurs at larger
7o- Inthe case of De =10 (Figure 4c), the initial situation
for small amplitudes is reversed, G is 10 times higher
than G”, again recovering the results of the Maxwell
model for the linear case. Interestingly, for De > 1 the
modelis able to predict an overshootin G”, followed by
across-over of G’and G”. These are common character-
istics for yielding under LAOS that have been observed
for dense colloidal suspensions, gels and foams [50, 56,
57]. In filled and vulcanized elastomers, this effect has
also been observed and is known as the Payne effect
[55, 58, 59]. Increased dissipation marked by the maxi-
mumin G” is commonly interpreted on the microscopic
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indicate scaling regions of I, o< y,* and y,'. Inset shows re-
scaled curves of I, as a function of the Weissenberg number
Wi =v ,A = Dey,.

scale as a signature for the break-up of network con-
nectionsinthese systems. Ourresults showthat nospe-
cific network structure needs to be considered to pro-
ducethiseffect.In our model, predominantly elastic be-
havior (De > 1) in conjunction with shear thinning leads
to the occurrence of the G” maximum. A close inspec-
tion of the numerically determined I, reveals an inter-
mediate scaling region (broken line in Figure 4c) where
I3, < v, that also coincides with the increase in G”.
Since by construction, nonlinearity in the model
arisesfromthe shearthinningdashpot, it seems surpris-
ing that we also find elastic nonlinearities in the LAOS
response: By inspecting the sign of G’;, and G’;; of the
asymptotic solution in the Appendix (Equations A.20
and A.22) orequivalently [e,] = G’;;and [e;] = - G’;; using
the Chebishev polynomial basis [19], the elastic nonlin-
ear contributionstothe stress response can be classified
as intercycle elastic softening and intracycle elastic
strain softening. The reason for the occurrence of these
elastic nonlinearities despite the linear spring is simply
its serial coupling with the nonlinear dashpot. The re-
sulting differential equation leads to waveforms that
include signatures of viscous as well as elastic nonlin-
earity. For sufficiently high shear rates, the dashpot will
behave nonlinearly producing a nonsinusoidal stress.
Since the stress in both elements, spring and dashpot,
isequalthe springis experiencinganonsinusoidal stress
as well. Due to its linear nature, its strain v, then must
be nonsinusoidal. This shows that the interpretation of
the signs of high harmonic moduli or of the intrinsic
Chebishev coefficients do not provide information
about the origin of the nonlinearity, (spring or dashpot)
but only describe the resulting waveforms. Therefore,
we refrain from a more detailed analysis using the
Chebishev coefficient framework in the current work.
The calculations have been repeated for several
other values of De and the results for I,,, are shown in
Figures.In all cases, an initial power law behavior with
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Figure 6: Contour plots of log I,,, (a) and logQ(y,) (b), calculated for the present model (Equation 12) in the De -y, space, also
known as Pipkin space [60]. For De <1, I, increases quadratically with y, in the plotted y,range, compare also to curves for De
< 1in Figure 5. In contrast, for De > 1, the distance between the contour lines increases corresponding to subquadratic increase
of I, with y,, compare to curves for De > 1in Figure 5. The additional contour line at log I, = =0.52 corresponds to Iy, = 0.3.

I3/,0cy,* can be observed forsmally,, whichis confirmed
by the asymptotic solutions. Furthermore, for De > 1the
intermediate scaling region where ,, is linear in y, ex-
tends over a larger range of strain amplitudes for in-
creasing De. Curves of /., versusy,canbe superimposed
on a master curve for De < 0.1when I, is plotted versus
Wi = wy,A as shown in the inset of Figure 5. For De > 0.1,
the superposition using Wi is not possible because the
functional form of I, changes when elastic contribu-
tions matter. The influence of the elastic spring also
leads to different De scaling behavior of the I, curves.
An alternative way of displaying the nonlinearity mea-
sured by I,/ is shown in Figure 6a. Here we plot log I,
in the De - vy, space. This representation is known as
the Pipkin diagram [60]. For increasing vy, and De, I,
peaks to its maximum of 1/3 in the large vy, - high De -
corner of the plot. For De <1, I, increases quadratically
with y, in the plotted y, range (compare also to curves
for De <1in Figure 5). In contrast, for De > 1the distance
between the contour lines increases corresponding to
a subquadratic increase of I,, with y, (compare to
curves for De > 1in Figure 5). In Figure 6b, the logarithm
of Q(y,), where Q(y,) = 1;,/7,* is plotted in the same co-
ordinates. Reducing I,/ to Q(y,), eliminates the initial
quadraticscalingforsmally,andlow De, evidentin ver-
tical contour lines of Figure 6b. Similar nonlinearity
maps have been published for the Giesekus model [21]
and for the Pom-Pom model [61].

4.3 INTRINSIC NONLINEARITY Q0

Fromtheregionswherel,, «y,*holds, theintrinsicnon-
linearity Q,(De) = lim, ./, has been determined
[16]. This material function depends on De (or w for a
fixed relaxation time) only and can be interpreted as a
measure of how early nonlinear behavior becomes im-
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portantwhen thestrainamplitudeisincreased. The De-
dependence will always be implied for the rest of the
paper and not written specifically as Q,(De). The strict
definition of a linear viscoelastic regime is not possible
in the intrinsic concept because I, actually never
equals o. But one can always assign a range where I,
is so small that the distortion plays an insignificant role
for the overall mechanical behavior of a material. Such
a limit could be set due to experimental limitation, for
example, at/;, =1074. This threshold seems reasonable
since for all y, where I, is smaller, the deviations of G’
and G” from their respective small y, limits are vanish-
ingly small (compare Figures 4a to 4c). With this defin-
ition of a ’practical’ linear range in mind, larger Q,,
means narrower linear range, thus G’ and G” deviate
from their plateau values at smaller y,.
Thedependence of Q,on DeisdisplayedinFigure7.
For De <1, Q, increases quadratically with De, whereas
for De >> 1itis linear in De. The quadratic small De be-
havior is a typical signature of a shear thinning viscos-
ity. At these conditions the dashpot is dominating the
overall response and any viscosity function that can be
represented as anordered expansioninshearrateleads
to Q, o De? in the limit of small De [62]. For De > 1 the
influence of the linear spring becomes evident: Cou-
pling the nonlinear dashpot to a linear spring reduces
the increase of Q, with De from quadratic to linear. The
expectation that increasingly dominating elastic be-
havior, which is linear in the present model, would
eventually lead to a reduction of overall nonlinearities
for very large De is not met. This is due to only one re-
laxation time A present in the model. An increasing A =
n/G at constant w corresponds to a more elastic mate-
rial, but at the same time a larger value also shortens
the linear range of the dashpot. Since the intrinsic non-
linearity Q, reflects the first deviation of the dashpot
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from its zero shear viscosity, even for De > 1, the effect
of the spring is to attenuate nonlinearity with increas-
ing De.

Comparing to predictions of other available mod-
els, the present simple model predicts different behav-
ior for the elastic region (Figure 7). For example, in the
corotational Maxwell model (CRM) [54], O, plateaus to
a value of 1/24 = 0.0416. Similarly, a constant value for
Q, is reached in the molecular stress function (MSF)
model for large De (1/4(a — /10) = 0.0345, for @ = 5/21
and $ =1 [13]). In the molecular model for a system of
dilute rigid dumbbells [63], O, also approaches a con-
stant limit (3/28 = 0.107) for large De. The Giesekus and
the Pom-Pom model, in contrast predict a decrease in
Q, for De > 1. By comparing the large De limits of G’;,
and G”;; in the different models, we determine the
dominating contributionto Q, (Equation1s) atlarge De.
The denominator in Equation 15 asymptotes to the
Maxwell parameter G for all presented models except
the dumbbell model. For the two models that are time
strain separable [12], the corotational Maxwell and the
MSF model, G’;; exhibits a plateau in the De — co limit
and dominates over G”;; leading to the constant value
forQ,.Fortimestraininseparable models (current mod-
el, Pom-Pom, and Giesekus model), the large De behav-
ior of Q,, is dictated by G”,,. This is because the limit of
G’;; is either constant while G”;; increases (see Equa-
tions A.22 and A.23 for the present model) or G’;; de-
creases stronger than the G”;; term (see Equations 4.6
and 4.7 in Hoyle et al. [11] for the Pom-Pom model and
Equations A.51and A.52 in the supporting information
of Gurnon et al. [10] for the Giesekus model). Since the
rigid dumbbell model of Bird et al. [63] has not been

O current model, numerical
current model, analytical
— Corotational Maxwell
Giesekus o.=1/2
---Pom-PomZ, =10
MSF g =1
rigid dumbbell model

Figure 7: Intrinsic nonlinearity Q, versus De for the current
model, symbols are extracted from the small y, range where
I3, o< yo? holds in Figure 5. Lines are analytical solutions for
the various models collected in Table 1. In the Pom-Pom mod-
el Z,, is the number of entanglements in the backbone.

written in integral form yet, it is unknown whether it is
time strain separable. For this model, G”;;  De domi-
nates over G’;; o De® at large De, but since G”), « De,
this resultsin a plateau for Q,. Which of the models per-
forms bestin describing O, of a simple viscoelastic fluid
will be determined in the subsequently presented ex-
perimental section.

Yo—0 ,yz '611214_6”121

Analytical expressions for @, from the different models
are summarized in Table 1. Here we present the full an-
alytical expressions, their small and large De limits, and
simplified expressions that capture both limiting be-

0 tim s AT

o

(15)
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Corotational 1 De2 1De2 1 1_De? 1 6 0

Maxwell (CRM) 1 (11ape?) 7 (19De2) 7 E = TT36De? E

. De?(9De?+4a2—12a+9)" 1/2 = 40%—120-+9)'*De? 402—120+9)1/2 1/2
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+214488De8 + 11664De® 2
ioi 9 9 e 3 9 _De 9 [
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Experimental finding for
linear monodisperse De2 2 q De? _1/2 1
homopolymers AR aDe 4De AR 0.322-1/ 33.757 0.35
64]

Table 1: Analytical expressions for Q, for different viscoelastic models. The approximate expressions, which capture the small
and large De behavior, in the third column have very similar functional forms. These expressions have been calculated using
Sformulas for I, from the following references: Pom-Pom [11], MSF [13], CRM [54], Giesekus [10]. In the Pom-Pom model, Z,,, is
the number of entanglements that effectively leads to nonlinearities, for this only the backbone entanglements of a branched
polymer are considered. It is defined as Z,,;, = Z®y,, where Z is the number of entanglements per molecule and ®,, = M,,/M is

the mass fraction of the backbone.
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haviors for small and large De. The simplification intro-
duces a deviation in comparison to the exact expres-
sions of the second column, when De approaches one
butalso makethe Q,expressions much more tractable.
The simplified versions all show a similar functional
form that can be written as Equation 16.

De’?
QO =a————
=° 14+ bDe*?

(16)

The coefficients are summarized in Table 1. This finding
is especially intriguing since a similar expression has
been proposed by Cziep et al. based on experimental
data covering a range of linear, monodisperse homo-
polymer melts [64]. Therein, the authors provide exper-
imental values for the parameters in Equation 16:
a=0.32Z"°5 b =33.75Z7", and d = 0.35, where a and b
are dependent on the number of entanglements Z =
M,,/M,. Recently, asymptotic solutions for LAOS flow
have been presented for the corotational Maxwell,
Giesekus, and MSF models and additionally for a model
for rodlike polymers, an emulsion model as well as the
Curtiss-Bird model [20]. The models have been com-
pared based on intrinsic Chebishev coefficients [51].
Corotational Maxwell model predictions for the mag-
nitudes of the four intrinsic Chebishev material func-
tions for LAOS flow agreed for a poly(vinyl acetate)-Bo-
rax hydrogel. Similarly, we will test the quality of our
model predictions with experimental data in the fol-
lowing section, although we will restrict ourselves to
0, as a single nonlinear material function.

5 COMPARISON TO EXPERIMENTAL DATA OF A
WORMLIKE MICELLES SOLUTION

To validate the model predictions, a solution of worm-
like micelles based on the surfactant cetyltrimethylam-
monium bromide (CTAB) was chosen as a model system
becauseitexhibits nearly single-relaxation time behav-
ior at small strain amplitudes for a wide range of De [10,
38, 39]. The particular concentration was chosen such
that the cross-over frequency of the material is in the
middle of a frequency window suitable for the rheome-
ter.Thusfrequencies adecade lowerand adecade high-
er than the crossover frequency could be conveniently
tested.The results of frequency dependent experi-
mentsinthelinearviscoelasticregimeonao.15Maque-
ous solution of CTAB in the presence of 1.5 M KBr are
compared to the model predictions in Figure 8. The
model parameters were determined as G = 68 Pa and
A = 0.265 s, by fitting the Maxwell expressions for G’
and G” (Equation 6) to the data (Figure 8). Furthermore,
the validity of the Cox-Merz rule can be confirmed for
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Figure 8: G’ and G” of a 0.15 M aqueous solution of CTAB in
the presence of 1.5 M KBr at T = 35°C, measured at y, = 0.1.
Lines are fits of the Maxwell expressions for G’ and G” with
G =68 Pa and A = 0.265 s. Also shown is the validity of the
Cox-Merz rule for this sample: The dependence of the ab-
solute value of the complex viscosity |n*| on w is the same as
the dependence of the steady shear viscositynony.

the wormlike micelles solution in a frequency/shear
rate range of almost three decades, where |1*(w)| =n(y).

A quantitative comparison of model prediction and
measured data forvarying strain amplitudes is presented
in Figure 9 in terms of G’, G”, and .. In the linear vis-
coelastic regime, the agreement is, as expected very
good. For increasing y,, the model captures the decrease
in G’ very well, but overestimates G”, which decreases
more steeply in the experiment. Intensities of I, howev-
er, are underestimated by the model by approximately
30 % intheintrinsicrange (0.5<y, < 2). The overall agree-
ment for this frequency is comparable to results of [65],
who modeled data of poly(ethylene oxide) and
poly(acrylic acid) solutions with a multimode version of
the tensorial Giesekus model. For frequencies exceeding
theinverse of the relaxation time, our model predicts the
Payne effect (a local maximum in G” for increasing y,) as
shown in Figure 4. However, this rheological signature
was not found for the CTAB sample investigated here. In-
stead, for the highest investigated shear rate amplitudes
(Yo =9.96 1/s at w = 10 rad/s and y, = 9.96), the strain
amplitude dependent moduli G’and G” approached high
shear rate plateaus after a shear thinning region.

As shown in Figure 9, I3, o ,* for a certain range
of y,, therefore the intrinsic nonlinearity Q, can be de-
termined. Frequency dependent measurements of Q,
of the CTAB sample are shown in Figure 10 along with
the predictions of the current model. Repeated mea-
surements with separate loadings show the repro-
ducibility of the Q, values (relative standard deviation
10—-20 %). The corotational Maxwell model which has
the same model parameters, G and 4, is shown as well.
In contrast to the current model, in the corotational
Maxwell model, nonlinear behavior arises not from as-
suming a shear rate dependent viscosity, but is a con-
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Figure 9: Strain amplitude dependent G’, G” and I, for a
0.15 M aqueous solution of CTAB in the presence of 1.5 M KBr
at T=35°Cand w = 1rad/s. Lines are model calculations
(Equation 12) using G = 68 Pa, A = 0.265 s, and De = 0.265,.

sequence of using a corotational derivative in the dif-
ferential equation [9]. It is a three dimensional, that
means second rank tensorial model, where the shear
stress is coupled to normal stresses. The corotational
derivative ensures frame invariance by rotating the co-
ordinate frame with the fluid element, and defines the
coupling of shearand normal stresses. This coupling al-
lows one to predict nonlinear stress signals in LAOS
flow. Although generally the modified Maxwell model
predictions (Equation 10) fall below the measured non-
linearities for De < 1, the errors are not too grave, with
the predicted values of Q, being 50 % below the mea-
surements. Although the predictions of the 3D corota-
tional Maxwell model are better, the presented simple
modified Maxwell model shows reasonable capability
of describing the data for De < 1. Its failure for De > 1is
not that surprising, as the assumption that the spring
is always linear and only the dashpotis nonlinear, is un-
realistic at conditions where elasticity dominates the
material’s mechanical properties. The power law expo-
nent for the decrease in the large De range was found
tobe approximately - 0.16 for the specificsampleinves-
tigated here. Fitting Equation 16 to the data gives a =
0.2,b=253,and d = 0.158.

Therefore, in comparison to measurements of lin-
ear, narrowly distributed polymer melts by Cziep et al.
[64] where a d value of 0.35 was determined, in our
wormlike micelles sample, Q, decreases less steeply at
large De. The differences in the large De behavior be-
tweenthetwo systems are expected to be related to dif-
ferentrelaxation mechanisms.Onthe microscopiclevel,
the physics of wormlike micelles resemble macromole-
cules in that terminal relaxation occurs through repta-
tion and at high frequencies segmental Rouse relax-
ation dominates [25, 66, 67]. Since the Rouse time scale
is usually 2—3 decades shorter than the reptation time
we think it unlikely to contribute to Q, in the current
measurements, which are limited in frequency to one
decade above the inverse relaxation time. For polymer
melts, deviations from Maxwellian behavior due to in-
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Figure 10: Q, of a 0.15 M aqueous solution of CTAB in the pres-
ence of 1.5 M KBr at T = 35°C. Repeated measurements with
separate loadings give an estimate of the reproducibility. Lines
are predictions of the current model (Equation 12) and the
corotational Maxwell model (CRM). Additionally, Equation 18
has been fitted to the data providing a = 0.2, b = 2.53, and
d=o0.158.

creased dissipation by processes such as contour fluctu-
ations and constraint release [25], occur at comparative-
ly low frequencies, close to the cross-over frequency,
where G’ = G”. These could be responsible for the uni-
versal scaling found for linear polymer melts [64]. In
contrast to polymer melts, the breaking mechanism in
wormlike micelles [39] allows a relaxation path distinct
for these systems. The breaking time scale A, coincides
with the inverse frequency of the minimum in G” from
linear viscoelastic measurements [66]. For the investi-
gated sample A, = 0.0107 s, is much shorter than A, =
6.56 s which we calculate from A = 0.265 s using the re-
lationship A = (A,Aer)"2[68] for the fast breaking limit
(Apr << Ayept). We speculate that the quantitatively differ-
ent behavior in the intrinsic nonlinearity at large De is
connected to the dominance of the breaking mecha-
nism. To clarify this, Q,(De) has to be determined for a
range of WLM systems including linear, branched and
network topologies and the universality of the large De
scaling of Q,(De) has to be investigated. Then, measure-
ments on WLM samples in which breaking is not the
dominating relaxation mechanism and the relaxation
is not monoexponential are required, a task for future
studies. Since none of the models shown in Figure 7 can
predict the experimentally determined large De behav-
ior quantitatively, the correct modeling of the elasticity
dominated high frequency range remains a challenge.

6 CONCLUSIONS

Asimple scalar model, capable of predicting nonlinear-
ities for the large amplitude oscillatory shear experi-
ment using only two parameters, a shear modulus and
a relaxation time, has been presented. The model was
obtained by replacing the linear dashpot in a Maxwell
model by a nonlinear function, while the spring’s mod-
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ulus was held constant. The specific function for the
nonlinear dashpot was chosen by applying the Cox-
Merz rule [n*(w)| = n(y) to the expression of complex
viscosity fromthe Maxwell model. The modelis a scalar,
special case of the White-Metzner model. Numerical
solutions of the model have been calculated for a wide
range of frequencies and strain amplitudes. The results
analyzed by Fourier transform were presented in terms
of the strain amplitude dependencies of the storage
and loss moduli G’ and G” the relative intensity of the
third harmonicl,,,and theintrinsicnonlinearity Q,. Fur-
thermore, an approximate analytical solution was pro-
vided in the form of a truncated power series in strain
amplitude. Scaling laws for I, known from previous ex-
periments and predictions of other models were con-
firmed and the functionalform of Q,(De) was compared
to predictions of other models (corotational Maxwell,
Giesekus model, Pom-Pom, molecular stress function,
dilute rigid dumbell model). Furthermore, predicted
0O,(De) behavior was compared to experimental data of
a micellar solution of cetyltrimethylammonium bro-
mide (CTAB). Agreement with the experiments is rea-
sonably good considering the model’s simplicity. For De
<1,the model underestimates values for Q, by less than
50 %. Qualitative deviations occur for large Deborah
numbers (or high angular frequencies), where elastic
behavior is dominating.
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APPENDIX: ASYMPTOTIC ANALYTICAL
SOLUTION

Here we derive an asymptotical solution for the present
model, which is a specific case of the White-Metzner
model. The White-Metzner constitutive equation can
be written in differential form [24], where y ) = vv
+(vv)" denotes the rate of strain tensorand o7, = 07 9/t
+vvo —(vv)To—ovvisthe upper convected derivative
of the stress tensor [29]:
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(A)

The scalar equation for the shear stress component
0., =0, where the indices will be dropped for brevity is:
o+ 10— (35

G (A.2)

The viscosity function in Equation A.2 will be replaced
by the Carreau model:

Mo —
)1—c /2

n(¥)=——""7o=
(1+)L272

3)

where A and 7, are relaxation time and zero shear vis-
cosity, respectively. If ¢ = o, then the Cox-Merz defini-
tion in Equation 8 is retrieved. In a LAOS experiment,
the sample is subjected to a sinusoidal deformation
v(t) = v, sin(wt) where the shear rate is:

Y="vy,w cos(wt) (A.)

According to Pearson and Rochefort [2], the nonlinear
shearstressresponse under LAOS flow can be expanded
as an™order power series iny, of a m" order Fourier se-
ries in w with m counting the harmonics as given by:

o(t)= %g;dyg [G',,,,, (w)sin(mwt)+G",, (w)cos(mwt)]

(A5)

Writing the first terms in y, (n < 3) and including the
third harmonic (m < 3) explicitly gives:

o(t)=v, [G'” (w)sin(wt)+G", (w)cos(u)t)]

Ly G, (w)sin(wt)+G", (w)cos(wt)+ ]
°|G",(w)sin(3wt)+G"  (w)cos(3wt) ‘ (A6)
0 (t)=y,w|G",(w)cos(wt)—G", (w)sin(wt)]
, |@(w)cos(wt)—G", (w)sin(wt) ;
#1956 (w)eos(z0t) 36", (w)sintzat) PO (A7)

Equation A.3 shows that the viscosity is a nonlinear
function of shear rate, where a Taylor expansion for the
nonlinear part of the Equation A.3 leads to:

(14275 )(HVZ RS2y 40(72)
- (A8)
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Combination of Equations A.2 and A.8 results in:

£[1+£A2720(yg)]a+d—67_o
ol 2 (A-9)

Equations A.4, A.6, and A.7 are inserted into Equation

A.9 and considering A = n,/G and introducing the Deb-
orah number De = Aw gives:

[1+ PTcygDe’ cos’ (wt)]

¥o|G', sin(wt)+G", cos(wt)]
+73[G, sin(wt)+G", cos(wt)+ G, sin(3wt) +G", cos(3wt)]]
+y,De|G", cos(wt)—G", sin(wt)]

+y3De|G', cos(wt)~G", sin(wt)+3G",, cos(3wt) - 3G", sin(3wt)|
~Gy,Decos(wt)+0(y3)=0

(A.10)

Rearrangement of Equation A.10, collecting factors of
cos(wt), sin(wt), cos(3wt), and sin(3wt) up to the third
power of y, results in:

—Gy,De+v,DeG’,+7,G' "+3(8 J ¥iDe’G",+yiDeG',+v3G" , |cos(wt)+

v,G',—v,DeG", ( 3 )yiDeG 3G, +yiDeG",

sin(wt)+

—

’;E) Y3DeG" + 373De’G' +v3G"

(=9,
8

cos(3wt)+

yiDeG',+¥3G',—3yiDeG" sm(gwt)JrO(yz):o

(Am)

In the linear viscoelastic regime terms higher than the
first, i.e. O(y,3) can be ignored. Therefore, the storage
and loss modulus G’,, and G’,, can be obtained from
Equation A.11, when the prefactors of the cos(wt) and
sin(wt) terms are set to be zero:

—Gwl+wAG' +G" =0

(A12)
G'”—CL)AG”" =0 (A13)
Solving Equations A.12 and A3 results in:
G =G De !
1+ De (A1g)
G" -G De !
1+ De (A15)

This shows that the model predicts the Maxwell model
behavior in the limit of linear viscoelasticity, as it
should. Using Equations A.14 and A.15 in Equation A
and equatingthe prefactors of cos(wt), sin(wt), cos(3wt),
and sin(3wt) to zero gives four equations for the non-

linear terms G’,,, G”;, G°;;, and G”y;:
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—3(1_C)G D¢ et an, =
8 +De (A.16)
(1=c)g_De’ = __4G',—DeG", =0
8 1+De (A7)
ﬂG be’ ——— +3DeG',+G",
8 1+De (A18)
— 4
(18C)G De' G\ _3DeG", —o
1+ De (A19)

Solving Equations A.16 to A.19 the yields higher order
moduli:

- :_(PC)G De*

3 2 (1—|—Dt':‘2>2 (A.20)
; :(1—C)GD63(D32_3)

8 (1+De2)2 (A.21)
c :_(1—C)G De*

3 2 (,+D32)(1+9De2) (A.22)
o s
(1+ e )(1+9 e) (A.23)

The relative intensity of third harmonic I,,and the in-
trinsic nonlinearity Q, [16] can then be calculated as:

l3 = \/(6,33 7‘3’ + G’B Vf, er)z +(G"33 7?: + Gnss 72 +...)2

h \/(G Yot G Y4 (G v+ G Y )

G2 +G"+0(y?)..
\/ ) Xy—ng(w:%)Yf;
\/G'2+G"2+O (¥2)- Yo

(A.24)
Therefore:
—/Im13,1/yo—— De

8 (1+9De2)1/2 (A25)

In the asymptotic limit for small De, Equation A.25 re-
duces to:

limQ, = (1-¢) De’
De—o 8

(A.26)
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Equation A.26 shows that the De dependence of Q, is
quadraticforsmall De, whereas the asymptoticlimit for
large De is a linear function of De:

) De
24

limQ, = (

De—o

(A.27)

Combining Equations A.26 and A.27 results in Equation
A.28, which captures both limiting behaviors.

De’?

_(1=¢)
@ (1+3De)

=o0,a 8

(A.28)

The approximate function Q,,a has then the form of
Equation 16 but is inexact in comparison to Equation
A.26 around De =1.
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