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overall mechanical response. The Weissenberg number
Wi = l/td is the ratio of l and a characteristic time of
the deformation td. For steady shear td is the inverse of
the shear rate td = 1/g· whereas for oscillatory shear
td = 1/g· 0 = 1/(wg0) [7], where g· 0 denotes the shear rate
amplitude. The Weissenberg number can be interpret-
ed as a dimensionless shear rate, indicating the influ-
ence of nonlinear behavior. Further advantages of us-
ing LAOS to probe nonlinear viscoelasticity include the
omission of sudden signal jumps in the strain input, as
in step experiments, and the ability to probe large strain
rates without edge failure [8].
         Recent efforts in constitutive modeling of LAOS be-
havior have led to approximate solutions that provide
material functions for a couple of nonlinear models.
Whereas some of these are truncated expansions in the
shear rate amplitude (corotational Maxwell [9]), or in
the shear strain amplitude (Giesekus [10] and Pom-Pom
[11]). Others are asymptotic solutions, such as the mol-
ecular stress function model [12, 13] and a thixotropic

1      INTRODUCTION

Nonlinear viscoelasticity plays a crucial role for the me-
chanical behavior of complex fluids (e.g. polymer melts,
polymer solutions, and dispersions) under many pro-
cessing and application conditions. The use of Large
Amplitude Oscillatory Shear (LAOS) experiments,
where a sample is subjected to a sinusoidal shear de-
formation g(t) = g0 sin(wt) has become a common tech-
nique to probe nonlinear viscoelasticity of materials
[1 – 6]. Its main advantage is the possibility to investi-
gate the effect of both characteristic dynamic variables,
the Deborah number De and the Weissenberg number
Wi using the same test with the most common rheo-
logical equipment, a rotational rheometer. The Debo-
rah number De = l/t0 is defined as the ratio of a char-
acteristic relaxation time of a material l and a charac-
teristic time of observation t0, which for oscillatory flow
is the inverse of the angular frequency t0 = 1/w. This De
measures to which degree elastic effects influence the

Simple Scalar Model and Analysis for Large Amplitude
Oscillatory Shear

Dimitri Merger1, Mahdi Abbasi1, Juri Merger2, A. Jeffrey Giacomin3,
Chaimongkol Saengow3,4, Manfred Wilhelm1

1Institut für Technische Chemie und Polymerchemie, Karlsruher Institut für Technologie,
76128 Karlsruhe, Germany

2Institut für Mathematik, Universität Würzburg, 97074 Würzburg, Germany
3Chemical Engineering Department, Queen’s University, Kingston, ON K7L 3N6, Canada
4Polymers Research Center, King Mongkut’s University of Technology, North Bangkok,

Bangkok 10800, Thailand

Corresponding author: manfred.wilhelm@kit.edu

Received: 27.5.2016, Final version: 22.07.2016

Abstract:
This work presents a simple, scalar model for predicting a nonlinear shear stress response of a viscoelastic fluid in Large Ampli-
tude Oscillatory Shear (LAOS) experiments. The model is constructed by replacing the viscosity in the well-known Maxwell
model by a shear rate dependent viscosity function. By assuming the empirical Cox-Merz rule to be valid, this shear rate depen-
dent viscosity function is specified based on the Maxwell expression for the complex viscosity. We thus construct a particular
case of the White-Metzner constitutive equation. Numerical solutions as well as an asymptotic analytical solution of the model
are presented. The results, analyzed for higher harmonic content by Fourier transform, are compared to experimental data of
a viscoelastic solution of wormlike micelles based on cetyltrimethylammonium bromide. Good agreement is found for low
frequencies, where viscous properties dominate.

Key words:
Large Amplitude Oscillatory Shear (LAOS), constitutive modeling, Cox-Merz rule, Maxwell model, non-linear rheology, worm-
like micelles

| DOI: 10.3933/APPLRHEOL-26-53809 | WWW.APPLIEDRHEOLOGY.ORG

mailto:manfred.wilhelm@kit.edu


Jefferson model [8]. For the corotational Maxwell mod-
el also an exact solution [14] is available. Although an-
alytical solutions are generally preferred because ma-
terial functions can be calculated explicitly, arriving at
these solutions usually involves careful tedium. In most
cases, only truncated power series expanded in strain
amplitude or shear rate amplitude can be obtained. Fur-
thermore, the work needed to determine the next or-
der, that is, to add the next harmonic, increases dispro-
portionately. Though this work does yield the next har-
monic, it can yield little improvement in the shear stress
overall.
         Exact analytical solutions are available for the
scalar formulation of the Prandl element [15], which de-
scribes a yield stress fluid and also the tensorial corota-
tional Maxwell model [14]. However, the discontinu-
ities in the Prandl model limit its use for describing os-
cillatory shear behavior beyond yield. The corotational
Maxwell model [9] might indeed be the simplest ten-
sorial model, which can predict nonlinear shear stress
response for LAOS flow. Its nonlinearity stems from the
corotational derivative of the stress tensor but the ten-
sor calculus needed to understand this model is often
beyond the general knowledge of LAOS users, especial-
ly those not proficient in fluid dynamics. Additionally,
the exact solution [14] is too cumbersome, as it involves
two infinite series, each containing one Bessel function.
         Therefore, this work presents a simple scalar, one
dimensional LAOS model, with specific interest to-
wards the storage and the loss modulus G’ and G’’ and
the relative intensity of the third harmonic I3/1 with their
respective strain amplitude g0 and angular frequency
w dependencies. The storage and loss moduli beyond
the linear viscoelastic regime are defined based on the
cosine and sine terms of the fundamental harmonic s1
as G’ = cos d1 and G’’ = sin d1. Furthermore, we focus on
the intrinsic nonlinearity Q0 = limg0->0 I3/1/g0

2 [16, 17],
which is derived from I3/1 in the limit of small strain am-
plitudes. Several alternative frameworks to quantify
nonlinear behavior in LAOS exist [6, 9, 18], including in-
trinsic parameters [19, 20] as well as local wave form
descriptors [21, 22]. We have chosen to use the third har-

monic intensity and the intrinsic nonlinearity to dimin-
ish the number of observable parameters. We also re-
strict ourselves to these magnitude related measures
because they can be obtained quickly and reliably, they
do not depend on the strain input reference (sine or co-
sine) and therefore, do not require further data process-
ing such as phase correction, which is necessary for ex-
ample for analyses based on higher harmonic phases
[4, 23] or Chebishev coefficients [19]. The model is in-
tentionally scalar for simplicity, consequently only
shear forces are considered and normal forces are not
addressed. To construct this model, the constant vis-
cosity of the dashpot in the common Maxwell model
will be replaced by a shear rate dependent viscosity
function. This results in a special case of the White-Met-
zner model [24].

2     MODIFICATION OF THE MAXWELL MODEL

2.1    DIFFERENTIAL EQUATION

Starting from the scalar Maxwell model, which is a lin-
ear combination of a Hookean spring and a Newtonian
dashpot [25, 26], the simplest way to generate nonlin-
ear behavior is to introduce only one nonlinear building
block in the model. Consequently we have to replace ei-
ther the spring’s modulus or the dashpot’s viscosity by
a nonlinear function. Since the viscosity is known to be
very much shear rate dependent for many complex flu-
ids [25 – 27], typical changes can be of the order of one
or two decades, we have chosen to describe the dashpot
by a nonlinear function h(g· ). Previous work by Zachara -
tos and Kontou focused on modeling of strain-stress
curves and start-up of steady shear behavior using a
nonlinear phenomenological model based on the stan-
dard solid model (a spring parallel with a Maxwell ele-
ment) [28]. They used an Eyring type nonlinear dashpot
[29] as well as a nonlinear spring which followed a pow-
er law. LAOS flow, however, was not modeled. Similarly,
but based on the Maxwell model, Monsia calculated
stress build up for a step strain experiment with a mod-
el consisting of a generalized spring, described by a
power law in strain, and generalized dashpot, described
by a power law in shear rate [30]. Since our aim is to
keep the model as simple as possible, nonlinearity of
the spring will be not considered. Although nonlinear-
ities in the elastic behavior are well known and can be
considered by finite extensible spring models [31], we
think their effect is negligible in comparison to the sub-
stantial nonlinearity in the viscous behavior.
         To set up the differential equation for the serial
combination of the linear spring with a nonlinear dash-
pot as depicted in Figure 1, the same procedure as for
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Figure 1: Phenomenological model consisting of a linear
spring and a nonlinear dashpot in series. The introduction of
a nonlinear dashpot is a simple way to introduce nonlinearity
into the Maxwell model.



the Maxwell model is used. Both elements, spring and
dashpot, experience the same shear stress s and the
sum of the individual strains in the spring and the dash-
pot, gs and gd, equals the total strain g. The sum of the
individual shear rates equals the total shear rate.

                                                                             (1)

                                                                          (2)

                                                                           (3)

Assuming linear behavior of the spring g· s can be re-
placed by s· /G using Hooke’s law, for the dashpot shear
rate, g· d = s/h(g· d) will be used. This leads to the first or-
der ordinary differential equation (Equation 5), which
is the scalar expression for the shear stress of the White-
Metzner model [24]. Recently, a multimode version of
this model has been successfully applied to model the
nonlinear viscoelasticity of a silicone oil at Deborah
numbers smaller than one [32]. In the current work, we
strive for an even simpler description, test the applica-
bility of a single mode model and also extend the inves-
tigated De number range to the elastically dominated
regime (De > 1).

                                                                    (4)

                                                               (5)

2.2    CHOICE OF THE SHEAR RATE DEPENDENT
VISCOSITY FUNCTION

When specifying the shear rate dependent viscosity
function of a polymer, two major features are impor-
tant: a finite zero shear viscosity h0 and the power law
index of the shear thinning. Many empirical viscosity
functions have been proposed which capture these two
features [29], well known examples are the Carreau-Ya-
suda [33] and the Cross model [34]. In the here present-
ed work, a two parameter viscosity function will be used
that can be derived from the Maxwell-Model using the
Cox-Merz rule [35]. This empirical rule states that for
simple viscoelastic materials the angular frequency de-
pendent complex shear viscosity in a small amplitude
oscillatory test equals the shear rate dependent viscos-
ity in a steady shear experiment |h*(w)| = h(g· ), where w
is expressed in units of rad/s and g· in 1/s. Snijkers and

Vlassopoulos have recently reported applicability of
this rule for a variety of polymer melts including linear
and branched polymers as well as blends of linear poly-
mers of the same chemistry [36]. Although the Cox-
Merz rule generally lacks a physical explanation, it is ap-
plied frequently in both, academic and industrial re-
search. Its main application is to easily determine the
steady shear viscosity function from the results of small
amplitude oscillatory shear (SAOS) experiments. This is
advantageous because the SAOS experiment generally
is more robust and more reproducible than the steady
shear experiment. Once the Cox-Merz relationship has
been verified for a particular system, high shear rate
viscosities can be conveniently obtained from SAOS
tests which avoid the sample failure and slip artifacts
that usually restrict capillary rheometer experiments.
Additionally, in comparison with using a capillary
rheometer, less sample is needed. Furthermore, if time
temperature superposition is applicable, even higher
shear rates are accessible because of the increased
range of angular frequencies that can be probed. De-
tailed discussion on the merits of this rule can be found
in other references [25, 36]. In the Maxwell model, the
storage and loss moduli G’ and G’’ are frequency-depen-
dent functions following Equation 6. The magnitude of
complex shear viscosity is connected to G’ and G’’ by
Equation 7 [29]. Inserting Equation 6 into Equation 7
and simplifying yields the final expression in Equa-
tion 7. Applying the Cox-Merz rule, |h*(w)| is replaced by 
h(g· ) and the angular frequency dependence is changed
to a shear rate dependence, which results in Equation 8.

                                                          (6)

                          (7)

                                                          (8)
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Thus the zero shear viscosity in Equation 8 is h0 = Gl

and the square root term causes shear thinning behav-
ior for high shear rates. The form of Equation 8 is a par-
ticular case of the Carreau model (Equation 9, [33]) with
c = 0 and h∞ = 0.

                                              (9)

Substituting Equation 8 into Equation 5 results in a dif-
ferential equation according to Equation 10. The specif-
ic choice of h(g· ) keeps the number of parameters for
the whole model minimal using only a single elastic
modulus G and a single relaxation time l.

                                                   (10)

In the presented model, the relaxation time l defines
the balance between elastic and viscous behavior for a
fixed excitation frequency and the nonlinearity in the
viscosity function at the same time. The modulus G lin-
early varies the overall stress magnitude of the re-
sponse, thus providing a scale for G’ and G’’. In Figure 2
a plot of the storage and loss moduli as well as the
steady shear and the complex viscosity functions for
the modified Maxwell model (Equation 5) are shown.
The classic Maxwell model predicts a constant viscosity
for steady shear, whereas the complex viscosity is a
function of w. By incorporating the Cox-Merz rule with
the specific choice of the shear rate dependent viscosity
(Equation 8), Maxwellian behavior for the linear oscil-
latory case is combined with shear thinning in steady
shear. Such a modification of the Maxwell model allows
one to predict nonlinear effects in steady shear and also
in oscillatory shear for arbitrary strain amplitudes.

3     NUMERICAL AND EXPERIMENTAL
METHODS

3.1    NUMERICAL SOLUTION OF THE DIFFERENTIAL
EQUATION

The model represented by Equation 10 was solved using
a custom-written code in MATLAB (version R2014a,
MathWorks, 3 Apple Hill Drive, Natick, MA 01760-2098,
USA), which employed a 4th order Runge-Kutta scheme
[37]. For every oscillation cycle, 512 points equally spaced
in time were calculated, which is a typical sampling rate
in an experiment. For a set of G and l the initial value
problem was solved for varying strain amplitudes g0 at
a fixed angular frequency w thus varying Wi = wg0l,
while keeping De = lw fixed. For every strain amplitude,
55 oscillation cycles were calculated from which the
first 50 were discarded to eliminate the influence of
start-up. Cycles 51 to 55 were Fourier-transformed using
MATLAB and G’, G’’, and I3/1 were calculated from the
spectra. Typical signal-to-noise ratios in the spectra
were of the order of 10-8 to 10-7. Weissenberg number
dependent calculations were repeated for various De.

3.2    EXPERIMENTAL PROCEDURES

LAOS experiments were performed on a 0.15 M aqueous
solution of cetyltrimethylammonium bromide (CTAB,
obtained from Sigma Aldrich), containing potassium
bromide (1.5 M, obtained from Sigma Aldrich) following
the recipe of Lequeux et al. [38]. At a concentration of
0.15 M, CTAB forms wormlike micelles long enough to
entangle, resulting in viscoelastic behavior [10, 38, 39].
Complete dissolution of CTAB and KBr was ensured by
stirring the sample at 40 °C for 48 hours. Linear frequen-
cy dependent measurements, flow curve measure-
ments and LAOS experiments were performed using an
ARES-G2 strain controlled rheometer (TA Instruments),
equipped with a torsional, concentric cylinder geome-
try (r1 = 18.6 mm and r2 = 20 mm) and a Peltier temper-
ature control system. The measurement temperature
was T = 35 °C. For the LAOS tests, the sample was sub-
jected to a sinusoidal excitation g = g0sin(wt). The oscil-
lating stress signals were recorded using the commer-
cial rheometer software TRIOS (version 3.3.0.4055, TA
Instruments, 159 Lukens Drive, New Castle, DE 19720,
USA). Data was analyzed using the same MATLAB code
that was employed for the analysis of the numerical so-
lutions. Repeated measurements were analyzed using
the automatic Fourier transform in the TRIOS software
after confirmation that both analysis routines give
identical results.
         In our experiments, the dominant nonlinear effect
is shear thinning at high shear rates for steady shear
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Figure 2: The frequency dependencies of the storage and loss
moduli for the presented model are identical to the Maxwell
model. Furthermore, in contrast to the Maxwell model, the
Cox-Merz rule |h*(w)| = h(g· ) is incorporated for G = 10 Pa and
l = 1 s.



flow and intercycle shear thinning for LAOS flow as ev-
ident in the decrease of G’ and G’’ (Equations 11 and 12)
with increasing strain amplitude for all investigated
frequencies. In addition to this sample nonlinearity, in-
stabilities in the flow field can occur at high shear rates.
Wormlike micelles systems are known to form shear
bands which has been observed by NMR velocity imag-
ing [40, 41] and light scattering techniques [42]. A com-
monly observed rheological signature of shear banding
in WLM solutions is a stress plateau in the flow curve
that can stretch over an order of magnitude in shear
rate [43, 44]. Helgeson et al. [45] have observed this
shear banding instability by particle imaging velocime-
try and gap resolved neutron scattering for a 16.7 wt%
CTAB sample at 32 °C. The banding in their sample was
connected to an isotropic-nematic transition. Shear
banding has also been observed for a 22 wt% CTAB so-
lution at 32 °C in oscillatory shear [10]. Typical Wi num-
bers for the onset of shear banding in those studies
were 0.7 [44] or 0.47 [10].
         In our LAOS experiments, however, the extended
stress plateau characteristic for shear banding was not
observed in the measured strain amplitude range (usu-
ally 0.1 < g0 < 10; but g0 < 2 for w = 50 and 100 rad/s) even
though Wi = g· l = g· 0.265 s reached values of up to 28.
In the flow curve measurements, the maximum Wi was
16 (g· = 60 1/s) and the Cox-Merz rule could be applied.
Gurnon and Wagner showed that the Cox-Merz rule
fails for shear banding samples [10]. In absence of the
stress plateau that is associated with shear banding
and the validity of the Cox-Merz rule, we expect that
our sample, which has a much smaller CTAB concentra-
tion (4.43 wt%) than the samples in the studies refer-
enced above, does not shear band. Furthermore, shear
banding is normally accompanied by a transient shear
stress decay when the sample is sheared at rates in the

shear thinning region. The time scale of this transient
effect is usually at least two decades larger than the
Maxwell relaxation time l [43]. The absence of these
long transients in our experiments further corroborates
that the determined intrinsic nonlinearities are not in-
fluenced by shear banding.

4     MODEL CALCULATIONS

4.1    NONLINEAR WAVEFORMS

The numerical solution of the presented model gives an
oscillatory stress signal s(t) for an applied oscillatory
strain input of g(t) = g0sinwt. The relaxation modulus G
linearly determines the stress scale of the results and
was arbitrarily set to 10 Pa in all calculations. Exemplary
results of the waveforms for G = 10 Pa, l = 1 s, w = 1 rad/s
are shown in Figure 3 for four different strain amplitudes.
Only the steady state solutions, after all transients have
decayed, are shown. The elastic (s versus g, Figure 3 a)
and viscous (s versus g· , Figure 3 b) Lissajous plots for a
linear response at g0 = 0.011 show an ellipse. In this case,
De equals one and therefore the phase angle is exactly
45°, thus elastic and viscous behavior are balanced. At
larger amplitudes, deviations from the elliptical form are
visible. For g0 = 1.33 in Figure 3a, the loop area exceeds
the area of the loop at g0 = 0.011. This means that the vis-
cous contribution exceeds the elastic part (G’’ > G’). The
loop area equals the dissipated energy per unit volume
in a cycle [4, 46, 47]. In the stress versus shear rate rep-
resentation, the waveform for g0 = 6 is reminiscent of
the typical, sigmoidal, nonlinear waveform of a polymer
melt reported by Dealy et al. [48] and Tee and Dealy [49].
For g0 = 23.7 pronounced nonlinear effects occur. At such
high shear rates (g· max = g0w = 23.7 1/s) the dashpot is
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Figure 3: Waveforms from a numerical solution of the model using G = 10 Pa, l = 1 s, w = 1 rad/s, De = 1, represented as elastic
(a) and viscous (b) Lissajous figures.



strongly shear thinning within the oscillation cycle (com-
pare the shear rate dependent viscosity in Figure 2). This
results in behavior reminiscent of an elastoplastic body
[50]. An elastoplastic material shows elastic response as
long as the stress is below the yield stress, a material spe-
cific model parameter. Above the yield stress, plastic
flow is exhibited, that means the stress is independent
of the shear rate. In the Lissajous representation, the
waveform then resembles a parallelogram. In the elasto-
plastic model, the transition from elastic behavior to
flow is discontinuous. At sufficiently large strain ampli-
tudes, our model reproduces similar behavior, albeit in
our case, the transition is smooth (see g0 = 6.0 and g0 =
23.7 in Figure 3a).

4.2   FOURIER ANALYSIS

After exploring the waveforms qualitatively, quantita-
tive measures for strain amplitude (or Wi = wg0l) depen-
dent calculations are presented. Generally, for an arbi-
trary periodic stress signal, G’ and G’’ are computed by
Equations 11 and 12 from the first harmonic stress ampli-
tude s1 and the phase angle d, which is referenced to the
sinusoidal strain input. Since in the modified Maxwell
model (Equation 10) the storage and loss moduli, G’ and
G’’ become g0 dependent, they can be described by Equa-
tion 6 only in the limit of sufficiently small g0.

                                                               (11)

                                                               (12)

Figure 4 displays the g0 dependence of G’, G’, and I3/1 for
G = 10 Pa at De = 0.1, 1, and 10. Variations in De can be
achieved by altering the relaxation time or the angular
frequency. Altering the relaxation time is equivalent to
comparing different materials at the same frequency
or, if time temperature superposition is valid, the same
material at different temperatures and the same fre-
quency. For the same viscoelastic material (constant l)
changing the frequency leads to a change of the bal-
ance of viscous and elastic response. In Figure 4a for
small g0, G’ equals G’’, which is consistent with Max -
wellian behavior at De = 1. With increasing g0, the re-
sponse becomes increasingly nonlinear: Both G’ and G’’
start decreasing, but G’ does so more drastically. A de-
creasing G’ is primarily a signature of nonlinearity and
in our model it is a consequence of the shear thinning
dashpot, as the shear thinning leads to an overall de-
creasing stress amplitude. This decrease in G’ cannot be
interpreted as a weakening of the spring in the modi-
fied Maxwell model, since the spring is explicitly linear.
This demonstrates how G’ and G’’ lose their original in-
terpretations in LAOS. Nevertheless they are still useful
descriptors. The relative intensity of the third harmonic
displays a power law behavior I3/1 µ g0

2 for sufficiently
small g0 (see for example g0 < 0.4 in Figure 4a). This re-
gion is termed the intrinsic LAOS range [16, 17, 51] or
MAOS (Medium Amplitude Oscillatory Shear [6]). Even-
tually, I3/1 levels off at value of 1/3, which is the maxi-
mum I3/1 when the waveform approaches a rectangle
wave [52]. A rectangle waveform is produced by plastic
behavior or in other words a shear thinning viscosity
that follows a power law with an exponent of - 1 [46,
53]. Hence, at these high values of g0 (and therefore high
shear rate amplitudes), the effect of the incorporated
spring is evident only at times around g/g0 = 1 or - 1 cor-
responding to g· /g· 0 = 0 and the system displays plastic
behavior for most of the cycle.
         Along with the numerical results, asymptotic ana-
lytical solutions are plotted as solid lines in Figure 4. The
differential equation (Equation 10) has been partially
solved by assuming the nonlinear stress representation
(Equation 13) according to Pearson an Rochefort [2] in
order to obtain the first nonlinear terms that scale with
g0

3 or g· 0
3, that is, the first terms that describe the devi-

ation of G’ and G’’ from their plateau values. Further-
more an asymptotic expression for I3/1 (Equation 14) was
derived, resembling the one in Giacomin et al. [54]. It is
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Figure 4: Symbols show G’, G’’ and I3/1 from a numerical solu-
tion of the model (Equation 12) using G = 10 Pa and w = 1
rad/s. (a) limiting case: l = 1 s and De = 1, (b) viscous case: l =
0.1 s and De = 0.1, (c) elastic case: l = 10 s and De = 10. Solid
lines are asymptotic analytical solutions (Equation 16) for the
present model (Equation 12). They are exact for small enough
deformation amplitudes only, see the appendix for a detailed
derivation. The dashed line indicates a region where I3/1 is lin-
ear in g0. Note also the coinciding local maximum in G’’ for
De = 10. Such a maximum is often observed in measurements
of filled elastomers [55].



expressed in terms of G’nm and G’’nm coefficients from
Equation 13, where n counts the order of the expansion
in g0 and m counts the harmonic number. The coeffi-
cients for n = 1, 3 and m = 1, 3 as well as the details of
the solution can be found in the Appendix.

  (13)

  (14)

The asymptotic solutions, shown as lines in Figure 4,
confirm the numerical results for small deviations from
the linear viscoelastic regime. However, already for
g0 > 1 (for De = 1), the asymptotic predictions fall below
the numerical results, because only the 3rd order term in
g0 is included. Additionally, G’ and G” eventually become
negative for increasing g0, which is unphysical and not
shown in the log-log plots, and I3/1 exhibits an apparent
maximum around g0 = 2.3. The comparison to the nu-
merical results shows that both effects are artifacts
caused by the truncation. This demonstrates the limita-
tion of the truncated expansion in Equation 13. To de-
scribe the numerical results in the full range that is plot-
ted in Figure 4 many higher terms would be required in
Equation 14.
         After dealing with the special case of De = 1, the
representative cases of predominantly viscous (De =
0.1) and predominantly elastic behavior (De = 10) shown
in Figures 4b and 4c are addressed. De was varied by
choosing l accordingly, while keeping w constant. For
De = 0.1 (Figure 4b) in the linear regime, G’’ is 10 times
higher than G’ and in the nonlinear regime both G’ and
G’’ decrease. When compared to the case of De = 1 the
overall decrease of nonlinearity is evident in the de-
crease of the moduli occurring at larger g0. Similarly, al-
though it has the same qualitative behavior as in Figure
4a, I3/1 shows smaller values, indicating that the transi-
tion from linear to nonlinear behavior occurs at larger
g0. In the case of De = 10 (Figure 4c), the initial situation
for small amplitudes is reversed, G’ is 10 times higher
than G’’, again recovering the results of the Maxwell
model for the linear case. Interestingly, for De > 1 the
model is able to predict an overshoot in G’’, followed by
a cross-over of G’ and G’’. These are common character-
istics for yielding under LAOS that have been observed
for dense colloidal suspensions, gels and foams [50, 56,
57]. In filled and vulcanized elastomers, this effect has
also been observed and is known as the Payne effect
[55, 58, 59]. Increased dissipation marked by the maxi-
mum in G’’ is commonly interpreted on the microscopic

scale as a signature for the break-up of network con-
nections in these systems. Our results show that no spe-
cific network structure needs to be considered to pro-
duce this effect. In our model, predominantly elastic be-
havior (De > 1) in conjunction with shear thinning leads
to the occurrence of the G’’ maximum. A close inspec-
tion of the numerically determined I3/1 reveals an inter-
mediate scaling region (broken line in Figure 4c) where
I3/1 µ g0 that also coincides with the increase in G’’.
         Since by construction, nonlinearity in the model
arises from the shear thinning dashpot, it seems surpris-
ing that we also find elastic nonlinearities in the LAOS
response: By inspecting the sign of G’31 and G’33 of the
asymptotic solution in the Appendix (Equations A.20
and A.22) or equivalently [e1] = G’31 and [e3] = - G’33 using
the Chebishev polynomial basis [19], the elastic nonlin-
ear contributions to the stress response can be classified
as intercycle elastic softening and intracycle elastic
strain softening. The reason for the occurrence of these
elastic nonlinearities despite the linear spring is simply
its serial coupling with the nonlinear dashpot. The re-
sulting differential equation leads to waveforms that
include signatures of viscous as well as elastic nonlin-
earity. For sufficiently high shear rates, the dashpot will
behave nonlinearly producing a nonsinusoidal stress.
Since the stress in both elements, spring and dashpot,
is equal the spring is experiencing a nonsinusoidal stress
as well. Due to its linear nature, its strain gs then must
be nonsinusoidal. This shows that the interpretation of
the signs of high harmonic moduli or of the intrinsic
Chebishev coefficients do not provide information
about the origin of the nonlinearity, (spring or dashpot)
but only describe the resulting waveforms. Therefore,
we refrain from a more detailed analysis using the
Chebishev coefficient framework in the current work.
         The calculations have been repeated for several
other values of De and the results for I3/1 are shown in
Figure 5. In all cases, an initial power law behavior with
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Figure 5: I3/1 for various De = lw from numerical solutions of
the model (Equation 12) using G = 10 Pa and w = 1 rad/s/ Lines
indicate scaling regions of I3/1 µ g0

2 and g0
1. Inset shows re -

scaled curves of I3/1 as a function of the Weissenberg number
Wi = g· 0l = Deg0.



I3/1 µ g0
2 can be observed for small g0, which is confirmed

by the asymptotic solutions. Furthermore, for De > 1 the
intermediate scaling region where I3/1 is linear in g0 ex-
tends over a larger range of strain amplitudes for in-
creasing De. Curves of I3/1 versus g0 can be superimposed
on a master curve for De < 0.1 when I3/1 is plotted versus
Wi = wg0 l as shown in the inset of Figure 5. For De > 0.1,
the superposition using Wi is not possible because the
functional form of I3/1 changes when elastic contribu-
tions matter. The influence of the elastic spring also
leads to different De scaling behavior of the I3/1 curves.
An alternative way of displaying the nonlinearity mea-
sured by I3/1 is shown in Figure 6a. Here we plot log I3/1
in the De - g0 space. This representation is known as
the Pipkin diagram [60]. For increasing g0 and De, I3/1
peaks to its maximum of 1/3 in the large g0 - high De -
corner of the plot. For De < 1, I3/1 increases quadratically
with g0 in the plotted g0 range (compare also to curves
for De < 1 in Figure 5). In contrast, for De > 1 the distance
between the contour lines increases corresponding to
a subquadratic increase of I3/1 with g0 (compare to
curves for De > 1 in Figure 5). In Figure 6b, the logarithm
of Q(g0), where Q(g0) = I3/1/g0

2 is plotted in the same co-
ordinates. Reducing I3/1 to Q(g0), eliminates the initial
quadratic scaling for small g0 and low De, evident in ver-
tical contour lines of Figure 6b. Similar nonlinearity
maps have been published for the Giesekus model [21]
and for the Pom-Pom model [61].

4.3   INTRINSIC NONLINEARITY Q0

From the regions where I3/1 µ g0
2 holds, the intrinsic non-

linearity Q0(De) = limg0®0I3/1/g0
2 has been determined

[16]. This material function depends on De (or w for a
fixed relaxation time) only and can be interpreted as a
measure of how early nonlinear behavior becomes im-

portant when the strain amplitude is increased. The De-
dependence will always be implied for the rest of the
paper and not written specifically as Q0(De). The strict
definition of a linear viscoelastic regime is not possible
in the intrinsic concept because I3/1 actually never
equals 0. But one can always assign a range where I3/1
is so small that the distortion plays an insignificant role
for the overall mechanical behavior of a material. Such
a limit could be set due to experimental limitation, for
example, at I3/1 = 10-4. This threshold seems reasonable
since for all g0 where I3/1 is smaller, the deviations of G’
and G’’ from their respective small g0 limits are vanish-
ingly small (compare Figures 4a to 4c). With this defin-
ition of a ’practical’ linear range in mind, larger Q0,
means narrower linear range, thus G’ and G’’ deviate
from their plateau values at smaller g0.
         The dependence of Q0 on De is displayed in Figure 7.
For De` 1, Q0 increases quadratically with De, whereas
for De >> 1 it is linear in De. The quadratic small De be-
havior is a typical signature of a shear thinning viscos-
ity. At these conditions the dashpot is dominating the
overall response and any viscosity function that can be
represented as an ordered expansion in shear rate leads
to Q0 µ De2 in the limit of small De [62]. For De > 1 the
influence of the linear spring becomes evident: Cou-
pling the nonlinear dashpot to a linear spring reduces
the increase of Q0 with De from quadratic to linear. The
expectation that increasingly dominating elastic be-
havior, which is linear in the present model, would
eventually lead to a reduction of overall nonlinearities
for very large De is not met. This is due to only one re-
laxation time l present in the model. An increasing l = 
h/G at constant w corresponds to a more elastic mate-
rial, but at the same time a larger  value also shortens
the linear range of the dashpot. Since the intrinsic non-
linearity Q0 reflects the first deviation of the dashpot
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Figure 6: Contour plots of log I3/1 (a) and logQ(g0) (b), calculated for the present model (Equation 12) in the De - g0 space, also
known as Pipkin space [60]. For De < 1, I3/1 increases quadratically with g0 in the plotted g0range, compare also to curves for De
< 1 in Figure 5. In contrast, for De > 1, the distance between the contour lines increases corresponding to subquadratic increase
of I3/1 with g0, compare to curves for De > 1 in Figure 5. The additional contour line at log I3/1 = -0.52 corresponds to I3/1 = 0.3.



from its zero shear viscosity, even for De > 1, the effect
of the spring is to attenuate nonlinearity with increas-
ing De.
         Comparing to predictions of other available mod-
els, the present simple model predicts different behav-
ior for the elastic region (Figure 7). For example, in the
corotational Maxwell model (CRM) [54], Q0 plateaus to
a value of 1/24 ≈ 0.0416. Similarly, a constant value for
Q0 is reached in the molecular stress function (MSF)
model for large De (1/4(a - b/10) ≈ 0.0345, for a = 5/21
and b = 1 [13]). In the molecular model for a system of
dilute rigid dumbbells [63], Q0 also approaches a con-
stant limit (3/28 ≈ 0.107) for large De. The Giesekus and
the Pom-Pom model, in contrast predict a decrease in
Q0 for De > 1. By comparing the large De limits of G’33
and G’’33 in the different models, we determine the
dominating contribution to Q0 (Equation 15) at large De.
The denominator in Equation 15 asymptotes to the
Maxwell parameter G for all presented models except
the dumbbell model. For the two models that are time
strain separable [12], the corotational Maxwell and the
MSF model, G’33 exhibits a plateau in the De ® ∞ limit
and dominates over G’’33 leading to the constant value
for Q0. For time strain inseparable models (current mod-
el, Pom-Pom, and Giesekus model), the large De behav-
ior of Q0 is dictated by G’’33. This is because the limit of
G’33 is either constant while G’’33 increases (see Equa-
tions A.22 and A.23 for the present model) or G’33 de-
creases stronger than the G’’33 term (see Equations 4.6
and 4.7 in Hoyle et al. [11] for the Pom-Pom model and
Equations A.51 and A.52 in the supporting information
of Gurnon et al. [10] for the Giesekus model). Since the
rigid dumbbell model of Bird et al. [63] has not been

written in integral form yet, it is unknown whether it is
time strain separable. For this model, G’’33 µ De domi-
nates over G’33 µ De0 at large De, but since G’’11 µ De,
this results in a plateau for Q0. Which of the models per-
forms best in describing Q0 of a simple viscoelastic fluid
will be determined in the subsequently presented ex-
perimental section.

                                            (15)

Analytical expressions for Q0 from the different models
are summarized in Table 1. Here we present the full an-
alytical expressions, their small and large De limits, and
simplified expressions that capture both limiting be-
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Figure 7: Intrinsic nonlinearity Q0 versus De for the current
model, symbols are extracted from the small g0 range where
I3/1 µ g0

2 holds in Figure 5. Lines are analytical solutions for
the various models collected in Table 1. In the Pom-Pom mod-
el Zbb is the number of entanglements in the backbone.

Table 1: Analytical expressions for Q0 for different viscoelastic models. The approximate expressions, which capture the small
and large De behavior, in the third column have very similar functional forms. These expressions have been calculated using
formulas for I3/1 from the following references: Pom-Pom [11], MSF [13], CRM [54], Giesekus [10]. In the Pom-Pom model, Zbb is
the number of entanglements that effectively leads to nonlinearities, for this only the backbone entanglements of a branched
polymer are considered. It is defined as Zbb = ZFbb, where Z is the number of entanglements per molecule and Fbb = Mbb/M is
the mass fraction of the backbone.



haviors for small and large De. The simplification intro-
duces a deviation in comparison to the exact expres-
sions of the second column, when De approaches one
but also make the Q0 expressions much more tractable.
The simplified versions all show a similar functional
form that can be written as Equation 16.

                                                              (16)

The coefficients are summarized in Table 1. This finding
is especially intriguing since a similar expression has
been proposed by Cziep et al. based on experimental
data covering a range of linear, monodisperse homo -
polymer melts [64]. Therein, the authors provide exper-
imental values for the parameters in Equation 16:
a = 0.32Z-0.5, b = 33.75Z-1, and d = 0.35, where a and b
are dependent on the number of entanglements Z =
Mw/Me. Recently, asymptotic solutions for LAOS flow
have been presented for the corotational Maxwell,
Giesekus, and MSF models and additionally for a model
for rodlike polymers, an emulsion model as well as the
Curtiss-Bird model [20]. The models have been com-
pared based on intrinsic Chebishev coefficients [51].
Corotational Maxwell model predictions for the mag-
nitudes of the four intrinsic Chebishev material func-
tions for LAOS flow agreed for a poly(vinyl acetate)-Bo-
rax hydrogel. Similarly, we will test the quality of our
model predictions with experimental data in the fol-
lowing section, although we will restrict ourselves to
Q0 as a single nonlinear material function.

5       COMPARISON TO EXPERIMENTAL DATA OF A
WORMLIKE MICELLES SOLUTION

To validate the model predictions, a solution of worm-
like micelles based on the surfactant cetyltrimethylam-
monium bromide (CTAB) was chosen as a model system
because it exhibits nearly single-relaxation time behav-
ior at small strain amplitudes for a wide range of De [10,
38, 39]. The particular concentration was chosen such
that the cross-over frequency of the material is in the
middle of a frequency window suitable for the rheome-
ter. Thus frequencies a decade lower and a decade high-
er than the crossover frequency could be conveniently
tested.The results of frequency dependent experi-
ments in the linear viscoelastic regime on a 0.15 M aque-
ous solution of CTAB in the presence of 1.5 M KBr are
compared to the model predictions in Figure 8. The
model parameters were determined as G = 68 Pa and
l = 0.265 s, by fitting the Maxwell expressions for G’
and G’’ (Equation 6) to the data (Figure 8). Furthermore,
the validity of the Cox-Merz rule can be confirmed for

the wormlike micelles solution in a frequency/shear
rate range of almost three decades, where |h*(w)| = h(g· ).
         A quantitative comparison of model prediction and
measured data for varying strain amplitudes is presented
in Figure 9 in terms of G’, G’’, and I3/1. In the linear vis-
coelastic regime, the agreement is, as expected very
good. For increasing g0, the model captures the decrease
in G’ very well, but overestimates G’’, which decreases
more steeply in the experiment. Intensities of I3/1 howev-
er, are underestimated by the model by approximately
30 % in the intrinsic range (0.5 < g0 < 2). The overall agree-
ment for this frequency is comparable to results of [65],
who modeled data of poly(ethylene oxide) and
poly(acrylic acid) solutions with a multimode version of
the tensorial Giesekus model. For frequencies exceeding
the inverse of the relaxation time, our model predicts the
Payne effect (a local maximum in G’’ for increasing g0) as
shown in Figure 4. However, this rheological signature
was not found for the CTAB sample investigated here. In-
stead, for the highest investigated shear rate amplitudes
(g· 0 = 9.96 1/s at w = 10 rad/s and g0 = 9.96), the strain
amplitude dependent moduli G’ and G’’ approached high
shear rate plateaus after a shear thinning region.
         As shown in Figure 9, I3/1 µ g0

2 for a certain range
of g0, therefore the intrinsic nonlinearity Q0 can be de-
termined. Frequency dependent measurements of Q0
of the CTAB sample are shown in Figure 10 along with
the predictions of the current model. Repeated mea-
surements with separate loadings show the repro-
ducibility of the Q0 values (relative standard deviation
10 – 20 %). The corotational Maxwell model which has
the same model parameters, G and l, is shown as well.
In contrast to the current model, in the corotational
Max well model, nonlinear behavior arises not from as-
suming a shear rate dependent viscosity, but is a con-
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Figure 8: G’ and G’’ of a 0.15 M aqueous solution of CTAB in
the presence of 1.5 M KBr at T = 35°C, measured at g0 = 0.1.
Lines are fits of the Maxwell expressions for G’ and G’’ with
G = 68 Pa and l = 0.265 s. Also shown is the validity of the
Cox-Merz rule for this sample: The dependence of the ab-
solute value of the complex viscosity |h*| on w is the same as
the dependence of the steady shear viscosity h on g· .



sequence of using a corotational derivative in the dif-
ferential equation [9]. It is a three dimensional, that
means second rank tensorial model, where the shear
stress is coupled to normal stresses. The corotational
derivative ensures frame invariance by rotating the co-
ordinate frame with the fluid element, and defines the
coupling of shear and normal stresses. This coupling al-
lows one to predict nonlinear stress signals in LAOS
flow. Although generally the modified Maxwell model
predictions (Equation 10) fall below the measured non-
linearities for De < 1, the errors are not too grave, with
the predicted values of Q0 being 50 % below the mea-
surements. Although the predictions of the 3D corota-
tional Maxwell model are better, the presented simple
modified Maxwell model shows reasonable capability
of describing the data for De < 1. Its failure for De > 1 is
not that surprising, as the assumption that the spring
is always linear and only the dashpot is nonlinear, is un-
realistic at conditions where elasticity dominates the
material’s mechanical properties. The power law expo-
nent for the decrease in the large De range was found
to be approximately - 0.16 for the specific sample inves-
tigated here. Fitting Equation 16 to the data gives a =
0.2, b = 2.53, and d = 0.158. 
         Therefore, in comparison to measurements of lin-
ear, narrowly distributed polymer melts by Cziep et al.
[64] where a d value of 0.35 was determined, in our
wormlike micelles sample, Q0 decreases less steeply at
large De. The differences in the large De behavior be-
tween the two systems are expected to be related to dif-
ferent relaxation mechanisms. On the microscopic level,
the physics of wormlike micelles resemble macromole-
cules in that terminal relaxation occurs through repta-
tion and at high frequencies segmental Rouse relax-
ation dominates [25, 66, 67]. Since the Rouse time scale
is usually 2 – 3 decades shorter than the reptation time
we think it unlikely to contribute to Q0 in the current
measurements, which are limited in frequency to one
decade above the inverse relaxation time. For polymer
melts, deviations from Maxwellian behavior due to in-

creased dissipation by processes such as contour fluctu-
ations and constraint release [25], occur at comparative-
ly low frequencies, close to the cross-over frequency,
where G’ = G’’. These could be responsible for the uni-
versal scaling found for linear polymer melts [64]. In
contrast to polymer melts, the breaking mechanism in
wormlike micelles [39] allows a relaxation path distinct
for these systems. The breaking time scale lbr coincides
with the inverse frequency of the minimum in G’’ from
linear viscoelastic measurements [66]. For the investi-
gated sample lbr = 0.0107 s, is much shorter than lrept =
6.56 s which we calculate from l = 0.265 s using the re-
lationship l = (lbrlrept)1/2 [68] for the fast breaking limit
(lbr` lrept). We speculate that the quantitatively differ-
ent behavior in the intrinsic nonlinearity at large De is
connected to the dominance of the breaking mecha-
nism. To clarify this, Q0(De) has to be determined for a
range of WLM systems including linear, branched and
network topologies and the universality of the large De
scaling of Q0(De) has to be investigated. Then, measure-
ments on WLM samples in which breaking is not the
dominating relaxation mechanism and the relaxation
is not monoexponential are required, a task for future
studies. Since none of the models shown in Figure 7 can
predict the experimentally determined large De behav-
ior quantitatively, the correct modeling of the elasticity
dominated high frequency range remains a challenge.

6     CONCLUSIONS

A simple scalar model, capable of predicting nonlinear-
ities for the large amplitude oscillatory shear experi-
ment using only two parameters, a shear modulus and
a relaxation time, has been presented. The model was
obtained by replacing the linear dashpot in a Maxwell
model by a nonlinear function, while the spring’s mod-
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Figure 9: Strain amplitude dependent G’, G’’ and I3/1 for a
0.15 M aqueous solution of CTAB in the presence of 1.5 M KBr
at T = 35°C and w = 1 rad/s. Lines are model calculations
(Equation 12) using G = 68 Pa, l = 0.265 s, and De = 0.265.

Figure 10: Q0 of a 0.15 M aqueous solution of CTAB in the pres-
ence of 1.5 M KBr at T = 35°C. Repeated measurements with
separate loadings give an estimate of the reproducibility. Lines
are predictions of the current model (Equation 12) and the
corotational Maxwell model (CRM). Additionally, Equation 18
has been fitted to the data providing a = 0.2, b = 2.53, and
d = 0.158.



ulus was held constant. The specific function for the
nonlinear dashpot was chosen by applying the Cox-
Merz rule |h*(w)| = h(g· ) to the expression of complex
vis cosity from the Maxwell model. The model is a scalar,
special case of the White-Metzner model. Numerical
solutions of the model have been calculated for a wide
range of frequencies and strain amplitudes. The results
analyzed by Fourier transform were presented in terms
of the strain amplitude dependencies of the storage
and loss moduli G’ and G’’ the relative intensity of the
third harmonic I3/1 and the intrinsic nonlinearity Q0. Fur-
thermore, an approximate analytical solution was pro-
vided in the form of a truncated power series in strain
amplitude. Scaling laws for I3/1 known from previous ex-
periments and predictions of other models were con-
firmed and the functional form of Q0(De) was compared
to predictions of other models (corotational Maxwell,
Giesekus model, Pom-Pom, molecular stress function,
dilute rigid dumbell model). Furthermore, predicted
Q0(De) behavior was compared to experimental data of
a micellar solution of cetyltrimethylammonium bro-
mide (CTAB). Agreement with the experiments is rea-
sonably good considering the model’s simplicity. For De
< 1, the model underestimates values for Q0 by less than
50 %. Qualitative deviations occur for large Deborah
numbers (or high angular frequencies), where elastic
behavior is dominating.
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APPENDIX: ASYMPTOTIC ANALYTICAL
SOLUTION

Here we derive an asymptotical solution for the present
model, which is a specific case of the White-Metzner
model. The White-Metzner constitutive equation can
be written in differential form [24], where g

·
(1) = õv

+(õv)T denotes the rate of strain tensor and s(1) = s ¶/¶t
+ võs −(õv)T

s-sõv is the upper convected derivative
of the stress tensor [29]:

                                                     (A.1)

The scalar equation for the shear stress component
s12 = s, where the indices will be dropped for brevity is:

                                                       (A.2)

The viscosity function in Equation A.2 will be replaced
by the Carreau model:

                                                     .3)

where l and h0 are relaxation time and zero shear vis-
cosity, respectively. If c = 0, then the Cox-Merz defini-
tion in Equation 8 is retrieved. In a LAOS experiment,
the sample is subjected to a sinusoidal deformation
g(t) = g0 sin(wt) where the shear rate is:

                                                             (A.4)

According to Pearson and Rochefort [2], the nonlinear
shear stress response under LAOS flow can be expanded
as a nth order power series in g0 of a mth order Fourier se-
ries in w with m counting the harmonics as given by:

(A.5)

Writing the first terms in g0 (n £ 3) and including the
third harmonic (m £ 3) explicitly gives:

      (A.6)

 (A.7)

Equation A.3 shows that the viscosity is a nonlinear
function of shear rate, where a Taylor expansion for the
nonlinear part of the Equation A.3 leads to:

              (A.8)
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Combination of Equations A.2 and A.8 results in:

                     (A.9)

Equations A.4, A.6, and A.7 are inserted into Equation
A.9 and considering l = h0/G and introducing the Deb-
orah number De = lw gives:

(A.10)

Rearrangement of Equation A.10, collecting factors of
cos(wt), sin(wt), cos(3wt), and sin(3wt) up to the third
power of g0 results in:

  (A.11)

In the linear viscoelastic regime terms higher than the
first, i.e. O(g0

3) can be ignored. Therefore, the storage
and loss modulus G’11 and G’11 can be obtained from
Equation A.11, when the prefactors of the cos(wt) and
sin(wt) terms are set to be zero:

                                            (A.12)

                                             (A.13)

Solving Equations A.12 and A.13 results in:

                                                         (A.14)

                                                          (A.15)

This shows that the model predicts the Maxwell model
behavior in the limit of linear viscoelasticity, as it
should. Using Equations A.14 and A.15 in Equation A.11
and equating the prefactors of cos(wt), sin(wt), cos(3wt),
and sin(3wt) to zero gives four equations for the non-
linear terms G’31, G’’31, G’33, and G’’33:

                        (A.16)

                         (A.17)

                       (A.18)

                       (A.19)

Solving Equations A.16 to A.19 the yields higher order
moduli:

                                       (A.20)

                                     (A.21)

                        (A.22)

                           (A.23)

The relative intensity of third harmonic I3/1and the in-
trinsic nonlinearity Q0 [16] can then be calculated as:

(A.24)

Therefore:

                               (A.25)

In the asymptotic limit for small De, Equation A.25 re-
duces to:

                                                     (A.26)
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Equation A.26 shows that the De dependence of Q0 is
quadratic for small De, whereas the asymptotic limit for
large De is a linear function of De:

                                                        (A.27)

Combining Equations A.26 and A.27 results in Equation
A.28, which captures both limiting behaviors.

                                                (A.28)

The approximate function Q0,a has then the form of
Equation 16 but is inexact in comparison to Equation
A.26 around De = 1.
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