Home Determination of retained austenite in multiphase steels by magnetic force microscopy
Article
Licensed
Unlicensed Requires Authentication

Determination of retained austenite in multiphase steels by magnetic force microscopy

  • Aloisia Saiz Zens EMAIL logo , Tamara Appel , Jose A. C. Broekaert and Frank Friedel
Published/Copyright: January 12, 2022
Become an author with De Gruyter Brill

Abstract

The use of atomic force microscopy (AFM) in the magnetic force mode (MFM) for the determination of austenite (nonmagnetic phase) in duplex and TRIP (transformation-induced plasticity) steels is described. The influence of the sample preparation for the MFM measurements is investigated, showing that a final electropolishing stage is necessary in the case of TRIP-steels.

The results of the determination of austenite in the range of 6 – 15% with AFM were compared with those obtained with electron backscattered diffraction (EBSD) and light optical microscopy. For TRIP-steels an identification of retained austenite with MFM was found to show a better resolution than classical light optical microscopy.


ThyssenKrupp Stahl AG Aloisia Saiz Zens Eberhardstr. 12, 551 WSK-A-OA, D-44120 Dortmund, Germany Tel.: +49 231 844 3908 Fax: +49 231 844 6717

  1. This work has been supported by the EU Fellowship Marie Curie through Grant No G5TR-CT-2000-00017.

References

[1] W. Bleck, E. Kechagias, J. Ohlert, J.L. Christen, A. Moulin, N. Haidemenopoulos, A.N. Vsilakos, A. Katsamas, G. Papatriantafyllou, N. Aaravas, H. Hofmann, T.W. Schaumann: Optimisation of microstructure in multiphase steels containing retained austenite, Final report EUR21131 (2004).Search in Google Scholar

[2] B.C. De Cooman, L. Barbe, J. Mahieu, D. Krizan, L. Samek, M. De Meyer: Can. Metall. Quarterly 43 (2004) 13.10.1179/cmq.2004.43.1.13Search in Google Scholar

[3] G. Binnig, C.F. Quate, Ch. Gerber: Phys. Rev. Lett. 56 (1986) 930.10.1103/PhysRevLett.56.930Search in Google Scholar PubMed

[4] M. Göken: Nanostruktur, Grenzenflächen und lokale mechanische Eigenschaften moderner metallischer Werkstoffe, Der andere Verlag, Osnabrück (2002).Search in Google Scholar

[5] G. Friedbacher, H. Fuchs: Pure Appl. Chem. 71 (1999) 1337.10.1351/pac199971071337Search in Google Scholar

[6] J.R. Smith, S. Breakspear, S.A. Campbell: Trans. Inst. Met. Fin. 81(2), B 26 (2003) 26.10.1080/00202967.2003.11871484Search in Google Scholar

[7] S. Morita, R. Wiesendanger, E. Meyer: Noncontact Atomic Force Microscopy, Springer Verlag, Berlin (2002).10.1007/978-3-642-56019-4Search in Google Scholar

[8] D. Rugar, H.J. Mamin, P. Guethner, S.E. Lambert, J.E. Stern, I. McFadyen, T. Yogi: J. Appl. Phys. 68 (1990) 1169.10.1063/1.346713Search in Google Scholar

[9] Y. Martin, H.K. Wickramasinghe: Appl. Phys. Lett. 50 (1987) 1455.10.1063/1.97800Search in Google Scholar

[10] K. Babcock, M. Dugas, S. Manalis, V. Elings: Mater. Res. Soc. Symp. Proc. 355 (1995) 311.10.1557/PROC-355-311Search in Google Scholar

[11] Y. Martin, D. Rugar, H.K. Wickramasinghe: Appl. Phys. Lett. 52 (1988) 244.10.1063/1.99482Search in Google Scholar

[12] AFM User Manual, version 5.12r2, Digital Instruments (2001).Search in Google Scholar

[13] A. Carl, J. Lohau, S. Kirsch, E.F. Wassermann: J. Appl. Phys. 89 (2001) 6098.10.1063/1.1368872Search in Google Scholar

[14] L. Folks, R.C. Woodward, K.L. Babcock, D.L. Brandbury, K. Humphrey, R. Street: J. Magnetism and Mag. Mat. 159 (1996) 109.10.1016/0304-8853(95)00934-5Search in Google Scholar

[15] M.R. VanLandingham, J.S. Villarrubia, G.F Meyers: Polymer Preprints 41 (2) (2000) 1412.Search in Google Scholar

[16] B. Bhushan, V.N. Koinkar: Appl. Phys. Lett. 64 (1994) 1653.10.1063/1.111949Search in Google Scholar

[17] F. Friedel: Beiträge zur Einzelkornorientierungsbestimmung und ortsaufgelösten Phasenanalyse in mikrokristallinen Gefügebereichen, Technische Universität Dresden, Dissertation (1998).Search in Google Scholar

[18] TSL Orientation Image Microscopy, User Manual version 3.5.Search in Google Scholar

[19] P. Rice, S.E. Russek, B. Haines: IEEE Trans. Mag. 32 (1996) 4133.10.1109/20.539318Search in Google Scholar

[20] Q. Furnémont, M. Kempf, P.J. Jacques, M. Göken, F. Delannay: Mater. Sci. and Eng. A 328 (2002) 26.10.1016/S0921-5093(01)01689-6Search in Google Scholar

Received: 2005-07-15
Accepted: 2005-12-20
Published Online: 2022-01-12

© 2006 Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Extended editorial with anecdotes
  3. Anelastic relaxation and structure of ternary Fe–Al–Me alloys with Me = Co, Cr, Ge, Mn, Nb, Si, Ta, Ti, Zr
  4. Kinetic study of the β → α + γ transformation reaction in a CuZnAl alloy
  5. Calorimetric investigation of the binary Cu–In system
  6. Thermodynamic properties of liquid Cu–In–Zn alloys
  7. Comparing the thermodynamic behaviour of Al(l) + ZrO2(4% Y2O3) and Al(l) + Al2O3
  8. Failure-mode dependence of the strengthening effect in Ti3AlC2/10 vol.% Al2O3 composite
  9. Investigation of Cu-graphite composites prepared by electroforming
  10. Neutron diffraction analysis of martensite ageing in high-carbon FeCMnSi steel
  11. Effect of reinforcement size hybridization on the wear properties of SiCp/Cu Composites
  12. Temperature dependence of lattice mismatch and γ′ volume fraction of a fourth-generation monocrystalline nickel-based superalloy
  13. Novel combinatorial microstructures in Ti-6Al-4V alloy achieved by an electric-current-pulse treatment
  14. The Effect of Ti–B and Sr on the mechanical behaviour of the Zinc–Aluminum-based ZA-12 alloy produced by gravity casting
  15. Determination of retained austenite in multiphase steels by magnetic force microscopy
  16. Filtration resistance during pressure filtration tests of liquid aluminium alloys
  17. Microstructure of a Damascene sabre after annealing
  18. Effect of tin added to the zinc bath on the formation and the microstructure of hot-dip galvanized coatings
  19. Personal
  20. Conferences
  21. Contents
  22. Editorial
  23. Extended editorial with anecdotes
  24. Basic
  25. Anelastic relaxation and structure of ternary Fe–Al–Me alloys with Me = Co, Cr, Ge, Mn, Nb, Si, Ta, Ti, Zr
  26. Kinetic study of the β → α + γ transformation reaction in a CuZnAl alloy
  27. Calorimetric investigation of the binary Cu–In system
  28. Thermodynamic properties of liquid Cu–In–Zn alloys
  29. Comparing the thermodynamic behaviour of Al(l) + ZrO2(4% Y2O3) and Al(l) + Al2O3
  30. Failure-mode dependence of the strengthening effect in Ti3AlC2/10 vol.% Al2O3 composite
  31. Investigation of Cu-graphite composites prepared by electroforming
  32. Neutron diffraction analysis of martensite ageing in high-carbon FeCMnSi steel
  33. Applied
  34. Effect of reinforcement size hybridization on the wear properties of SiCp/Cu Composites
  35. Temperature dependence of lattice mismatch and γ′ volume fraction of a fourth-generation monocrystalline nickel-based superalloy
  36. Novel combinatorial microstructures in Ti-6Al-4V alloy achieved by an electric-current-pulse treatment
  37. The Effect of Ti–B and Sr on the mechanical behaviour of the Zinc–Aluminum-based ZA-12 alloy produced by gravity casting
  38. Determination of retained austenite in multiphase steels by magnetic force microscopy
  39. Filtration resistance during pressure filtration tests of liquid aluminium alloys
  40. Microstructure of a Damascene sabre after annealing
  41. Effect of tin added to the zinc bath on the formation and the microstructure of hot-dip galvanized coatings
  42. Notifications
  43. Personal
  44. Conferences
Downloaded on 2.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/ijmr-2006-0182/html?lang=en
Scroll to top button