Home Ripening of L12 Ni3Ti precipitates in the framework of the trans-interface diffusion-controlled theory of particle coarsening
Article
Licensed
Unlicensed Requires Authentication

Ripening of L12 Ni3Ti precipitates in the framework of the trans-interface diffusion-controlled theory of particle coarsening

  • Alan J. Ardell EMAIL logo , Dongman Kim and Vidvuds Ozolins
Published/Copyright: January 11, 2022
Become an author with De Gruyter Brill

Abstract

Data are presented on the kinetics of coarsening of γ-type Ni3Ti precipitates (L12 crystal structure) in three binary Ni –Ti alloys containing 10.31, 11.84, and 13.72 at.% Ti aged at 720 °C for times up to 64 h. Data on the distributions of particle sizes (PSDs) are also presented. These data, as well as previously published data, are analyzed in light of a new theory of coarsening in which diffusion is controlled by transport through the non-sharp interface between the matrix and precipitate phases. The new theory, called the trans-interface diffusion-controlled (TIDC) theory of coarsening, predicts time (t)-dependent behavior of the type 〈rnt for the growth of precipitates of average radius 〈r〉 and XTi ∝ t–1/n for the depletion of the solute concentration of the matrix, XTi. The exponent n is intimately related to the width of the interface between the precipitate and matrix phases, δ, which is assumed to depend on the particle radius as δ ∝ rm, where n = m + 2. The shape of the scaled distribution of particle sizes (PSD) depends on n and the thermo-physical kinetic constants are independent of volume fraction. The data on kinetics are evaluated and compared for n = 2.375, determined from analyses of the PSDs, and for n = 3, which is the traditionally accepted value. The agreement between the data on kinetics and predictions of the TIDC theory is acceptable, and the TIDC theory is the only one capable of explaining the experimentally observed absence of an effect of volume fraction on the kinetics at larger volume fractions, and the shapes of the PSDs.


Dr. Alan J. Ardell Department of Materials Science and Engineering 6531-G Boelter Hall University of California at Los Angeles Los Angeles/CA, 90095-1595 Tel.: +1 310 825-7011 Fax: +1 310 206-7353

Dedicated to Professor Dr. Gernot Kostorz on the occasion of his 65th birthday

AJA and DMK express their appreciation to the National Science Foundation for financial support of this research under Grant # DMR-0209260. VO was supported by the MARCO Focus Center for Functional Engineered Nano Architectonics (FENA) and by the National Science Foundation under Grant # DMR-0427638.


References

[1] A. Taylor, R.W. Floyd: J. Inst. Metals 81 (1952 –53) 25.Search in Google Scholar

[2] Y.A. Bagariatskii, Y.D. Tiapkin: Soviet Phys. Cryst. 2 (1957) 414; 5 (1961) 841.Search in Google Scholar

[3] C. Bückle, B. Genty, J. Manenc: Rev. Metall. 56 (1959) 247.10.1051/metal/195956030247Search in Google Scholar

[4] J.W. Cahn: Acta Metall. 9 (1961) 795.10.1016/0001-6160(61)90182-1Search in Google Scholar

[5] D.H. Ben Israel, M.E. Fine: Acta Metall. 11 (1963) 1051.10.1016/0001-6160(63)90193-7Search in Google Scholar

[6] A.J. Ardell: Acta Metall. 15 (1967) 1772.10.1016/0001-6160(67)90073-9Search in Google Scholar

[7] I.M. Lifshitz, V.V. Slyozov: J. Phys. Chem. Solids 19 (1961) 35.10.1016/0022-3697(61)90054-3Search in Google Scholar

[8] C. Wagner: Z. Elektrochem. 65 (1961) 581.Search in Google Scholar

[9] H. Yoshida, M. Arita, A. Cerri, G. Kostorz: Acta Metall. 34 (1986) 1401.10.1016/0001-6160(86)90028-3Search in Google Scholar

[10] A. Cerri, B. Schönfeld, G. Kostorz: Phys. Rev. B 42 (1990) 958.10.1103/PhysRevB.42.958Search in Google Scholar

[11] T. Ungár, M. Lambrigger, G. Kostorz: Mater. Sci. Engr. A 138 (1991) 147.10.1016/0921-5093(91)90684-FSearch in Google Scholar

[12] M. Lambrigger, H.A. Calderon, G. Kostorz: Mater. Sci. Engr. A 158 (1992) 207.10.1016/0921-5093(92)90010-XSearch in Google Scholar

[13] P. Vyskocil, J. Skov Pedersen, G. Kostorz, B. Schönfeld: Acta Mater. 45 (1997) 3311.10.1016/S1359-6454(97)00023-2Search in Google Scholar

[14] R. Bucher, B. Demé, H. Heinrich, J. Kohlbrecher, M. Kompatscher, G. Kostorz, J.-M. Schneider, B. Schönfeld, M. Zolliker: Mater. Sci. Engr. A 324 (2002) 77.10.1016/S0921-5093(01)01287-4Search in Google Scholar

[15] M. Kompatscher, B. Schönfeld, H. Heinrich, G. Kostorz: Acta Mater. 51 (2003) 165.10.1016/S1359-6454(02)00388-9Search in Google Scholar

[16] A.J. Ardell: Metall. Trans. 1 (1970) 525.10.1007/BF02811564Search in Google Scholar

[17] K. Hashimoto, T. Tsujimoto, K. Saito: Trans. Japan Inst. Metals 22 (1981) 798.10.2320/matertrans1960.22.798Search in Google Scholar

[18] R. Sinclair, J.A. Leake, B. Ralph: Phys. Stat. Sol. (a) 26 (1974) 285.10.1002/pssa.2210260129Search in Google Scholar

[19] A.J. Watts, B. Ralph Acta Metall. 25 (1977) 1013.10.1016/0001-6160(77)90129-8Search in Google Scholar

[20] R. Grüne, P. Haasen: J. Phys. 47 (1986) Coll. C2, suppl. 3, C2– 259.Search in Google Scholar

[21] R. Grüne: Acta Metall. 36 (1988) 2797.10.1016/0001-6160(88)90126-5Search in Google Scholar

[22] K. Saito, R. Watanabe: Japan J. Appl. Phys. 8 (1969) 14.10.1143/JJAP.8.14Search in Google Scholar

[23] S.L.Sass, J.B. Cohen: Trans. AIME 245 (1969) 153.Search in Google Scholar

[24] D.E. Laughlin: Acta Metall. 24 (1976) 53.10.1016/0001-6160(76)90146-2Search in Google Scholar

[25] K. Hashimoto, T. Tsujimoto: Trans. Japan Inst. Metals 19 (1978) 77.10.2320/matertrans1960.19.77Search in Google Scholar

[26] D.M. Kim, A.J. Ardell: Scripta Mater. 43 (2000) 381.10.1016/S1359-6462(00)00439-5Search in Google Scholar

[27] A.J. Ardell, in: G.W. Lorimer (Ed.), Phase Transformations ’87, Institute of Metals, London, 1988, p. 485.Search in Google Scholar

[28] P.W. Voorhees: Annu. Rev. Mater. Sci. 22 (1992) 197.10.1146/annurev.ms.22.080192.001213Search in Google Scholar

[29] A. Baldan: J. Mater. Sci. 37 (2002) 2171.10.1023/A:1015388912729Search in Google Scholar

[30] K.G. Wang, M.E. Glicksman, K. Rajan: Comp. Mater. Sci. 34 (2005) 235.10.1016/j.commatsci.2004.11.005Search in Google Scholar

[31] A.J. Ardell, V. Ozolins: Nature Materials 4 (2005) 309.10.1038/nmat1340Search in Google Scholar

[32] R.J. White: Mater. Sci. Engr. 40 (1979) 15.10.1016/0025-5416(79)90004-1Search in Google Scholar

[33] G.J. Shiflet, H.I. Aaronson, T.H. Courtney: Acta Metall. 27 (1979) 377.10.1016/0001-6160(79)90030-0Search in Google Scholar

[34] P.K. Rastogi, A.J. Ardell: Acta Metall. 17 (1969) 595.10.1016/0001-6160(69)90119-9Search in Google Scholar

[35] A.J. Ardell, in: J.E. Morral, R.S. Schiffman and S.M. Merchant (Eds.), Experimental Methods of Phase Diagram Determination, TMS, Warrendale, PA, 1994, p. 57.Search in Google Scholar

[36] D.M. Kim: Ph.D. Dissertation, University of California, Los Angeles (2001).Search in Google Scholar

[37] A.J. Ardell, D.M. Kim, in: P.E.A. Turchi, A. Gonis (Eds.), Phase Transformations and Evolution in Materials, TMS, Warrendale, PA, 2000, p. 209.Search in Google Scholar

[38] T. Ikeda, A. Almazouzi, H. Numakura, M. Koiwa, W. Sprengel, H. Nakajima: Acta Mater 46 (1998) 5369.10.1016/S1359-6454(98)00209-2Search in Google Scholar

[39] K. Fujiwara, Z. Horita: Acta Mater 50 (2002) 1571.10.1016/S1359-6454(02)00018-6Search in Google Scholar

[40] M.Watanabe, Z. Horita, T. Sano, M. Nemoto: Acta Metall. Mater 42 (1994) 3389.10.1016/0956-7151(94)90471-5Search in Google Scholar

[41] M.J.P. Janssen: Metall. Trans. 4 (1973) 1623.10.1007/BF02668017Search in Google Scholar

Englisch für den Berufsalltag

Das Trainingsbuch für Ingenieure, Techniker, Angestellte und Manager in der Praxis, die ein sicheres betriebswirtschaftliches Fachvokabular in englischer Sprache benötigen.

Es schlägt eine Brücke von der Vermittlung der englischen Sprache bis zu aktuellen Geschäfts-Problemen mit Lösungsansätzen. Die inhaltlichen Schwerpunkte liegen bei Automotive Engineering und Construction Industry. Die Texte sind einfach strukturiert und verständlich formuliert, schwieriges Fachvokabular ist durch Fußnoten erklärt. Behandelt werden die schriftliche und mündliche Kommunikation. Erläuterungen zur Grammatik sowie ein Anhang mit einem Business-Wörterbuch und einem Lexikon runden das Buch ab. Es ist geeignet zum Selbststudium, als Lehrbuch für den Sprachunterricht und als Wörterbuch zum Nachschlagen.

Zürl, Modern Business English for Industrial Engineers · 378 Seiten · 24,90

Weitere Informationen finden Sie auch im Internet unter www.hanser.de/technik

Received: 2005-10-14
Accepted: 2005-12-16
Published Online: 2022-01-11

© 2006 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Professor Dr. Gernot Kostorz 65 years
  3. Dislocation micromechanisms under single slip conditions
  4. Characterisation of short-range order using dislocations
  5. Between microscopic and mesoscopic descriptions of twin–twin interaction
  6. Influence of the thermoelastic effect on the acoustic properties of pure metals at low temperatures
  7. Recent progress in the area of bulk metallic glasses
  8. Formation of the ABC6-type ordered structure in fcc alloys
  9. Short-range order in Fe-21.9 at.% Al
  10. Criteria for developing castable, creep-resistant aluminum-based alloys – A review
  11. Phase decomposition and precipitation of metastable A2 phase in B2 ordered Co–Al–Fe alloys
  12. Atomic migration and ordering phenomena in bulk and thin films of FePd and FePt
  13. Late-stage coarsening of oil droplets of excess oil in microemulsions following a temperature quench
  14. Small-angle scattering from spherical particles on randomly oriented interfaces
  15. Ripening of L12 Ni3Ti precipitates in the framework of the trans-interface diffusion-controlled theory of particle coarsening
  16. Texture evolution in equiaxed polycrystalline L10-ordered FePd during coarsening at 600 °C
  17. Modulated structures in amorphous films of Cr-silicide prepared by electron-beam-deposition
  18. Early stages of nucleation and growth of Guinier –Preston zones in Al–Zn–Mg and Al–Zn–Mg–Cu alloys
  19. Experimental and theoretical characterization of Al3Sc precipitates in Al–Mg–Si–Cu–Sc–Zr alloys
  20. Ag2Al plates in Al–Ag alloys
  21. A critical analysis of the composite model as applied to high-temperature creep of Al and an Al–Mg alloy
  22. Damage behaviour of an Al2O3 particle-reinforced 6061 alloy induced by monotonic and cyclic deformation
  23. Deformation behaviour of ultrafine-grained magnesium with 3 vol.% graphite
  24. Press/Presse
  25. Conferences/Konferenzen
  26. Frontmatter
  27. Editorial
  28. Professor Dr. Gernot Kostorz 65 years
  29. Articles BBasic
  30. Dislocation micromechanisms under single slip conditions
  31. Characterisation of short-range order using dislocations
  32. Between microscopic and mesoscopic descriptions of twin–twin interaction
  33. Influence of the thermoelastic effect on the acoustic properties of pure metals at low temperatures
  34. Recent progress in the area of bulk metallic glasses
  35. Formation of the ABC6-type ordered structure in fcc alloys
  36. Short-range order in Fe-21.9 at.% Al
  37. Criteria for developing castable, creep-resistant aluminum-based alloys – A review
  38. Phase decomposition and precipitation of metastable A2 phase in B2 ordered Co–Al–Fe alloys
  39. Atomic migration and ordering phenomena in bulk and thin films of FePd and FePt
  40. Late-stage coarsening of oil droplets of excess oil in microemulsions following a temperature quench
  41. Small-angle scattering from spherical particles on randomly oriented interfaces
  42. Ripening of L12 Ni3Ti precipitates in the framework of the trans-interface diffusion-controlled theory of particle coarsening
  43. Articles AApplied
  44. Texture evolution in equiaxed polycrystalline L10-ordered FePd during coarsening at 600 °C
  45. Modulated structures in amorphous films of Cr-silicide prepared by electron-beam-deposition
  46. Early stages of nucleation and growth of Guinier –Preston zones in Al–Zn–Mg and Al–Zn–Mg–Cu alloys
  47. Experimental and theoretical characterization of Al3Sc precipitates in Al–Mg–Si–Cu–Sc–Zr alloys
  48. Ag2Al plates in Al–Ag alloys
  49. A critical analysis of the composite model as applied to high-temperature creep of Al and an Al–Mg alloy
  50. Damage behaviour of an Al2O3 particle-reinforced 6061 alloy induced by monotonic and cyclic deformation
  51. Deformation behaviour of ultrafine-grained magnesium with 3 vol.% graphite
  52. Notifications/Mitteilungen
  53. Press/Presse
  54. Conferences/Konferenzen
Downloaded on 2.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/ijmr-2006-0047/html?lang=en
Scroll to top button