Abstract
63Ni grain boundary (GB) diffusion in polycrystalline γ-Fe – Ni alloy was measured by the conventional radiotracer method. The double product P = δ x Dgb (δ is the GB width and Dgb is the GB diffusivity) was found to follow the Arrhenius relationship P =1.31×10−13× exp(−157 kJ mol−1/RT) m3/s, where R is the gas constant and T is the temperature. The results in the coarse-grained material (grain size d ≈ 0.5 mm) were discussed in comparison with our previous investigation of Ni diffusion in a nanocrystalline alloy (d ≈ 100 nm) of the same composition.
Funding statement: This joint German – Korean project was initiated and supported by the Alexander von Humboldt Foundation, Bonn, Germany. The authors (J. S. L. and Y. S. K.) gratefully acknowledge the financial support from the Korean Ministry of Science and Technology through the “National R & D Project for Nano Science and Technology”
References
[1] C. Suryanarayana: Int. Mater. Rev. 40 (1995) 41.10.1179/imr.1995.40.2.41Search in Google Scholar
[2] X.Y. Qin, J.-S. Lee, J.G. Kim: J. Appl. Phys. 86 (1999) 2146.10.1063/1.371022Search in Google Scholar
[3] J.-S. Lee, Y.-S. Kang: Scripta Mater. 44 (2001) 1591.10.1016/S1359-6462(01)00780-1Search in Google Scholar
[4] J. Horvath, R. Birringer, H. Gleiter: Solid State Comm. 62 (1987) 319.10.1016/0038-1098(87)90989-6Search in Google Scholar
[5] R. Birringer, H. Hahn, H. Höfler, J. Karch, H. Gleiter: Defect Diff. Forum 59 (1988) 17.10.4028/www.scientific.net/DDF.59.17Search in Google Scholar
[6] R. Würschum, S. Herth, U. Brossmann: Adv. Eng. Mater. 5 (2003) 365.10.1002/adem.200310079Search in Google Scholar
[7] S.V. Divinski, F. Hisker, Y.-S. Kang, J.-S. Lee, Chr. Herzig: Z. Metallkd. 93 (2002) 256.10.3139/146.020256Search in Google Scholar
[8] S.V. Divinski, F. Hisker, Y.-S. Kang, J.-S. Lee, Chr. Herzig: Z. Metallkd. 93 (2002) 265.10.3139/146.020265Search in Google Scholar
[9] S.V. Divinski, F. Hisker, Y.-S. Kang, J.-S. Lee, Chr. Herzig: Interface Sci. 11 (2003) 67.10.1023/A:1021587007368Search in Google Scholar
[10] S. Frank, J. Rusing, Chr. Herzig: Intermetallics 4 (1996) 601.10.1016/0966-9795(96)00058-1Search in Google Scholar
[11] L.G. Harrison: Trans. Faraday Soc. 57 (1961) 1191.10.1039/tf9615701191Search in Google Scholar
[12] Y. Mishin, Chr. Herzig, J. Bernardini, W. Gust: Int. Mater. Rev. 42 (1997) 155.10.1179/imr.1997.42.4.155Search in Google Scholar
[13] T. Suzuoka: J. Phys. Soc. Japan 19 (1964) 839.10.1143/JPSJ.19.839Search in Google Scholar
[14] P. Million, J. Ruzickova, J. Velisek, J. Vrestal: Mater. Sci. Eng. 50 (1981) 43.10.1016/0025-5416(81)90084-7Search in Google Scholar
[15] T. Surholdt, Chr. Herzig: Acta Metall. 45 (1997) 3817.Search in Google Scholar
[16] J. Sommer, Chr. Herzig: J. Appl. Phys. 72 (1992) 2758.10.1063/1.352328Search in Google Scholar
[17] V.N. Kaygorodov, S.M. Klotsman, A.N. Timofeyev, I.S. Trakhtenberg: Phys. Met. Metallogr. 25 (1968) 910.Search in Google Scholar
[18] J.T. Robinson, N.L. Peterson: Surf. Sci. 31 (1972) 586.10.1016/0039-6028(72)90276-2Search in Google Scholar
[19] P. Gas, J. Bernardini: Surf. Sci. 72 (1978) 365.10.1016/0039-6028(78)90301-1Search in Google Scholar
[20] T. Surholdt, C. Minkwitz, Chr. Herzig: Acta Metall. 46 (1998) 1849.Search in Google Scholar
[21] P. Gas, S. Poize, J. Bernardini, F. Cabane: Acta Metall. 37 (1989) 17.10.1016/0001-6160(89)90261-7Search in Google Scholar
[22] R. Würschum, K. Reimann, S. Gruß, A. Kübler, P. Scharwaechter, W. Frank, O. Kurse, H.D. Carstanien, H.E. Schaefer: Phil. Mag. B 76 (1997) 407.10.1080/01418639708241104Search in Google Scholar
© 2004 Carl Hanser Verlag, München
Articles in the same Issue
- Frontmatter
- Articles BBasic
- Thermodynamic modeling of the Rh–Zr system
- Ni grain boundary diffusion in coarse-grained Fe-40 wt.% Ni alloy and comparison with Ni diffusion in the nanocrystalline alloy
- Crystallization kinetics of an amorphous Zr70Cu20Ni10 alloy
- Oxidation-induced cavity formation in binary β-NiAl alloys
- Articles AApplied
- Influences of counterface materials and reinforcements on the sliding wear of copper matrix composites
- Model of artificial neural network for complex data analysis in slag glass-ceramic
- Quantitative investigation of material erosion caused by high-pressure discharges in air and nitrogen
- Role of alloying elements on machinability of plastic-molding steels
- A simple model for the strength and elongation of ultra-fine grained low carbon steels
- Notifications/Mitteilungen
- Personal/Personelles
- Conferences/Konferenzen
Articles in the same Issue
- Frontmatter
- Articles BBasic
- Thermodynamic modeling of the Rh–Zr system
- Ni grain boundary diffusion in coarse-grained Fe-40 wt.% Ni alloy and comparison with Ni diffusion in the nanocrystalline alloy
- Crystallization kinetics of an amorphous Zr70Cu20Ni10 alloy
- Oxidation-induced cavity formation in binary β-NiAl alloys
- Articles AApplied
- Influences of counterface materials and reinforcements on the sliding wear of copper matrix composites
- Model of artificial neural network for complex data analysis in slag glass-ceramic
- Quantitative investigation of material erosion caused by high-pressure discharges in air and nitrogen
- Role of alloying elements on machinability of plastic-molding steels
- A simple model for the strength and elongation of ultra-fine grained low carbon steels
- Notifications/Mitteilungen
- Personal/Personelles
- Conferences/Konferenzen