Home Deposition of ceramic materials from aqueous solution induced by organic templates
Article
Licensed
Unlicensed Requires Authentication

Deposition of ceramic materials from aqueous solution induced by organic templates

  • J. Bill EMAIL logo , R. C. Hoffmann , T. M. Fuchs and F. Aldinger
Published/Copyright: January 31, 2022
Become an author with De Gruyter Brill

Abstract

Besides conventional high-temperature sintering processes for the preparation of ceramics, synthesis routes like chemical and physical vapor phase deposition or molecular beam epitaxy as well as sol-gel and polymer thermolysis carried out at decreased temperatures gain in significance. Such a trend is especially pronounced in the case of the deposition of oxide-based solids from aqueous solutions induced by organic templates. This approach is inspired by biomineralization that in general involves the formation of well-structured and complex-shaped organic/inorganic composites by the deposition of an inorganic solid on an organic matrix that consists of biomolecules like proteins. It occurs at ambient conditions with respect to temperature, pressure and atmosphere.

The imitation of these processes by technical means is the deposition of thin oxide films from aqueous solutions in the presence of organic self-assembled monolayers. Besides general features of this technique like low synthesis temperatures, processing costs and equipment expenditure as well as the line-of-sight deposition suitable for coating complex shaped and/or temperature-sensitive substrates the characteristics of the films and their mechanisms of formation are discussed by way of the oxide systems TiO2, ZrO2 and ZnO.

Abstract

Neben den klassischen Sinterverfahren zur Herstellung von keramischen Materialien bei hohen und höchsten Temperaturen etablieren sich zunehmend Synthesewege wie chemische und physikalische Bedampfungsmethoden oder Molekularstrahlepitaxie sowie Sol-Gel-Verfahren und die Thermolyse prökeramischer Polymere, welche teilweise bei wesentlich niedrigeren Prozesstemperaturen durchgeführt werden. Besonders ausgepragt ist dieser Trend bei der Erzeugung von oxidischen Festkörpern mittels einer durch organische Template induzierten Abscheidung aus wässriger Lösung. Ansatzpunkte für derartige neue Verfahren liefert die Biomineralisation, die im Allgemeinen mit der Bildung eines anorganischen Materials durch eine Biopolymermatrix und der Entstehung komplexer anorganischorganischer Verbundmaterialien bei Umgebungsbedingungen verbunden ist.

Eine Nachahmung dieser material- und strukturbildenden Prozesse mit technischen Mitteln ist die Abscheidung dünner oxidischer Schichten aus wässriger Losung in Gegenwart synthetischer organischer Grenzflächen. Die Strukturmerkmale und möglichen Bildungsmechanismen der Schichtsysteme werden an oxidischen Systemen wie TiO2, ZrO2 oder ZnO besprochen. Darüber hinaus werden wesentliche Charakteristika dieses Verfahrens und dessen Unterschiede gegenüber den konventionellen Techniken aufgezeigt. Hierzu gehören neben der niedrigen Abscheidungstemperatur der vergleichsweise geringe apparative Aufwand und die Möglichkeit einer gleichförmigen Beschichtung auch komplex geformter Körper und insbesondere temperaturempfindlicher Substrate.


Dr. J. Bill Max-Planck-Institut für Metallforschung Heisenbergstr. 3, 70569 Stuttgart, Germany Tel.: +49 711 689 3228 Fax: +49 711 689 3131

  1. We thank Prof. Mark De Guire for helpful discussions and for reviewing the manuscript. This project was supported by the Deutsche Forschungsgemeinschaft and the BMBF through grant 03C0294C/8. Polymers for ZnO deposition were kindly supplied by Dr. J. Rieger and Dr. M. Kroner, BASFAG, Ludwigshafen.

References

1 Setter, N.; Waser, R.: Acta mater. 48 (2000) 151.10.1016/S1359-6454(99)00293-1Search in Google Scholar

2 Petzow, G.: Pract. Metallogr. 25 (1988) 53.10.1515/pm-1988-250202Search in Google Scholar

3 Motzfeld, K., in: M. Haviar (ed.), Proc. Int. Conf. Engineering Ceramics ’92, Reproprint, Bratislava (1993) 7.Search in Google Scholar

4 Omori, M.; Takei, H.: J. Am. Ceram. Soc. 65 (1982) C-92.10.1111/j.1151-2916.1982.tb10460.xSearch in Google Scholar

5 Rixecker, G.; Biswas, K.; Wiedmann, I.; Aldinger, F.: J. Ceram. Proc. Res. 1 (2000) 12.Search in Google Scholar

6 Ohring, M.: The Materials Science of Thin Films, Academic Press, Boston (1992).Search in Google Scholar

7 Segal, D.: Chemical Synthesis of Advanced Ceramic Materials, Cambridge University Press, Cambridge (1989).10.1017/CBO9780511565014Search in Google Scholar

8 Narula, C.K. (ed.): Ceramic Precursor Technology and Its Applications, Marcel Dekker, New York (1995).Search in Google Scholar

9 Lowenstam, H.A.;Weiner, S.: On Biomineralization, Oxford University Press, New York (1989). Mann, S.; Webb, J.; Williams, R.J.P. (eds.): Biomineralization, VCH Verlagsgesellschaft, Weinheim (1989). Baeuerlein, E.: Biomineralization, Wiley-VCH, Weinheim (2000).10.1093/oso/9780195049770.001.0001Search in Google Scholar

10 Ball, P.: Made to Measure, Princeton University Press, Princeton, New Jersey (1997) 193.10.1515/9781400865338Search in Google Scholar

11 Mann, S. (ed.): Biomimetic Materials Chemistry, VCH Publishers, New York (1996).Search in Google Scholar

12 Calvert, P.; Rieke, P.: Chem. Mater. 8 (1996) 1715.10.1021/cm960126oSearch in Google Scholar

13 Heuer, A.H.; Fink, D.J.; Laraia, V.J.; Arias, J.L.; Calvert, P.D.; Kendall, K.; Messing, G.L.; Blackwell, J.; Rieke, P.C.; Thompson, D.H.; Wheeler, A.P.; Veis, A.; Caplan, A.I.: Science 255 (1992) 1098. Bunker, B.C.; Rieke, P.C.; Tarasevich, B.J.; Campbell, A.A.; Fryxell, G.E.; Graff, G.L.; Song, L.; Liu, J.; Virden, J.W.; McVay, G.L.: Science 264 (1994) 48. Niesen, T.P.; De Guire, M.R.: J. Electroceramics 6 (2001) 169.10.1126/science.1546311Search in Google Scholar PubMed

14 Aizenberg, J.; Black, A.J.; Whitesides, G.M.: Nature 398 (1999) 495.10.1038/19047Search in Google Scholar

15 Aizenberg, J.; Black, A.J.; Whitesides, G.M.: J. Am. Chem. Soc. 121 (1999) 4500.10.1021/ja984254kSearch in Google Scholar

16 Aizenberg, J.: J. Cryst. Growth 211 (2000) 143.10.1016/S0022-0248(99)00814-3Search in Google Scholar

17 Liu, J.; Kim, A.Y.; Wang, L.Q.; Palmer, B.J.; Chen, Y.L.; Bruinsma, P.; Bunker, B.C.; Exarhos, G.J.; Graff, G.L.; Rieke, P.C.; Fryxell, G.E.; Virden, J.W.; Tarasevich, B.J.; Chick, L.A.: Adv. Coll. Interf. Sci. 69 (1996) 131.10.1016/S0001-8686(96)00309-0Search in Google Scholar

18 Tarasevich, B.J.; Rieke, P.C.: Chem. Mater. 8 (1996) 292.10.1021/cm940391eSearch in Google Scholar

19 Maiti, M.: M.Sc. Thesis, Case Western Reserve University (1994).Search in Google Scholar

20 Rieke, P.C.; Marsh, B.D.; Wood, L.L.; Tarasevich, B.J.; Liu, J.; Song, L.; Fryxell, G. E.: Langmuir 11 (1995) 318.10.1021/la00001a054Search in Google Scholar

21 Rieke, P.C.; Wiecek, R.; Marsh, B.D.; Wood, L.L.; Liu, J.; Song, L.; Fryxell, G.E.; Tarasevich, B.J.: Langmuir 12 (1996) 4266.10.1021/la950584wSearch in Google Scholar

22 Nagtegaal, M.; Stroeve, P.; Tremel, W.: Thin Solid Films 327 – 329 (1998) 571.10.1016/S0040-6090(98)00715-9Search in Google Scholar

23 Nagtegaal, M.; Stroeve, P.; Ensling, J.; Gütlich, P.; Schurrer, M.; Voit, H.; Flath, J.; Käshammer, J.; Knoll, W.; Tremel, W.: Chem. Eur. J. 5 (1999) 1331.10.1002/(SICI)1521-3765(19990401)5:4<1331::AID-CHEM1331>3.0.CO;2-SSearch in Google Scholar

24 Agarwal, M.; DeGuire, M.R.; Heuer, A.H.: Appl. Phys. Lett. 71 (1997) 891.10.1063/1.119679Search in Google Scholar

25 Shin, H.; Collins, R.J.; DeGuire, M.R.; Heuer, A.H.; Sukenik, C.N.: J. Mater. Res. 10 (1995) 692.10.1557/JMR.1995.0692Search in Google Scholar

26 Shin, H., Ph.D. Thesis, Case Western Reserve University (1996).Search in Google Scholar

27 Collins, R.J.; Shin, H.; DeGuire, M.R.; Heuer, A.H.; Sukenik, C.N.: Appl. Phys. Lett. 69 (1996) 860.10.1063/1.117916Search in Google Scholar

28 Huang, D.; Xiao, Z.D.; Gu, J.H.; Huang, N.P.; Yuan, C.W.: Thin Solid Films 305 (1997) 110.10.1016/S0040-6090(97)00202-2Search in Google Scholar

29 Shin, H.; DeGuire, M.R.; Heuer, A.H.: J. Appl. Phys. 83 (1998) 3311.10.1063/1.367132Search in Google Scholar

30 Xiao, Z.; Gu, J.; Huang, D.; Lu, Z.; Wei, Y.: Appl. Surf. Sci. 125 (1998) 85.10.1016/S0169-4332(97)00388-7Search in Google Scholar

31 Xiao, Z.; Su, L.; Gu, N.; Wei, Y.: Thin Solid Films 333 (1998) 25.10.1016/S0040-6090(98)00760-3Search in Google Scholar

32 Xiao, Z.; Xu, M.; Gu, J.; Huang, D.; Lu, Z.: Mater. Chem. Phys. 52 (1998) 170.10.1016/S0254-0584(98)80022-9Search in Google Scholar

33 Baskaran, S.; Song, L.; Liu, J.; Chen, Y.L.; Graff, G.L.: J. Am. Ceram. Soc. 81 (1998) 401.10.1111/j.1151-2916.1998.tb02347.xSearch in Google Scholar

34 Niesen, T.P.; DeGuire, M.R.; Bill, J.; Aldinger, F.; Rühle, M.; Fischer, A.; Jentoft, F. C. ; Schlögl, R.: J. Mater. Res. 14 (1999) 2464.10.1557/JMR.1999.0331Search in Google Scholar

35 Niesen, T.P.; Wolff, J.; Bill, J.; DeGuire, M.R.; Aldinger, F. in: L.C. Klein, L.F. Francis, M.R. DeGuire, J.E. Mark (eds.): Organic-Inorganic Hybrid Materials II, Materials Research Society, Warrendale, PA, 576 (1999) 197.Search in Google Scholar

36 Niesen, T.P.; Bill, J.; Aldinger, F.: Chem. Mater. 13 (2001) 1552.10.1021/cm001227wSearch in Google Scholar

37 Agarwal, M.; DeGuire, M.R.; Heuer, A.H.: J. Am. Ceram. Soc. 80 (1997) 2967.10.1111/j.1151-2916.1997.tb03222.xSearch in Google Scholar

38 Sampathkumaran, U.; DeGuire, M.R.; Heuer, A.H.; Niesen, T.; Bill, J.; Aldinger, F. in: N.P. Bansal, J.P. Singh (eds.), Proc. Symp. on Innovative Processing and Synthesis of Ceramics, Glasses, and Composites II, American Ceramic Society, Westerville, OH, 94 (1999) 307.Search in Google Scholar

39 Fischer, A.; Jentoft, F.C.; Weinberg, G.; Schlögl, R.; Niesen, T.P.; Bill, J.; Aldinger, F.; DeGuire, M.R. ; Rühle, M.: J. Mater. Res. 14 (1999) 3725.10.1557/JMR.1999.0503Search in Google Scholar

40 Palacin, S.; Hidber, P.C.; Bourgoin, J.P.; Miramond, C.; Fermon, C.; Whitesides, G. M.: Chem. Mater. 8 (1996) 1316.10.1021/cm950587uSearch in Google Scholar

41 (a) DeGuire, M.R.; Niesen, T.P.; Supothina, S.; Wolff, J.; Bill, J.; Sukenik, C.N.; Aldinger, F.; Heuer, A.H.; Rühle, M.: Z. Metallkd. 89 (1998) 758. (b) DeGuire, M.R.; Niesen, T.P.; Wolff, J.; Supothina, S.; Bill, J.; Aldinger, F.; Rühle, M.: Synthesis of Oxide and Non-oxide Inorganic Materials at Organic Surfaces, in: J. Bill, F. Wakai, F. Aldinger (eds.), Precursor-Derived Ceramics, Proc. International workshop on Grain Boundary Dynamics of Precursor-Derived Ceramics, Wiley-VCH, Weinheim (1999) 143.Search in Google Scholar

42 Kovtyukhova, N.I.; Buzaneva, E.V.; Waraksa, C.C.; Martin, B.R.; Mallouk, T.E.: Chem. Mater. 12 (2000) 383.10.1021/cm990395pSearch in Google Scholar

43 Hoffmann, R.; Fuchs, T.; Niesen, T. P.; Bill, J.; Aldinger, F.: Surf. Interface Anal., in press.Search in Google Scholar

44 Supothina, S.; DeGuire, M.R.; Heuer, A.H.; Niesen, T.P.; Bill, J.; Aldinger, F., in: L. C. Klein, L. F. Francis, M. R. DeGuire, J. E. Mark (eds.), Organic-Inorganic Hybrid Materials II, Materials Research Society, Warrendale, PA, 576 (1999) 203.Search in Google Scholar

45 Supothina, S.; DeGuire, M.R.: Thin Solid Films 371 (2000) 1.10.1016/S0040-6090(00)00989-5Search in Google Scholar

46 Sampathkumaran, U.; Supothina, S.; Wang, R.; DeGuire, M.R., in: P. Li, P. Calvert, R.J. Levy, T. Kokubo, C.R. Schied (eds): Mineralization in Natural and Synthetic Biominerals, Materials Research Society, Warrendale, PA, 599 (2000) 177.Search in Google Scholar

47 Meldrum, F.C.; Flath, J.; Knoll, W.: Langmuir 13 (1997) 2033.10.1021/la9608369Search in Google Scholar

48 Meldrum, F.C.; Flath, J.; Knoll, W.: Thin Solid Films 348 (1999) 188.10.1016/S0040-6090(99)00044-9Search in Google Scholar

49 Meldrum, F.C.; Flath, J.; Knoll, W.: J. Mater. Chem. 9 (1999) 711.10.1039/a807100dSearch in Google Scholar

50 Hwang, Y.K.; Woo, S.Y.; Lee, J.H.; Jung, D.Y.; Kwon, Y.U.: Chem. Mater. 12 (2000) 2059.10.1021/cm000304kSearch in Google Scholar

51 Flath, J.; Meldrum, F.C.; Knoll, W.: Thin Solid Films 327–329 (1998) 506.10.1016/S0040-6090(98)00698-1Search in Google Scholar

52 Minh, N.Q.: J. Am. Ceram. Soc. 76 (1993) 563.10.1111/j.1151-2916.1993.tb03645.xSearch in Google Scholar

53 Fuyuki, T.; Matsunami, H.: Jpn. J. Appl. Phys. 9 (1986) 1288.10.1143/JJAP.25.1288Search in Google Scholar

54 Foster, N.F.; Rozgonyi, G.A.: Appl. Phys. Lett. 8 (1966) 221.10.1063/1.1754565Search in Google Scholar

55 Ulman, A.: Chem. Rev. 96 (1996) 1533. Ulman A.: An Introduction to Ultrathin Organic Films, Academic Press, San Diego, CA (1991).10.1021/cr9502357Search in Google Scholar

56 Collins, R.J.; Sukenik, C.N.: Langmuir 11 (1995) 2322.10.1021/la00006a078Search in Google Scholar

57 Jolivet, J.P.: Metal Oxide Chemistry and Synthesis, John Wiley, New York (2000).Search in Google Scholar

58 Shin, H.; Agarwal, M.; DeGuire, M.R.; Heuer, A.H.: Acta Mater. 46 (1998) 801.10.1016/S1359-6454(97)00258-9Search in Google Scholar

59 Shin, H.; Wang, Y.; Sampathkumaran, U.; DeGuire, M.R.; Heuer, A.H.; Sukenik, C.N.: J. Mater. Res. 14 (1999) 2116.10.1557/JMR.1999.0286Search in Google Scholar

60 Fuchs, T.; Hoffmann, R.; Niesen, T.; Tew, H.; Bill, J.; Aldinger, F.: J. Mater. Chem., in press.Search in Google Scholar

61 Andrés-Vergés, M.; Mifsud, A.; Serna, C.J.: J. Chem. Soc. Faraday Trans. 86 (1990) 959.10.1039/FT9908600959Search in Google Scholar

62 Ito, K.; Nakamura, K.: Thin Solid Films 286 (1996) 35.10.1016/S0040-6090(96)08856-6Search in Google Scholar

63 Saeed, T.; O’Brien, P.: Thin Solid Films 271 (1995) 35.10.1016/0040-6090(95)06826-0Search in Google Scholar

64 Öner, M.; Norwig, J.; Meyer, W.H.; Wegner, G.: Chem. Mater. 10 (1998) 460.10.1021/cm970450zSearch in Google Scholar

Received: 2002-03-16
Published Online: 2022-01-31

© 2002 Carl Hanser Verlag, München

Downloaded on 17.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/ijmr-2002-0079/pdf?lang=en
Scroll to top button