Home Solid Solution Treatment Improved Damping Behavior in an As-casted and Cold-rolled Mn-20Cu-5Ni-2Fe Alloy
Article
Licensed
Unlicensed Requires Authentication

Solid Solution Treatment Improved Damping Behavior in an As-casted and Cold-rolled Mn-20Cu-5Ni-2Fe Alloy

  • Fuxing Yin , Yoshiaki Ohsawa , Akira Sato and Kohji Kawahara
Published/Copyright: December 20, 2021
Become an author with De Gruyter Brill

Abstract

Temperature and strain-amplitude dependent variations of logarithmic decrement (δ) in a high damping Mn-20Cu-5Ni-2Fe (at.%) alloy are compared for 4 different processing conditions. The primarily cold-rolled sample shows δ above 0.08 in a wide temperature range of about 100 °C, while solution treating the as-casted sample results in a strain-amplitude sensitive damping behavior, as high as 0.25 at the strain of 2.0 × 10–4. The chemical inhomogeneity in primarily cast alloy is reflected by the flattened changes of Young's modulus (E), broadened X-ray patterns, and the co-existence of twin plates and tweed microstructure. While the strain-amplitude sensitive damping behavior is related to the large fraction of Mn-rich γMn phase, the thin (011) twin plates, intersected with the traces of stacking faults, are considered to be the product of dislocation reaction at the conjunction of intersected (111) plane. Such twins may possess a low activation energy for cyclic movement, and therefore cause a stable damping behavior in the vicinity of room temperature.


F. Yin, Y. Ohsawa, A. Sato National Research Institute for Metals Tsukuba Ibaraki 305–0047, Japan K. Kawahara B.B. Materia Co. Ltd. Chiba-shi Chiba 267-0066, Japan

Literature

1. Beshers, D.N.: Metal. Res. 7 (1976) 529 – 707.Search in Google Scholar

2. Ritchie, I.G.; Pan, Z. -L.: Metall. Trans. A 22A (1991) 607 – 616.10.1007/BF02670281Search in Google Scholar

3. Van Humbeeck, J.: Proc. ASM Materials Week and TMS/AIME Fall Meeting (1985) 5–24.Search in Google Scholar

4. Ritchie, I.G.; Pan, Z.-L.; Sprungmann, K.W.; Schmidt, H.K.; Dutton, R.: Canad. Metall. Quart. 26 (1987) 239–50.10.1179/cmq.1987.26.3.239Search in Google Scholar

5. Laddha, S.; Van Aken, D.C.: Metall. Trans. A 26A (1995) 957-964.10.1007/BF02649092Search in Google Scholar

6. Adachi, K.; Yamashita, T.; Taneda, Y.; Farkas, D.M.; Perkins, J.: Phil. Mag. A 73 (1996) 1009 – 34.10.1080/01418619608243701Search in Google Scholar

7. Vitek, J.M.; Warlimont, H.: Metal. Science J. 10 (1976) 7–13.10.1179/030634576790431426Search in Google Scholar

8. Vintaykin, Ye.Z.: Dimitrivev, V.B.; Udovenko, V.A.: Phys. Met. Metall. 46 (1979) 97–102.Search in Google Scholar

9. Kawahara, K.; Sakuma, N.; Nishizaki, Y: J. Japan Inst. Metals 57 (1993) 1097–1100.10.2320/jinstmet1952.57.9_1097Search in Google Scholar

10. Yin, F.; Osawa, Y.; Sato, A.; Kawahara, K.: Scripta Mater. 38 (1998) 1341–1346.10.1016/S1359-6462(98)00064-5Search in Google Scholar

11. Cochardt, A.W.: Trans ASME, J. Appl. Mech. 75 (1953) 5174 – 78.Search in Google Scholar

12. Bowles, J.S.; Barrett, C.S.; Guttmann, L.: Trans. AIME 188 (1950) 1478 –84.Search in Google Scholar

13. Hedley, J.A.: Metal Science J. 2 (1968) 129–34.10.1179/030634568790443206Search in Google Scholar

14. Sugimoto, K.; Mori, T.; Shiode, S.: Metal Science J. 7 (1973) 103–108.10.1179/030634573790445604Search in Google Scholar

Received: 1998-03-04
Published Online: 2021-12-20

© 1998 Carl Hanser Verlag, München

Downloaded on 13.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/ijmr-1998-0088/html
Scroll to top button