A Design to Study Flow Induced Crystallization in a Multipass Rheometer
-
J.-W. Housmans
Abstract
The design and performance of a flow geometry for the multipass rheometer (MPR) is described, creating an experimental setup to study in-situ and ex-situ structure and morphology development with a proper control over the processing conditions and shear history. The slit used is equipped with diamond windows, to combine flow with different experimental techniques, such as optical microscopy (OM), birefringence and X-ray scattering. In this paper we present preliminary results, obtained on isotactic polypropylene, that demonstrate the possibilities of this device for more extended future research. The focus is on the in-situ birefringence measurements of crystallization and the relation with the final morphology.
References
Baert, J., van Puyvelde, P., “Effect of Molecular and Processing Parameters on the Flow-induced Crystallization of Poly-1-butene. Part 1: Kinetics and Morphology”, Polymer, 47, 5871–5879(2006)10.1016/j.polymer.2006.06.009Suche in Google Scholar
Baert, J., et al., “Flow-induced Crystallization of PB-1: From the Low Shear Rate Region up to Processing Rates”, Macromolecules, 39, 9215–9222(2006)10.1021/ma062068qSuche in Google Scholar
Balzano, L., et al., “Flow Induced Crystallization in iPP-DMDBS Blends: Implications on Morphology of Shear and Phase Separation”, Macromolecules, 41, 399–408(2008a)10.1021/ma071460gSuche in Google Scholar
Balzano, L., et al., “Thermo-reversible DMDBS Phase Separation in iPP: Effects of Flow Induced Crystallization”, Macromolecules, 41, 5350–5355(2008b)10.1021/ma7024607Suche in Google Scholar
Bashir, Z., et al., “High Modulus Filaments of Polyethylene with Lamellar Structure by Melt Processing; the Role of the High Molecular Weight Component”, J. Mater. Sci., 19, 3713–3725(1984)10.1007/BF02396944Suche in Google Scholar
Boutahar, K., et al., “Polypropylene during Crystallization from the Melt as a Model for the Rheology of Molten-filled Polymers”, J. Appl. Polym. Sci., 60, 103–114(1996)10.1002/(SICI)1097-4628(19960404)60:1<103::AID-APP12>3.0.CO;2-9Suche in Google Scholar
Collis, M., Mackley, M., “The Melt Processing of Monodisperse and Polydisperse Polystyrene Melts within a Slit Entry and Exit Flow”, J. Non-Newt. Fluid Mech., 128, 29–41(2005)10.1016/j.jnnfm.2005.02.010Suche in Google Scholar
Coventry, K., Mackley, M., “Cross-slot Extensional Flow Birefringence Observations of Polymer Melts Using a Multi-pass Rheometer”, J. Rheol., 52, 401–415(2008)10.1122/1.2836671Suche in Google Scholar
Field, J., The Properties of Diamond, Academic Press, London(1979)Suche in Google Scholar
Forstner, R., et al., “A Novel Dilatometer for Volumetric Rheometry of Polymers at High Cooling – and Shear Rates”, Int. Polym. Proc., 24, 114–121(2009a)10.3139/217.2154Suche in Google Scholar
Forstner, R., et al., “Volumetric Rheology of Polymers i: The Influence of Shear Flow, Cooling Rate and Pressure on the Specific Volume of p/e Random Copolymers”, J. Therm. Anal. Cal., special issue (2009b)10.1007/s10973-009-0552-zSuche in Google Scholar
Fujiyama, M., Wakino, T., “Distribution of Higher-order Structures in Injection-molded Polypropylenes”, J. Appl. Polym. Sci., 43, 57–81(1991)10.1002/app.1991.070430108Suche in Google Scholar
Hassell, D., Mackley, M., “Localised Flow-induced Crystallisation of a Polyethylene Melt”, Rheol. Acta, 47, 435–446(2008)10.1007/s00397-008-0263-6Suche in Google Scholar
Houska, M., Brummell, M., “Characterization of Molecular Orientation in Injection-Molded Thermoplastics by Transmission and Reflection Infrared Spectroscopy”, Polym. Eng., Sci., 27, 917–924(1987)10.1002/pen.760271208Suche in Google Scholar
Housmans, J., et al., “Dilatometry: Influence of Cooling Rate and Pressure on Specific Volume of Nucleated Polypropylene”, Macromol. Mat. Eng., accepted (2009a)10.1002/mame.200800339Suche in Google Scholar
Housmans, J., et al., “Flow-Induced Crystallization of Propylene Ethylene Random Copolymers”, J. Therm. Anal. Cal., accepted (2009b)10.1007/s10973-009-0532-3Suche in Google Scholar
Housmans, J., et al., “Saturation of Pointlike Nuclei and the Transition to Oriented Structures in Flow Induced Crystallization of Isotactic Polypropylene”, Macromolecules, accepted (2009c)10.1021/ma802479cSuche in Google Scholar
Janeschitz-Kriegl, H., et al., “Flow as an Effective Promotor of Nucleation in Polymer Melts: A Quantitative Evaluation”, Rheol. Acta, 42, 355–364(2003)10.1007/s00397-002-0247-xSuche in Google Scholar
Jay, F., et al., “Shear-induced Crystallization of Polypropylenes: Effect of Molecular Weight”, J. Mater. Sci., 34, 2089–2102(1999)10.1023/A:1004563827491Suche in Google Scholar
Kalay, G., et al., “The Enhancement of the Mechanical Properties of a High Density Polyethylene”, J. Appl. Polym. Sci., 73, 2473–2483(1999)10.1002/(SICI)1097-4628(19990919)73:12<2473::AID-APP16>3.0.CO;2-OSuche in Google Scholar
Kech, A., et al., “Mechanical Properties of Isotactic Polypropylene with Oriented and Crosshatched Lamellae Structure”, Int. Polym. Proc., 25, 202–207(2000)Suche in Google Scholar
Khanna, Y., “Rheological Mechanism and Overview of Nucleated Crystallization Kinetics”, Macromolecules, 26, 3639–3643(1993)10.1021/ma00066a024Suche in Google Scholar
Koscher, E., Fulchiron, R., “Influence of Shear on Polypropylene Crystallization: Morphology Development and Kinetics”, Polymer, 43, 6931–6942(2002)10.1016/S0032-3861(02)00628-6Suche in Google Scholar
Kristiansen, M., et al., “The Binary System Isotactic Polypropylene/bis(3,4-dimethylbenzylidene)Sorbitol: Phase Behavior, Nucleation, and Optical Properties”, Macromolecules, 36, 5150–5156(2003)10.1021/ma030146tSuche in Google Scholar
Kumaraswamy, G., et al., “Novel Flow Apparatus for Investigating Shear-enhanced Crystallization and Structure Development in Semicrystalline Polymers”, Rhev. Sci. Instr., 70, 2097–2104(1999a)10.1063/1.1149720Suche in Google Scholar
Kumaraswamy, G., et al., “Shear-enhanced Crystallization in Isotactic Polypropylene. 1. Correspondence between in situ Rheo-Optics and ex situ Structure Determination”, Macromolecules, 32, 7537–7547(1999b)10.1021/ma990772jSuche in Google Scholar
Lamberti, G., “A Direct Way to Determine iPP Density Nucleation from DSC Isothermal Measurements”, Polym. Bull., 52, 443–449(2004)10.1007/s00289-004-0304-ySuche in Google Scholar
Lamberti, G., Brucato, V., “Real-time Orientation and Crystallinity Measurements during the Isotactic Polypropylene Film-Casting Process”, J. Polym. Sci. B, Polym. Phys., 41, 9998–1008(2003)10.1002/polb.10411Suche in Google Scholar
Lamberti, G., Natteo, C., “Some Issues on Polymer Crystallization Kinetics Studied by DSC Non Isothermal Tests”, Polym. Bull., 56, 591–598(2006)10.1007/s00289-006-0518-2Suche in Google Scholar
Lamberti, G., et al., “Orientation and Crystallinity Measurements in Injection Moulded Products”, Polym. Bull., 50, 405–411(2003)10.1007/s00289-003-0177-5Suche in Google Scholar
Langouche, F., “Orientation Development during Shear Flow-induced Crystallization of iPP”, Macromolecules, 39, 2568–2573(2006)10.1021/ma0525684Suche in Google Scholar
Lele, A., et al., “In situ Rheo-x-ray Investigation of Flow-induced Orientation in Layered Silicate-syndiotactic Polyproylene Nanocomposite Melt”, J. Rheol., 46, 1091–1110(2002)10.1122/1.1498284Suche in Google Scholar
Liedauer, S., et al., “On the Kinetics of Shear Induced Crystallization in Polypropylene”, Int. Polym. Proc., 18, 236–244(1993)Suche in Google Scholar
Mackley, M., et al., “The Multipass Rheometer”, J. Rheol., 29, 1293–1309(1995)10.1122/1.550637Suche in Google Scholar
Mackley, M., et al., “Direct Experimental Evidence for Flow Induced Fibrous Polymer Crystallisation Occurring at a Solid/Melt Interface”, J. Mater. Sci., 35, 5247–5253(2000)10.1023/A:1004824924912Suche in Google Scholar
Macosko, C.: Rheology, Principles, Measurements and Application, Wiley-VCH, New York(1994)Suche in Google Scholar
Monasse, B., “Polypropylene Nucleation on a Glass Fibre after Melt Shearing”, J. Mater. Sci., 27, 6047–6052(1992)10.1007/BF01133748Suche in Google Scholar
Monasse, B., “Nucleation and Anisotropic Crystalline Growth of Polyethylene under Shear”, J. Mater. Sci., 30, 5002–5012(1995)10.1007/BF01154515Suche in Google Scholar
Mykhaylyk, O., et al., “The Specific Work of Flow as a Criterion for Orientation in Polymer Crystallization”, Macromolecules, 41, 1901–1904(2008)10.1021/ma702603vSuche in Google Scholar
Pogodina, N., Winter, H., “Polypropylene Crystallization as a Physical Gelation Process”, Macromolecules, 31, 8164–8172(1998)10.1021/ma980134lSuche in Google Scholar
Samuels, R., “Infrared Dichroism, Molecular Structure, and Deformation Mechanisms of Isotactic Polypropylene”, Makromol. Chemie, 4, 241–270(1981)10.1002/macp.1981.020041981117Suche in Google Scholar
Scelsi, L., Mackley, M., “Rheo-optic Flow-induced Crystallisation of Polypropylene and Polyethylene within Confined Entryexit Flow Geometries”, Rheol. Acta, 47, 895–908(2008)10.1007/s00397-008-0278-zSuche in Google Scholar
Schrauwen, B., “Deformation and Failure of Semi-crystalline Polymer Systems, Influence of Micro and Molecular Structure”, Ph.D. Thesis, Eindhoven University of Technology, The Netherlands(2003)Suche in Google Scholar
Schrauwen, B., et al., “Structure, Deformation, and Failure of Flow-oriented Semicrystalline Polymers”, Macromolecules, 37, 8618–8633(2004)10.1021/ma048884kSuche in Google Scholar
Somani, R., et al., “Structure Development during Shear Flow-induced Crystallization of iPP: In-situ Small-Angle X-ray Scattering Study”, Macromolecules, 33, 9385–9394(2000)10.1021/ma001124zSuche in Google Scholar
Swartjes, F., “Stress Induced Crystallization in Elongational Flow”, Ph.D. Thesis, Eindhoven University of Technology, The Netherlands(2001)Suche in Google Scholar
Thomason, J., van Rooyen, A., “Transcrystallized Interphase in Thermoplastic Composites, Part I Influence of Stress, Cooling Rate, Fibre Properties and Polymer Molecular Weight”, J. Mater. Sci., 27, 897–907(1992)10.1007/BF01197639Suche in Google Scholar
Tribout, C., et al., “Experimental Study of Shear-induced Crystallization of Impact Polypropylene Copolymer”, Colloid Polym. Sci., 274, 197–208(1996)10.1007/BF00665636Suche in Google Scholar
van der Beek, M., “Specific Volume of Polymers, Influence of the Thermomechanical History”, Ph.D. Thesis, Eindhoven University of Technology, The Netherlands (2005)Suche in Google Scholar
van der Beek, M., et al., “A Dilatometer to Measure the Influence of Cooling Rate and Melt Shearing on Specific Volume”, Int. Polym. Proc., 20, 111–120(2005)Suche in Google Scholar
van der Beek, M., et al., “Classifying the Combined Influence of Shear rate, Temperature, and Pressure on Crystalline Morphology and Specific Volume of Isotactic (Poly)propylene”, Macromolecules, 39, 9278–9284(2006a)10.1021/ma060768pSuche in Google Scholar
van der Beek, M., et al., “Influence of Shear Flow on the Specific Volume and the Crystalline Morphology of Isotactic Polypropylene”, Macromolecules, 39, 1805–1814(2006b)10.1021/ma051914eSuche in Google Scholar
van Meerveld, J., et al., “Towards a Rheological Classification of Flow Induced Crystallization Experiments of Polymer Melts”, Rheol. Acta, 44, 119–134(2004)10.1007/s00397-004-0382-7Suche in Google Scholar
Varga, J., Karger-Kocsis, J., “Direct-evidence of Row-nucleated Cylindritic Crystallization in Glass Fiber-reinforced Polypropylene Composites”, Polym. Bull., 30, 105–110(1993)10.1007/BF00296241Suche in Google Scholar
Varga, J., Karger-Kocsis, J., “Rules of Supermolecular Structure Formation in Sheared Isotactic Polypropylene Melts”, J. Polym. Sci. B, Polym. Phys., 34, 657–670(1996)10.1002/(SICI)1099-0488(199603)34:4<657::AID-POLB6>3.0.CO;2-NSuche in Google Scholar
Vega, J., et al., “Rheology and Reptation of Linear Polymers. Ultrahigh Molecular Weight Chain Dynamics in the Melt”, J. Rheol., 48, 663–678(2004)10.1122/1.1718367Suche in Google Scholar
Vega, J., et al., “Flow Induced Crystallization Regimes and Rheology of Isotactic Polypropylene: Effects of Molecular Architecture”, J. Therm. Anal. Cal., special issue (2009)10.1007/s10973-009-0516-3Suche in Google Scholar
Vleeshouwers, S., Meijer, H. E. H., “A Rheological Study of Shear Induced Crystallization”, Rheol. Acta, 35, 391–399(1996)10.1007/BF00368990Suche in Google Scholar
Xu, J., et al., “A Tubular Film Extrusion of Poly(vinylidene fluoride): Structure/Process/Property Behavior as a Function of Molecular Weight”, Polymer, 45, 5327–5340(2004)10.1016/j.polymer.2004.04.071Suche in Google Scholar
Zuidema, H., “Flow Induced Crystallization of Polymers, Application to Injection Moulding”, Ph.D. Thesis, Eindhoven University of Technology, The Netherlands (2000)Suche in Google Scholar
Zuidema, H., et al., “Development and Validation of a Recoverable Strain-based Model for Flow-induced Crystallization of Polymers”, Macromol. Theory Sim., 10, 447–460(2001)10.1002/1521-3919(20010601)10:5<447::AID-MATS447>3.0.CO;2-CSuche in Google Scholar
© 2009, Carl Hanser Verlag, Munich
Artikel in diesem Heft
- Contents
- Contents
- Regular Contributed Articles
- Modeling the Temperature Development of Wall-slipping Polymers in Single-screw Channels
- A Novel Dilatometer for PVT Measurements of Polymers at High Cooling – and Shear Rates
- Analysis of Heat Transfer in PVC Profiles during the Extrusion Calibration/Cooling Step
- Study on the Bleeding Mechanism of Slip Agents in a Polypropylene Film using Molecular Dynamics
- A Direct 3D Numerical Simulation Code for Extrusion and Mixing Processes
- The Resarch for Asphalt Modified with Phosphorus Trichloride/SBS
- The Effect of Bead Vacuum on Slot Die Coating
- Predicting the Yield Stress of Polymer Glasses Directly from Processing Conditions: Application to Miscible Systems
- Numerical Simulation of a Thermoviscoelastic Frictional Problem with Application to the Hot-Embossing Process for Manufacturing of Microcomponents
- A Design to Study Flow Induced Crystallization in a Multipass Rheometer
- Modeling of Melt Conveying in a Novel Screw-Nested Extruder
- Rheological and Thermal Properties of a Model System for PIM
- PPS-News
- PPS News
- Seikei Kakou Abstracts
- Seikei-Kakou Abstracts
Artikel in diesem Heft
- Contents
- Contents
- Regular Contributed Articles
- Modeling the Temperature Development of Wall-slipping Polymers in Single-screw Channels
- A Novel Dilatometer for PVT Measurements of Polymers at High Cooling – and Shear Rates
- Analysis of Heat Transfer in PVC Profiles during the Extrusion Calibration/Cooling Step
- Study on the Bleeding Mechanism of Slip Agents in a Polypropylene Film using Molecular Dynamics
- A Direct 3D Numerical Simulation Code for Extrusion and Mixing Processes
- The Resarch for Asphalt Modified with Phosphorus Trichloride/SBS
- The Effect of Bead Vacuum on Slot Die Coating
- Predicting the Yield Stress of Polymer Glasses Directly from Processing Conditions: Application to Miscible Systems
- Numerical Simulation of a Thermoviscoelastic Frictional Problem with Application to the Hot-Embossing Process for Manufacturing of Microcomponents
- A Design to Study Flow Induced Crystallization in a Multipass Rheometer
- Modeling of Melt Conveying in a Novel Screw-Nested Extruder
- Rheological and Thermal Properties of a Model System for PIM
- PPS-News
- PPS News
- Seikei Kakou Abstracts
- Seikei-Kakou Abstracts