Radially Dependent Stress and Modeling of Solidi cation in ilament Melt Spinning
-
G.M. Henson
Abstract
When polymer fibers are manufactured by melt spinning, axial velocity is nearly uniform across any cross section but temperature and stress vary significantly across the fiber radius. Thus, the fiber solidifies from the outside in, with the fiber being solid on the outside but molten on the inside for some distance before complete solidification, and stress near solidification, the controller of mechanical properties of the spun fiber, has radial variation. We present a computationally 1D melt spinning model which recognizes the radially inhomogeneous solidification region, and computes axial and radial dependence of stress in the spinline. With this radial resolution, stress near solidification is now the stress evaluated on a surface near the solidification boundary. In simulations of melt spinning processes, we investigate features of the solidification boundary and stress near solidification, and examine how these change as material properties and process conditions change. As part of this study, we propose and investigate a solidification criterion that is a function of both stress and temperature.
© 2000, Carl Hanser Verlag, Munich
Articles in the same Issue
- Editorial
- Seventh of a Series: Pioneer of Carbonaceous Pitch Processing Sugio Otani
- Invited Paper
- Injection Blow Molding Technology for Polyethylene Terephthalate
- Screw Extrusion/Mixing
- A New Polymer Processing Technology for Polymer Blends with Unmatched Viscosity: Solid-State Shear Pulverization (S3P)
- In-Line Density Monitoring of Rigid PVC Foam during Extrusion Process
- In-Process R eometry Studies of LDPE Compounds
- In-Process R eometry Studies of LDPE Compounds
- Rheological and Morphological Properties of Immiscible Blends and Microfiber Preparation from the Blends
- Reactive Extrusion
- Development of a Direct Polycondensation Process for Poly (L-lactic acid)
- Fiber and Film
- Radially Dependent Stress and Modeling of Solidi cation in ilament Melt Spinning
- Structure Development in Melt Spinning Syndiotactic Polypropylene and Comparison to Isotactic Polypropylene
- Fibers and Films
- Investigation of Structure and Properties in Biaxially Stretched Poly(butylene terephthalate) Films
- Molding
- Filling and Postfilling Analysis of Injection/Compression Molding
Articles in the same Issue
- Editorial
- Seventh of a Series: Pioneer of Carbonaceous Pitch Processing Sugio Otani
- Invited Paper
- Injection Blow Molding Technology for Polyethylene Terephthalate
- Screw Extrusion/Mixing
- A New Polymer Processing Technology for Polymer Blends with Unmatched Viscosity: Solid-State Shear Pulverization (S3P)
- In-Line Density Monitoring of Rigid PVC Foam during Extrusion Process
- In-Process R eometry Studies of LDPE Compounds
- In-Process R eometry Studies of LDPE Compounds
- Rheological and Morphological Properties of Immiscible Blends and Microfiber Preparation from the Blends
- Reactive Extrusion
- Development of a Direct Polycondensation Process for Poly (L-lactic acid)
- Fiber and Film
- Radially Dependent Stress and Modeling of Solidi cation in ilament Melt Spinning
- Structure Development in Melt Spinning Syndiotactic Polypropylene and Comparison to Isotactic Polypropylene
- Fibers and Films
- Investigation of Structure and Properties in Biaxially Stretched Poly(butylene terephthalate) Films
- Molding
- Filling and Postfilling Analysis of Injection/Compression Molding