Evaluation of Material Analysis Methods for the Determination of the Composition of Blended Cathodes in Lithium-Ion Batteries
-
C. Weisenberger
C. WeisenbergerHochschule für Technik und Wirtschaft Aalen, Institut für Materialforschung Aalen, Beethovenstr. 1, 73430 Aalen, Deutschland; e-mail: christian.weisenberger@hs-aalen.deSearch for this author in:D. K. HarrisonGlasgow Caledonian University, School of Computing, Engineering and Built Environment, Cowcaddens Road Glasgow G4 0BA, United KingdomSearch for this author in:T. BernthalerHochschule für Technik und Wirtschaft Aalen, Institut für Materialforschung Aalen, Beethovenstr. 1, 73430 Aalen, Deutschland; e-mail: christian.weisenberger@hs-aalen.deSearch for this author in:G. SchneiderHochschule für Technik und Wirtschaft Aalen, Institut für Materialforschung Aalen, Beethovenstr. 1, 73430 Aalen, Deutschland; e-mail: christian.weisenberger@hs-aalen.deSearch for this author in:V. KnoblauchHochschule für Technik und Wirtschaft Aalen, Institut für Materialforschung Aalen, Beethovenstr. 1, 73430 Aalen, Deutschland; e-mail: christian.weisenberger@hs-aalen.deSearch for this author in:
Abstract
New fields of application, such as electromobility, place ever increasing demands on lithium-ion batteries in terms of quality and safety. In-line methods currently used for assessing the quality of the electrode foils in lithium-ion cells in the manufacturing process hardly allow any statements on quality-related microstructural features and are often limited in terms of precision and spatial resolution. This is particularly true for electrodes containing several different active materials (so-called material blends or blended cathodes). Not only their layer thickness and porosity, but also the distribution of the active materials within the electrode is crucial for the quality of the electrode.
The active material distribution can be determined with several methods which differ, for example, in terms of precision, required effort, and spatial resolution. This work presents and evaluates common analytical methods – light microscopy, scanning electron microscopy, and energy dispersive X-ray analysis, as well as X-ray diffraction – for the determination of phase fractions with the aid of reference samples. Alongside the precision, criteria such as the sample preparation and measurement effort or the spatial resolution are considered.
Kurzfassung
Neue Einsatzgebiete von Lithium-Ionen-Batterien, wie z. B. die Elektromobilität, führen zu stetig steigenden Ansprüchen bezüglich der Qualität und Sicherheit. Die heute in der Fertigung überwiegend eingesetzten in-line Methoden zur Qualitätsbewertung der Elektrodenfolien von Lithium-Ionen-Zellen erlauben kaum Aussagen über die qualitätsbestimmenden Merkmale der Mikrostruktur und sind hinsichtlich Genauigkeit und Ortsauflösung limitiert. Dies gilt insbesondere für Elektroden mit mehreren unterschiedlichen Aktivmaterialen (sogenannte Materialblends bzw. Blendkathoden), bei denen neben der Schichtdicke und Porosität die Verteilung der Aktivmaterialien innerhalb der Elektrode entscheidend für die Qualität der Elektrode ist.
Für die Ermittlung der Aktivmaterialverteilung stehen verschiedene Methoden zur Verfügung, welche sich z. B. hinsichtlich Genauigkeit, Aufwand und Ortsauflösung unterscheiden. In dieser Arbeit werden gängige analytische Methoden – Lichtmikroskopie, Rasterelektronenmikroskopie und Energiedispersive Röntgenanalytik sowie Röntgenbeugung – zur Ermittlung von Phasenanteilen vorgestellt und mit Hilfe von Vergleichsproben evaluiert. Neben der Genauigkeit werden Kriterien, wie z. B. Aufwand für Probenpräparation und Messung oder Ortsauflösung, betrachtet.
References / Literatur
[1] Goodenough, J.B.: J. Solid State Electrochem.16 (2012) 2019–2029. 10.1007/s10008-012-1751-2Search in Google Scholar
[2] Hafner, C.; Bernthaler, T.; Knoblauch, V.; Schneider, G.: Pract. Metallogr.49 (2012) 75–85. 10.3139/147.110150Search in Google Scholar
[3] Weisenberger, C.; Guth, G.; Bernthaler, T.; Knoblauch, V.: Pract. Metallogr.51 (2014) 5–31. 10.3139/147.110260Search in Google Scholar
[4] Yoshio, M.; Brodd, R.J.; Kozawa, A.: Lithium-Ion Batteries: Science and Technologies, Springer, New York, 2009. 10.1007/978-0-387-34445-4Search in Google Scholar
[5] Yuan, X.; Liu, H.; Zhang, J.: Lithium-Ion Batteries: Advanced Materials and Technologies, CRC Press – Taylor & Francis, 2011.Search in Google Scholar
[6] Korthauer, R.: Handbuch Lithium-Ionen-Batterien, Springer, Berlin Heidelberg, 2013. 10.1007/978-3-642-30653-2Search in Google Scholar
[7] Weisenberger, C.: Masterthesis, Hochschule Aalen – Institut f. Materialforschung Aalen (2014).Search in Google Scholar
[8] Luo, Z.; Fan, D.; Liu, X.; Mao, H.; Yao, C.; Deng, Z.: J. Power Sources189 (2009) 16–21. 10.1016/j.jpowsour.2008.12.068Search in Google Scholar
[9] Kobayashi, Y.; Seki, S.; Mita, Y.; Ohno, Y.; Miyashiro, H.; Charest, P.; Guerfi, A.; Zaghib, K.: J. Power Sources185 (2008) 542–548. 10.1016/j.jpowsour.2008.05.067Search in Google Scholar
[10] Wang, D.; Gao, M.; Pan, H.; Wang, J.; Liu, Y.: J. Power Sources256 (2014) 190–199. 10.1016/j.jpowsour.2013.12.128Search in Google Scholar
[11] Makimura, Y.; Ohzuku, T. in: Garche, J. (Ed.), Encycl. Electrochem. Power Sources, Elsevier, Amsterdam, 2009, pp. 249–257. 10.1016/B978-044452745-5.00196-9Search in Google Scholar
[12] Wohlfahrt-Mehrens, M.; in: Garche, J. (Ed.), Encycl. Electrochem. Power Sources, Elsevier, Amsterdam, 2009, pp. 318–327. 10.1016/B978-044452745-5.00198-2Search in Google Scholar
[13] Appiah, W.A.; Park, J.; Van Khue, L.; Lee, Y.; Choi, J.; Ryou, M.-H.; Lee, Y.M.: Electrochim. Acta187 (2016) 422–432. 10.1016/j.electacta.2015.11.029Search in Google Scholar
[14] Smith, A.J.; Smith, S.R.; Byrne, T.; Burns, J.C.; Dahn, J.R.: J. Electrochem. Soc.159 (2012) A1696-A1701. 10.1149/2.076203jesSearch in Google Scholar
[15] Tran, H.Y.; Täubert, C.; Fleischhammer, M.; Axmann, P.; Küppers, L.; Wohlfahrt-Mehrens, M.: J. Electrochem. Soc.158 (2011) A556 – A561.Search in Google Scholar
[16] Park, M.; Zhang, X.; Chung, M.; Less, G.B.; Sastry, A.M.: J. Power Sources195 (2010) 7904–7929. 10.1016/j.jpowsour.2010.06.060Search in Google Scholar
[17] Albertus, P.; Christensen, J.; Newman, J.: J. Electrochem. Soc.156 (2009) A606 – A618. 10.1149/1.3129656Search in Google Scholar
[18] Röder, P.; Baba, N.; Wiemhöfer, H.-D.: J. Power Sources248 (2014) 978–987. 10.1016/j.jpowsour.2013.09.146Search in Google Scholar
[19] Zhang, Z.; Fouchard, D.; Rea, J.R.: J. Power Sources70 (1998) 16–20. 10.1016/S0378-7753(97)02611-6Search in Google Scholar
[20] Momma, K.; Izumi, F.: J. Appl. Crystallogr.44 (2011) 1272–1276. 10.1107/S0021889811038970Search in Google Scholar
[21] Lin, Q.; Li, Q.; Gray, K.E.; Mitchell, J.F.: Cryst. Growth Des.12 (2012) 1232–1238. 10.1021/cg201238nSearch in Google Scholar
[22] Berg, H.; Thomas, J.O.; Liu, W.; Farrington, G.C.: Solid State Ionics112 (1998) 165. 10.1016/S0167-2738(98)00167-2Search in Google Scholar
[23] Delesse, A.E.O.J.: Comptes Rendus l‘Académie Des Sci.25 (1847) 544–547.Search in Google Scholar
[24] Rietveld, H.: J. Appl. Crystallogr.2 (1969) 65–71. 10.1107/S0021889869006558Search in Google Scholar
[25] Badmos, O.; Kopp, A.; Bernthaler, T.; Schneider, G.: J Intell Manuf (2019) 1–13.Search in Google Scholar
© 2020, Carl Hanser Verlag, München
Articles in the same Issue
- Contents/Inhalt
- Contents
- Editorial
- Editorial
- Technical Contributions/Fachbeiträge
- Fatigue Behavior of the Additively Manufactured Tool Steel H13 after Surface Treatment using Different Post-Processing Methods
- Analysis of a Martensite Needle with Habit Plane in Damascus Steel
- Evaluation of Material Analysis Methods for the Determination of the Composition of Blended Cathodes in Lithium-Ion Batteries
- Metallurgical Failure Analysis of the Fractured Ring of a Gland Seal: Hydrogen Embrittlement? Factography can be Ambiguous
- Meeting Diary/Veranstaltungskalender
- Meeting Diary
Articles in the same Issue
- Contents/Inhalt
- Contents
- Editorial
- Editorial
- Technical Contributions/Fachbeiträge
- Fatigue Behavior of the Additively Manufactured Tool Steel H13 after Surface Treatment using Different Post-Processing Methods
- Analysis of a Martensite Needle with Habit Plane in Damascus Steel
- Evaluation of Material Analysis Methods for the Determination of the Composition of Blended Cathodes in Lithium-Ion Batteries
- Metallurgical Failure Analysis of the Fractured Ring of a Gland Seal: Hydrogen Embrittlement? Factography can be Ambiguous
- Meeting Diary/Veranstaltungskalender
- Meeting Diary