Optimized Segmentation of the 3D Microstructure in Cast Al-Si Piston Alloys
-
K. Bugelnig
, H. Germann , T. Steffens , B. Plank , F. Wilde , E. Boller and G. Requena
Abstract
The thermomechanical behavior of cast Al-Si piston alloys is highly dependent on the condition of the highly interconnected hybrid 3D network which is composed of primary and eutectic silicon and intermetallic phases which are found embedded in the α-Al matrix. The very similar X-ray absorption of silicon and the α-Al matrix is problematic for the local identification of these phases and thus for the accurate segmentation and characterization of all rigid phases in the network when laboratory X-ray tomographs are used. A combination of conventional X-ray computed tomography, synchrotron computed tomography, and chemical deep etching performed on the same alloy and at the same position allows for an automatic segmentation and a more accurate characterization of phases across large representative volumes and thus provides the information necessary for a quantification of the whole 3D microstructure of the alloys.
Kurzfassung
Das thermomechanische Verhalten gegossener Al-Si-Kolbenlegierungen ist stark abhängig vom Zustand des hoch zusammenhängenden hybriden 3D Netzwerks, bestehend aus primärem und eutektischem Silizium und intermetallischen Phasen, die in der α-Al-Matrix eingebettet vorzufinden sind. Die sehr ähnliche Röntgenabsorption von Silizium und der α-Al-Matrix stellt unter Verwendung von Labor-Röntgentomographiegeräten ein Problem für die örtliche Erkennung dieser Phasen und somit für die akkurate Segmentierung und Charakterisierung aller rigiden Phasen im Netzwerk dar. Eine Kombination von konventioneller Röntgen-, Synchrotron-Computertomographie und chemischen Tiefenätzungen derselben Legierung an derselben Stelle ermöglicht eine automatische Segmentierung und genauere Charakterisierung von Phasen über große, repräsentative Volumen und liefert somit die nötigen Informationen für eine Quantifizierung der gesamten 3D Mikrostruktur der Legierungen.
References / Literatur
[1] Asghar, Z.; Requena, G.; Boller, E: Acta Mater.59 (2011), 6420–6432. 10.1016/j.actamat.2011.07.006Search in Google Scholar PubMed PubMed Central
[2] Requena, G.; Garcés, G.; Asghar, Z.; Marks, E.; Staron, P.; Cloetens, P.: Adv. Eng. Mater.13 (2011), 674–684. 10.1002/adem.201000292Search in Google Scholar
[3] Requena, G.C.; Degischer, P.; Marks, E.D.; Boller, E.: Mater. Sci. Eng. A487 (2008), 99–107. 10.1016/j.msea.2007.10.016Search in Google Scholar
[4] Asghar, Z.; Requena, G.; Degischer, H.P.; Cloetens, P.: Acta Mater.57 (2009), 4125–4132. 10.1016/j.actamat.2009.05.010Search in Google Scholar
[5] Manasijevic, S.; Radisa, R.; Markovic, S.; Acimovic-Pavlovic, Z.; Raic, K.: Intermetallics19 (2011) 486–492. 10.1016/j.intermet.2010.11.011Search in Google Scholar
[6] Lasagni, F.; Lasagni, A.; Marks, E.; Holzapfel, C.; Müklich, F.; Degischer, H.P.: Acta Mater.55 (2007), 3875–3882. 10.1016/j.actamat.2007.03.004Search in Google Scholar
[7] Kruglova, A.; Engstler, M.; Gaiselmann, G.; Stenzel, O.; Schmidt, V.; Roland, M.; Diebels, S.; Mücklich, F.: Comp. Mater. Sci.120 (2016), 90–107. 10.1016/j.commatsci.2016.04.019Search in Google Scholar
[8] Bugelnig, K.; Sket, F.; Germann, H.; Steffens, T.; Koos, R.; Wilde, F.; Boller, E.; Requena, G.: Mater. Sci. Eng. A709 (2018), 193–202. 10.1016/j.msea.2017.10.035Search in Google Scholar
[9] Javidani, M.; Larouche, D.: Inter. Mater. Rev.59 (2014) 3, 132–158. 10.1179/1743280413Y.0000000027Search in Google Scholar
[10] Sahoo, M.; Smith, R.; Metal Science9 (1975), 217–222. 10.1179/030634575790444874Search in Google Scholar
[11] Silva, M.J.; Gibson, L.J.; Int. J. Mech. Sci.39 (1997) 5, 549–563.10.1016/S0020-7403(96)00065-3Search in Google Scholar
[12] Moustafa, M.A.; Samuel, F.H.; Doty, H.W.: J. Mater. Sci.38 (2003), 4507–4522. 10.1023/A:1027333602276Search in Google Scholar
[13] Mohamed, A.M.A.; Samuel, F.H.: INTECH (2012), 56–72.Search in Google Scholar
[14] Zhu, P.Y.; Liu, Q.Y.; Hou, T.X.: AFS Trans.93 (1985), 609–614.Search in Google Scholar
[15] http://www.esrf.eu/home/UsersAndScience/Experiments/StructMaterials/ID19.htmlSearch in Google Scholar
[16] Wilde, F.; Ogurreck, M.; Greving1, I.; Hammel, J.U.; Beckmann, F.; Hipp, A.; Lottermoser, L.; Khokhriakov, I.; Lytaev, P.; Dose, T.; Burmester, H.; Müller, M.; Schreyer, A.: Micro-CT at the imaging beamline P05 at PETRA III, in: AIP Conference Proceedings 1741, 2016, 030035–1 ff.10.1063/1.4952858Search in Google Scholar
[17] Lebyodkin, M.; Deschamps, A.; Bréchet, Y.: Mater. Sci. Eng.A 234–236 (1997), 481–484.10.1016/S0921-5093(97)00314-6Search in Google Scholar
[18] Gangulee, A.; Gurland, J.: Trans. Met. Soc. AIME239 (1967) 2, 269–272.Search in Google Scholar
[19] Feng Su, J.; Nie, X.; Stoilov, V.: Mater. Sci. Eng. A527 (2010), 7168–7125. 10.1016/j.msea.2010.07.106Search in Google Scholar
[20] Joseph, S.; Kumar, S.: Mater. Sci. Eng. A588 (2013), 11–124. 10.1016/j.msea.2013.09.019Search in Google Scholar
[21] Joyce, M.R.; Styles, C.M.; Reed, P.A.S.: Int. J. Fatigue25 (2003) 9–11, 863–869. 10.1016/S0142-1123(03)00157-9Search in Google Scholar
[22] Asghar, Z.; Requena, G.; Zahid, G.H.; Rafi-ud-Din: Mater. Charact.88 X (2017), 80–85.10.1016/j.matchar.2013.12.004Search in Google Scholar
[23] Asghar, Z.; Requena, G.; Kubel, F.: Mater. Sci. Eng. A527 (2010) 21–22, 5691–5698. 10.1016/j.msea.2010.05.033Search in Google Scholar
[24] Asghar, Z.; Requena, G.: Mater. Sci. Eng. A591 (2014), 136–143. 10.1016/j.msea.2013.10.067Search in Google Scholar
[25] Schindelin, J.; Arganda-Carreras, I. & Frise, E. et al.: Nat. methods9 (2012) 7, 676–682, PMID 22743772. 10.1038/nmeth.2019Search in Google Scholar PubMed PubMed Central
[26] Aydogan, D. B.; Hyttinen, J.: J. Royal Soc. Interface11 (2014).10.1098/rsif.2013.1042Search in Google Scholar PubMed PubMed Central
[27] Toriwaki, J.; Yonekura, T.: Forma17 (2003) 3, 183–209.Search in Google Scholar
© 2018, Carl Hanser Verlag, München
Articles in the same Issue
- Contents/Inhalt
- Contents
- Editorial
- Editorial
- Technical Contributions/Fachbeiträge
- Modern Methods for the Microscopic Characterization of ZnO Varistor Grain Boundaries
- Microstructural Characterization of Ultra-High Strength Martensitic Steels
- Optimized Segmentation of the 3D Microstructure in Cast Al-Si Piston Alloys
- Unusual Crack Formation on an Autoclave during Thermal Cracking Experiments on Anthropogenic Resources
- Meeting Diary/Veranstaltungskalender
- Meeting Diary
Articles in the same Issue
- Contents/Inhalt
- Contents
- Editorial
- Editorial
- Technical Contributions/Fachbeiträge
- Modern Methods for the Microscopic Characterization of ZnO Varistor Grain Boundaries
- Microstructural Characterization of Ultra-High Strength Martensitic Steels
- Optimized Segmentation of the 3D Microstructure in Cast Al-Si Piston Alloys
- Unusual Crack Formation on an Autoclave during Thermal Cracking Experiments on Anthropogenic Resources
- Meeting Diary/Veranstaltungskalender
- Meeting Diary